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A new multiple Dirichlet series induced by a
higher-order form
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1. Introduction. This note proposes a new link between two relatively
new objects in number theory, higher-order automorphic forms and multiple
Dirichlet series.

First-order automorphic forms of weight k ∈ 2Z+ for a lattice Γ in
PSL2(R) are defined as smooth complex-valued functions f on the upper
half-plane H such that

• f |k(γ − 1) is an automorphic form of weight k for Γ ,
• f |kπ = f for every parabolic element of Γ ,
• f has a “moderate growth at the cusps”.

Here the action |k of PSL2(R) on functions g : H→ C is defined by

(g|kγ)(z) = g(γz)(cz + d)−k

with γ =
( ∗ ∗
c d

)
in PSL2(R). We extend this action to the group ring

C[PSL2(R)] by linearity. This definition can be extended in a natural way
to higher-order forms. (Note that the order in this definition differs from
that in the definitions given in previous papers on the subject. The reason
for the modification of terminology is related to the fact that, by Fourier
transform, Z-supported tempered distributions are mapped to higher-order
Z-invariants, where the natural differentiation order of the distributions cor-
responds to the new notion of order.)

Though some of the ideas behind the investigation of multiple Dirichlet
series originated earlier, the systematic study began in the mid-90’s ([3], [6],
etc.). A definition of multiple Dirichlet series is given in [6]:
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where a(m1, . . . ,mn, t1, . . . , tl) is a complex-valued smooth function; more
generally, we can take vectors with entries such series. Among these series,
those that have a meromorphic continuation to the entire Cn and satisfy
enough functional equations are of particular interest for applications and
are sometimes referred to as perfect. Constructing perfect multiple Dirichlet
series is much harder than the corresponding problem for classical Dirich-
let series and it is one of the main aims of the theory. Apart from the
multiple Dirichlet series obtained from metaplectic Eisenstein series, essen-
tially none of the known perfect multiple Dirichlet series are constructed as
Mellin transforms but are instead obtained by other techniques (cf. [1], [2],
[5], etc.). In this note, we construct a perfect multiple Dirichlet series as the
Mellin transform of a first-order form. This first-order form is essentially the
Eisenstein series twisted by modular symbols. Although the resulting dou-
ble Dirichlet series has infinitely many poles, and is thus not as suitable for
current applications, as it would have been if it had finitely many poles, it
is, to our knowledge, the first example of a non-classical automorphic object
producing a double Dirichlet series via a Mellin transform. This suggests
that there may be a broader class of objects generating perfect multiple
Dirichlet series in a systematic way similar to the correspondence between
modular forms and Dirichlet series.

2. Eisenstein series twisted by modular symbols. Let Γ ⊂PSL2(R)
be a non-uniform lattice. As usual we write x + iy = z ∈ H. Fix a set
{a1, . . . , am} of representatives of the inequivalent cusps of the group Γ . For
each aj , we consider a scaling matrix σaj such that σaj (∞) = aj and

σ−1
aj
Γajσaj = Γ∞ =

{
±
(

1 m
0 1

)
: m ∈ Z

}
where Γaj is the stabilizer of aj in Γ .

Let ψ : Γ → C be a group homomorphism which is zero at all parabolic
elements. For every k ∈ 2Z+ and a ∈ {a1, . . . , am}, we set

Ea(z, s, k;ψ) :=
∑

γ∈Γa\Γ

ψ(γ) Im(σ−1
a γz)sj(σ−1

a γ, z)−k,

where j(γ, z) = cz + d when γ =
(
a b
c d

)
.

This series is absolutely convergent for Re(s) > 2− k/2 and, for k = 0,
it can be meromorphically continued to all of C ([8]). It further satisfies

(2) Ea(γz, s, k;ψ)j(γ, z)−k = Ea(z, s, k;ψ) + ψ(γ−1)Ea(z, s, k)

where
Ea(z, s, k) =

∑
γ∈Γa\Γ

Im(σ−1
a γz)sj(σ−1

a γ, z)−k

is the classical Eisenstein series at a.
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If s is not a pole of Ea(z, s, k;ψ), then Ea(z, s, k;ψ) is a weight k first-
order automorphic form (see [4], where first-order is called second-order
according to an older convention) and it has been used to obtain information
about the distribution of modular symbols ([7], [10], etc.), the number of
appearances of a given generator in reduced words of Γ ([8]) etc.

Consider now the lattice

Γ ∗ = 〈Γ0(N),WN 〉 = Γ0(N) ∪ Γ0(N)WN

where Γ0(N) =
{(

a b
c d

)
∈ SL2(Z) : N | c

}
and WN =

( 0 −1/
√
N√

N 0

)
.

We now concentrate on the case k = 0, for simplicity and because the
weight does not affect the point we want to make. Let f be a newform of
weight 2 for Γ0(N) such that Lf (1) = 0. We set

ψ(γ) = 〈f, γ〉 :=
γi∞�

i∞
f(z) dz

and Ea(z, s; f) := Ea(z, s;ψ). The Fourier expansion of Ea(z, s; f) at b is

Ea(σbz, s; f) = φab(s; f)y1−s +
∑
n6=0

φab(n, s; f)Ws(nz)

with

φab(s; f) = π
Γ (s− 1/2)

Γ (s)

∑
c∈Cab

Sab(0, 0, f ; c)
c2s

and

φab(n, s; f) =
πs

Γ (s)
|n|s−1

∑
c∈Cab

Sab(n, 0, f ; c)
c2s

where Cab =
{
c > 0 :

( ∗ ∗
c ∗
)
∈ σ−1

a Γ ∗σb

}
and

Sab(m,n, f ; c) =
∑

γ∈Γ∞\σ−1
a Γ ∗σb/Γ∞
γc=c

〈f, σaγσ
−1
b 〉e

2πi(nγa/c+mγd/c).

We denote the matrix (φab(s; f))a,b by Φ(s; f).
Set

E(z, s; f) := (Ea1(z, s; f), . . . , Eam(z, s; f))T

and
E(z, s) := (Ea1(z, s), . . . , Eam(z, s))T

where T indicates matrix transpose. In [9] it is proved that φab(s; f) and
E(z, s; f) can be meromorphically continued in s and that

(3) Φ(s)E(z, 1− s; f) = E(z, s; f)− Φ(s; f)Φ(1− s)E(z, s).
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Φ(s) = (φab(s))a,b is the scattering matrix of the standard Eisenstein series
and satisfies

(4) Φ(s)Φ(1− s; f) = −Φ(s; f)Φ(1− s).

3. L-functions. It is possible to use (3) and (4) to obtain a standard
functional equation in s for E(z, s; f) (i.e. not “shifted” by a multiple of
E(z, s)). Set

Ẽ(z, s; f) := E(z, s; f)− 1
2Φ(s; f)Φ(1− s)E(z, s).

Then, using the functional equation Φ(s)E(z, 1− s) = E(z, s), we obtain

(5) Φ(s)Ẽ(z, 1− s; f)

= Φ(s)E(z, 1− s; f)− 1
2Φ(s)Φ(1− s; f)Φ(s)E(z, 1− s)

= E(z, s; f)− Φ(s; f)Φ(1− s)E(z, s)− 1
2Φ(s)Φ(1− s; f)Φ(s)E(z, 1− s)

= E(z, s; f)− Φ(s; f)Φ(1− s)E(z, s) + 1
2Φ(s; f)Φ(1− s)E(z, s)

= Ẽ(z, s; f).

In terms of z, (2) and Lf (1) = 0 imply that

E(WNz, s; f) = E(z, s; f) + 〈f,WN 〉E(z, s) = E(z, s; f)

and thus

(6) Ẽ(WNz, s; f) = Ẽ(z, s; f).

We next define the “completed” L-function of Ẽa. For every w which is
not a pole of Ẽa(iy, w; f) and for Re(s) > max(1 + Re(w), 2− Re(w)), set

Λ̃a(s, w) =
∞�

0

(Ẽa(iy, w; f)− aa(w)yw − ba(w)y1−w)ys
dy

y

where aa(w)yw + ba(w)y1−w is the constant term of Ẽa(z, w; f). By the
definition of Ẽa(z, w; f), the functions aa(w), ba(w) are sums of products of
entries of Φ(w, f) and Φ(w).

We also set
Λ̃ := (Λ̃a1 , . . . , Λ̃am).

We shall prove

Theorem 3.1. The function Λ̃(s, w) is a (vector-valued) double Dirich-
let series which can be meromorphically continued to C2. When w 6∈ (1/2, 1],
Λ̃(s, w) has simple poles

(i) at the infinitely many poles of E(z, ·; f) on Re(w) = 1/2 and
(ii) at s = ±w,±(w − 1) if w is not a pole of E(z, w; f).

In (1/2, 1], Λ̃(s, ·) has at most finitely many poles.



Multiple Dirichlet series 307

Λ̃(s, w) satisfies the functional equations

N sΛ̃(s, w) = Λ̃(−s, w) and Φ(w)Λ̃(s, 1− w) = Λ̃(s, w).

Proof. (6) implies that

(7) Λ̃a(s, w) =
∞�

1/
√
N

(Ẽa(iy, w; f)− aa(w)yw − bb(w)y1−w)ys
dy

y

+
∞�

1/
√
N

(Ẽa(i/(Ny), w; f)− aa(w)(Ny)−w − bb(w)(Ny)w−1)(Ny)−s
dy

y

=
∞�

1/
√
N

(Ẽa(iy, w; f)− aa(w)yw − bb(w)y1−w)(ys +N−sy−s)
dy

y

+N−s
∞�

1/
√
N

(aa(w)yw + ba(w)y1−w− aa(w)(Ny)−w− ba(w)(Ny)w−1)y−s
dy

y

=
∞�

1/
√
N

(Ẽa(iy, w; f)− aa(w)yw − bb(w)y1−w)(ys +N−sy−s)
dy

y

+
aa(w)N−

s+w
2

s− w
+
ba(w)N

w−s−1
2

s+ w − 1
− aa(w)N−

s+w
2

s+ w
− ba(w)N

w−s−1
2

s− w + 1
.

If w is not a pole of Ea(iy, w; f), then Ea(iy, w; f) − constant term =
O(e−πy) (the implied constant depending on s) ([9]). The analogous fact
holds for the entries of Φ(w, f)Φ(1 − w)E(iy, w). The last integral of (7) is
then well-defined and gives a holomorphic function in s. This, together with
the meromorphy of aa, ba, shows that Λ̃a can be meromorphically continued
to C2.

To locate the poles, we first observe that, as shown in [7], Ea(z, w; f)
has infinitely many simple poles on Re(w) = 1/2, namely w = 1/2 + irj
with residue proportional to ηj(z) where ηj is a Maass form with eigenvalue
1/4 + r2j . On the other hand, Φ(w) and Ea(z, w) have no poles on Re(w) =
1/2. This, with Remark 5.5 of [8], further implies that Φ(w, f) has no poles on
Re(w) = 1/2 either. Therefore, aa(w), ba(w) have no poles on Re(w) = 1/2,
whereas Ẽa(z, w; f) has infinitely many poles on that line. (7) then implies
that Λ̃a has infinitely many poles on Re(w) = 1/2.

The rest of the poles of Ea(z, ·; f) belong to (1/2, 1], are simple and
they are at most finitely many ([7]). The same fact holds for the functions
Φ(w, f), Φ(w), Ea(z, ·). A subset of these (which may be proper because of
cancellations) will give simple poles of Λ̃a.

Finally, the above remarks about the location of the poles imply that if
a w 6∈ (1/2, 1] is not a pole of E(z, w; f), it will not be a pole of Ẽ(z, w; f),
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aa(w) and ba(w) either. Therefore, by (7), Λ̃a will have simple poles at
s = ±w,±(w − 1).

Regarding the functional equations, (7) first implies that N sΛ̃a(s, w) =
Λ̃a(−s, w).

Further, since the vector of constant terms of the entries of Ẽ(z, s; f)
satisfies the same functional equation in s as Ẽ(z, s; f) (that is, (5)), we
immediately deduce that Λ̃(s, w) satisfies

(8) Φ(w)Λ̃(s, 1− w) = Λ̃(s, w).

Finally, the formulas for the Fourier coefficients of Ea(z, s; f), Ea(z, s),
and for the functions φab(s), φab(s, f) imply that Λ̃a(s, w) is a double Dirich-
let series according to the definition in the introduction.

Remark. The fact that Λ̃(s, w) has infinitely many poles in w shows
that Λ̃ is a “genuine” double Dirichlet series and not a finite sum of products
of the form Lf (s)Lg(w), with the sum ranging over pairs of classical modular
forms (f, g). Indeed, for each fixed s, such a sum can only have at most
finitely many poles in w, because the L-function of a modular form has at
most two poles.
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