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A Turán–Kubilius type inequality on sum sets
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Joël Rivat (Marseille) and András Sárközy (Budapest)

1. Introduction. N, R and C denote the set of positive integers, real
numbers, resp. complex numbers. We write e(α) = exp(2iπα). The letter p
denotes a prime number. ω(n) denotes the number of distinct prime factors
of n, while Ω(n) denotes the number of prime factors of n counted with
multiplicity.

In 1917 Hardy and Ramanujan [8] proved that for almost all positive
integersm ≤ n the value of ω(m) is “near” log log n. Their proof was based on
the estimate of the number of positive integers m with m ≤ n and ω(m) = k
for any fixed k. In 1934 Turán [13] proved in a simpler way that

(1)
∑
m≤n

(ω(m)− log log n)2 = O(n log log n),

from which the result of Hardy and Ramanujan follows immediately. Later
Turán extended (1) to general additive arithmetic functions f(n), and he
showed that if f(n) is a real-valued additive arithmetic function with

(2) f(p) = f(p2) = · · · = f(pk) = · · ·
for every prime number p (in which case it is said to be strongly additive)
and it is bounded:

(3) |f(p)| = O(1),

then, writing

(4) Af (n) =
∑
p≤n

f(p)
p
,

we have

(5)
∑
m≤n

(f(m)−Af (n))2 = O(nAf (n)).
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In [9] Kubilius showed that Turán’s conditions f(n) ∈ R, (2) and (3)
can be dropped, and still there is an inequality of type (5): if f(n) is a
complex-valued additive arithmetic function, Af (n) is defined by (4), and
we also write

(6) Df (n) =
( ∑
pα≤n

|f(pα)|2

pα

)1/2

,

then

(7)
∑
m≤n
|f(m)−Af (n)|2 = O(nD2

f (n)).

This is called the Turán–Kubilius inequality.
In the last 25 years numerous papers have been written on the arithmetic

properties of sum sets (see, e.g., [1–3], [4], [5], [6], [7], and [11, 12]). Typically,
these results say that if A, B are “large” subsets of {1, . . . , n} then a certain
property of the sums simulates the behaviour of the consecutive integers
1, . . . , n. In particular, Elliott and Sárközy [5] showed that if A, B are large
subsets of {1, . . . , n}, then the sums a+b satisfy an Erdős–Kac type theorem.

G. Halász (oral communication) asked whether the Turán–Kubilius in-
equality has a similar sum set analogue. We will show that, indeed, there
is such an inequality which is, however, not quite as strong as (7): we will
prove a similar result midway between Turán’s and Kubilius’s inequality.

2. The theorem and comments. We will prove the following theorem:

Theorem 1. Let f be a complex-valued additive arithmetic function,
define

(8) Kf (m) = max{|f(pα)| : p prime, α ∈ N, pα ≤ m},
let Af (n) be defined by (4), C any fixed positive number, n ∈ N (with n →
+∞) and A,B ⊆ {1, . . . , n} with

(9)
n√
|A| |B|

< exp(C
√

log log n log log log n).

Then

(10)
1

|A| |B|
∑
a∈A

∑
b∈B
|f(a+ b)−Af (2n)|2 = O(C2K2

f (2n) log log(2n)).

Remarks. (i) If f(n) = ω(n) and A = B = N, then the order of mag-
nitude of the left hand side is the same as that of the function in the ordo
term on the right hand side. This shows that in general (10) is sharp apart
from a constant factor. Indeed, one could construct much thinner sets A, B
(but not thinner than the lower bound implied by (9)) so that (10) is sharp
for these sets A, B and f(n) = ω(n).
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(ii) Condition (9) is also sharp, i.e., to ensure that the left hand side
of (10) is O(K2

f (2n) log log(2n)) one needs assumption (9). Indeed, fix a
positive number C, let Q denote the products of the primes not exceed-
ing (C/2)

√
log log n log log log n, and let A = B = {iQ : i ≤ n/Q}. Then

it follows easily from the prime number theorem (or from a more elemen-
tary theorem) that (9) holds. Moreover, let f(m) = ω(m) (which implies
Kf (2n) = 1). Then it can be shown that the left hand side of (10) is

� C ′K2
f (2n) log log(2n) = C ′ log log(2n),

with some C ′ = C ′(C) such that C ′ → +∞ as C → +∞. (The reason
is that for a typical pair a = iQ ∈ A, b = jQ ∈ B we have Q | a + b =
(i+j)Q, thus every prime p ≤ (C/2)

√
log logn log log log n divides a+b. The

number of these primes is (1 + o(1))C
√

log log n so that their contribution
makes a typical difference f(a+ b)−Af (2n) = ω(a+ b)−Aω(2n) greater by
(1 + o(1))C

√
log log n, which adds C ′ log logn to the left hand side of (10)

with some C ′ = C ′(C) such that C ′ → +∞ as C → +∞.)
(iii) While Theorem 1 is sharp for f(m) = ω(m), it gives only a very

weak upper bound for the left hand side of (10) if f(m) = Ω(m). The reason
is that the prime powers pα with small p and large α may influence the
distribution of the values Ω(a + b) (with a ∈ A, b ∈ B) significantly. E.g.
let α = bC ′

√
log log nc, and set first A = B = {m : m ≤ n, 2α |m} and

then A = {m : m ≤ n, 2α |m}, B = {m : m ≤ n, 2α |m + 1}. In the
first case the powers 2β with β ≥ α make a contribution �

√
log logn to

every value f(a + b) = Ω(a + b) (a ∈ A, b ∈ B), while in the second case
they make no contribution at all. In both cases the left hand side of (9) is
< exp(C ′′

√
log log n) so that a stronger inequality holds than (9); however,

the left hand side of (10) is O(log log(2n)) in the first case, and in the second
case it is 6= O(log log(2n)) if C ′ → +∞ slowly.

3. Structure of the proof. Let P denote the set of prime powers
pα ≤ 2n, and write

(11) V =
n√
|A| |B|

.

We split P into three parts: let

P1 = {pα : p ≤ V, pα ≤ 2n},
P2 = {pα : V < p, pα ≤ 4

√
2n},

P3 = {pα : V < p,
4
√

2n < pα ≤ 2n},

so that P = P1 ∪ P2 ∪ P3 and Pi ∩ Pj = ∅ for 1 ≤ i < j ≤ 3. Define the
additive arithmetic functions f1(m), f2(m), f3(m) by
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fi(pα) =
{
f(pα) if pα ∈ Pi
0 if pα 6∈ Pi

(for i = 1, 2, 3).

Then clearly f(m) = f1(m) + f2(m) + f3(m). Thus by using the elementary
inequality |z1 + z2 + z3|2 ≤ 3(|z1|2 + |z2|2 + |z3|2) (where z1, z2, z3 are any
complex numbers) we can estimate the sum on the left hand side of (10) in
the following way:

(12)
1

|A| |B|
∑
a∈A

∑
b∈B
|f(a+ b)−Af (2n)|2 ≤ 3(T1 + T2 + T3)

where

(13) Ti =
1

|A| |B|
∑
a∈A

∑
b∈B

∣∣∣∣fi(a+ b)−
∑
p≤2n

fi(p)
p

∣∣∣∣2 (for i = 1, 2, 3).

The crucial part of the proof is the estimate of T2, which is based on
the large sieve; this estimate will be carried out in Sections 4 and 5. T1 will
be estimated in Section 6, while the (nearly trivial) estimate of T3 and the
completion of the proof of Theorem 1 will be presented in Section 7.

4. The estimate of T2. Preliminary lemmas. For A,B ⊆ {1, . . . , n}
and m ∈ N we define

(14) R(m) =
∑

(a,b)∈A×B
a+b≡0modm

1− |A| |B|
m

.

Lemma 1. For n ∈ N and w ∈ {1, 2} let
Mn,w = {m : 1 ≤ m ≤ 2n, 1 ≤ ω(m) ≤ w, pα ‖m⇒ pα ∈ P2}.

Then for n ≥ 8,

(15)
∑

m∈Mn,w

|R(m)| ≤ 3κw(2n)|A| |B|

where

(16) κw(u) = max
k≤u

1≤ω(k)≤w

∑
d≤u/k

1≤ω(kd)≤w

1
d
.

Moreover,

(17) κ1(u) ≤ 2, κ2(u) ≤ 3 +
∑
p≤u

1
p

= O(log log u).

Proof. We first observe that we may assume

(18) V <
4
√

2n,

for otherwise P2 = ∅, thusMn,w = ∅ and (15) is trivially true. We can write
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∑
m∈Mn,w

|R(m)| =
∑

m∈Mn,w

1
m

∣∣∣∣ ∑
1≤h<m

(∑
a∈A

e
(
ha

m

))(∑
b∈B

e
(
hb

m

))∣∣∣∣
and by Cauchy’s inequality we get∑

m∈Mn,w

|R(m)| ≤
( ∑
m∈Mn,w

1
m

∑
1≤h<m

∣∣∣∣∑
a∈A

e
(
ha

m

)∣∣∣∣2)1/2

(19)

×
( ∑
m∈Mn,w

1
m

∑
1≤h<m

∣∣∣∣∑
b∈B

e
(
hb

m

)∣∣∣∣2)1/2

.

Let us consider the first term on the right hand side of (19). We arrange the
summation according to the greatest common factor of h and m:∑
m∈Mn,w

1
m

∑
1≤h<m

∣∣∣∣∑
a∈A

e
(
ha

m

)∣∣∣∣2 =
∑

m∈Mn,w

1
m

∑
d|m

∑
1≤h<m
(h,m)=d

∣∣∣∣∑
a∈A

e
(
ha

m

)∣∣∣∣2

=
∑

m∈Mn,w

1
m

∑
d|m

∑
1≤l<m/d
(l,m)=1

∣∣∣∣∑
a∈A

e
(

la

m/d

)∣∣∣∣2.
Notice that this last sum is empty for d = m so we may assume that 1 ≤ d
< m. We put k = m/d; observe that k > 1. Since k |m we have 1 ≤ ω(k) ≤ w
and pα ‖ k ⇒ pα ∈ P2, i.e. k ∈Mn,w. Hence changing the order of summation
we get∑
m∈Mn,w

1
m

∑
1≤h<m

∣∣∣∣∑
a∈A

e
(
ha

m

)∣∣∣∣2 =
∑

k∈Mn,w

1
k

∑
d≤2n/k

1≤ω(kd)≤w

1
d

∑
1≤l<k
(l,k)=1

∣∣∣∣∑
a∈A

e
(
la

k

)∣∣∣∣2.
Using (16) we get∑
m∈Mn,w

1
m

∑
1≤h<m

∣∣∣∣∑
a∈A

e
(
ha

m

)∣∣∣∣2 ≤ κw(2n)
∑

k∈Mn,w

1
k

∑
1≤l<k
(l,k)=1

∣∣∣∣∑
a∈A

e
(
la

k

)∣∣∣∣2.
Let zj = 2n/2j . For k ∈ Mn,w with w ∈ {1, 2}, by the definition of P2 we
have V < k and k ≤ ( 4

√
2n)2 =

√
2n. It follows that if there is a k ∈ Mn,w

with zj+1 < k ≤ zj , then V < zj = 2n/2j and zj+1 = 2n/2j+1 <
√

2n ,
whence

√
n/2 < 2j < 2n/V . Thus∑

k∈Mn,w

1
k

∑
1≤l<k
(l,k)=1

∣∣∣∣∑
a∈A

e
(
la

k

)∣∣∣∣2

≤
∑

√
n/2<2j<2n/V

1
zj

∑
zj+1<k≤zj

∑
1≤l<k
(l,k)=1

∣∣∣∣∑
a∈A

e
(
la

k

)∣∣∣∣2.
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For fixed j the points l/k with (l, k) = 1 are at least (zj+1)−2 spaced mod-
ulo 1 and a ∈ A satisfies 1 ≤ a ≤ n, hence by the large sieve inequality (see
for example [10]),∑

zj+1<k≤zj

∑
1≤l<k
(l,k)=1

∣∣∣∣∑
a∈A

e
(
la

k

)∣∣∣∣2 ≤ (n− 1 + z2
j+1)|A|.

But ∑
√
n/2<2j<2n/V

1
zj

(n− 1 + z2
j+1)

=
n− 1
2n

∑
√
n/2<2j<2n/V

2j + 2n
∑

√
n/2<2j<2n/V

1
2j+2

≤ 2n
V

+
√

2n,

and by (18),

2n
V

+
√

2n =
2n
V

(
1 +

V√
2n

)
≤ 2n

V

(
1 +

4
√

2n√
2n

)
≤ 3n

V

for n ≥ 8, so that∑
m∈Mn,w

1
m

∑
1≤h<m

∣∣∣∣∑
a∈A

e
(
ha

m

)∣∣∣∣2 ≤ 3n
V
κw(2n)|A|.

We may replace A by B in the argument above and get∑
m∈Mn,w

1
m

∑
1≤h<m

∣∣∣∣∑
b∈B

e
(
hb

m

)∣∣∣∣2 ≤ 3n
V
κw(2n)|B|.

Finally, if we apply these two estimates in (19) and use the definition of V
given by (11), we get (15):∑

m∈Mn,w

|R(m)| ≤ 3n
V
κw(2n)

√
|A| |B| = 3κw(2n)|A| |B|.

It remains to prove (17). When w = 1, we observe that k in (16) is a
prime power pγ , and d must be a power of the same prime number p (say
d = pβ). More precisely, by the definition (16) we have

κ1(u) = max
k≤u

ω(k)=1

∑
d≤u/k
ω(kd)=1

1
d

= max
pγ≤u
γ≥1

∑
β≥0

pβ+γ≤u

1
pβ
≤ max

p

∑
β≥0

1
pβ

= max
p

1
1− 1/p

= 2,

which establishes the first statement of (17). The second is slightly more
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complicated. Observe that ω(kd) ≥ ω(d), hence by (16) we have

κ2(u) = max
(

max
k≤u

ω(k)=1

∑
d≤u/k

1≤ω(kd)≤2

1
d
, max
k≤u

ω(k)=2

∑
d≤u/k
ω(kd)=2

1
d

)
.

Now if ω(k) = 2 then k = pγp′γ
′ and d must be of the form d = pβp′β

′ with
the same pair of prime numbers (p, p′) and β, β′ ≥ 0. Therefore

max
k≤u

ω(k)=2

∑
d≤u/k
ω(kd)=2

1
d
≤ max

p 6=p′

∑
β≥0

1
pβ

∑
β′≥0

1
pβ′ =

1
1− 1/2

1
1− 1/3

= 3.

Moreover

max
k≤u

ω(k)=1

∑
d≤u/k

1≤ω(kd)≤2

1
d
≤ max

k≤u
ω(k)=1

∑
d≤u/k
ω(kd)=1

1
d

+ max
k≤u

ω(k)=1

∑
d≤u/k
ω(kd)=2

1
d

= κ1(u) + max
k≤u

ω(k)=1

∑
d≤u/k
ω(kd)=2

1
d
.

If ω(k) = 1 and ω(kd) = 2 this implies that d is a prime power (say d = pβ)
coprime to k. Hence if ω(k) = 1 we have∑

d≤u/k
ω(kd)=2

1
d
≤
∑
p≤u/k

∑
β≥1

1
pβ

=
∑
p≤u/k

1
p

+
∑
p≤u/k

1
p(p− 1)

≤
∑
p≤u/k

1
p

+ 1.

Finally, we obtain

κ2(u) ≤ max
(
κ1(u) + 1 +

∑
p≤u

1
p
, 3
)
≤ 3 +

∑
p≤u

1
p
,

which is the second statement of (17).

Lemma 2. For any complex-valued additive arithmetic function f2 such
that f2(pα) = 0 whenever pα 6∈ P2 and n ≥ 8 we have

(20)
∣∣∣∣∑
a∈A

∑
b∈B

f2(a+b)−|A| |B|
∑
pα≤2n

f2(pα)
pα

(
1−1

p

)∣∣∣∣ ≤ 14Kf2(2n)|A| |B|

where Kf2 is defined by (8).

Proof. Let

(21) S1 =
∑
a∈A

∑
b∈B

f2(a+ b).
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Since f2 is an additive arithmetic function we have

S1 =
∑
a∈A

∑
b∈B

∑
pα‖a+b

f2(pα) =
∑
pα≤2n

f2(pα)
∑

(a,b)∈A×B
pα‖a+b

1,

and ∑
(a,b)∈A×B
pα‖a+b

1 =
∑

(a,b)∈A×B
pα|a+b

1−
∑

(a,b)∈A×B
pα+1|a+b

1.

Using (14) we have∑
(a,b)∈A×B
pα‖a+b

1 =
|A| |B|
pα

− |A| |B|
pα+1

+R(pα)−R(pα+1)(22)

=
|A| |B|
pα

(
1− 1

p

)
+R(pα)−R(pα+1)

and

S1 = |A| |B|
∑
pα≤2n

f2(pα)
pα

(
1−1

p

)
+
∑
pα≤2n

f2(pα)R(pα)−
∑
pα≤2n

f2(pα)R(pα+1),

so that using (8) and f2(pα) = 0 whenever pα 6∈ P2 we obtain

(23)
∣∣∣∣S1 − |A| |B|

∑
pα≤2n

f2(pα)
pα

(
1− 1

p

)∣∣∣∣
≤ Kf2(2n)

( ∑
pα∈P2

|R(pα)|+
∑
pα∈P2

|R(pα+1)|
)
.

By (15) and (17) we have ∑
pα∈P2

|R(pα)| ≤ 6|A| |B|

and ∑
pα∈P2

|R(pα+1)| =
∑
pα∈P2

pα+1 6∈P2

|R(pα+1)|+
∑

pα+1∈P2

|R(pα+1)|

≤
∑
pα∈P2

pα+1 6∈P2

|R(pα+1)|+ 6|A| |B|.

Using (14) we have

|R(pα+1)| ≤
∑

(a,b)∈A×B
a+b≡0mod pα+1

1 +
|A| |B|
pα+1
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and counting trivially we can write∑
(a,b)∈A×B

a+b≡0mod pα+1

1 ≤ min
(
n|A|
pα+1

,
n|B|
pα+1

)
≤ n

pα+1

√
|A| |B|,

so that ∑
pα∈P2

pα+1 6∈P2

|R(pα+1)| ≤ (n
√
|A| |B|+ |A| |B|)

∑
pα∈P2

pα+1 6∈P2

1
pα+1

.

We will show that

(24)
∑
pα∈P2

pα+1 6∈P2

1
pα+1

≤ 1
V
.

Indeed, if pα ∈ P2 and pα+1 6∈ P2 then by the definition of P2 we have V < p
and pα ≤ 4

√
2n < pα+1 so that α is uniquely defined. Hence∑

pα∈P2

pα+1 6∈P2

1
pα+1

≤
∑
p>V

1
p2
.

But for n0 ∈ N,∑
n≥n0

1
(2n+ 1)2

≤
∑
n≥n0

1
4

(
1
n
− 1
n+ 1

)
≤ 1

4n0
,

so that if V ≥ 2 then∑
p>V

1
p2

=
∑

p≥bV c+1

1
p2
≤

∑
n≥bV c/2

1
(2n+ 1)2

≤ 1
2bV c

≤ 1
2V − 2

≤ 1
V
,

and if 1 ≤ V < 2 then∑
p>V

1
p2

=
∑
p≥2

1
p2
≤ 1

4
+
∑
n≥1

1
(2n+ 1)2

≤ 1
4

+
1
4
≤ 1
V
.

By these estimates and the definition of V given by (11) we get∑
pα∈P2

pα+1 6∈P2

|R(pα+1)| ≤
n
√
|A| |B|+ |A| |B|

V
≤ 2|A| |B|.

The sum of the last three upper bounds above gives

(25)
∑
pα∈P2

|R(pα)|+
∑
pα∈P2

|R(pα+1)| ≤ 14|A| |B|.

Now (20) follows from (23) and (25).
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Lemma 3. For any complex-valued additive arithmetic function f2 such
that f2(pα) = 0 whenever pα 6∈ P2, and n ≥ 8, we have

(26)
∣∣∣∣∑
a∈A

∑
b∈B
|f2(a+ b)|2 − |A| |B|

∣∣∣∣ ∑
pα≤2n

f2(pα)
pα

(
1− 1

p

)∣∣∣∣2∣∣∣∣
� K2

f2(2n)|A| |B| log log(2n)

where Kf2 is defined by (8).

Proof. Let

(27) S2 =
∑
a∈A

∑
b∈B
|f2(a+ b)|2.

Since f2 is an additive arithmetic function we can write

S2 =
∑
a∈A

∑
b∈B

∣∣∣ ∑
pα‖a+b

f2(pα)
∣∣∣2

and expanding the square we get

(28) S2 =
∑
pα≤2n

|f2(pα)|2
∑

(a,b)∈A×B
pα‖a+b

1 +
∑

pαqβ≤2n
p 6=q

f2(pα) f2(qβ)
∑

(a,b)∈A×B
pα‖a+b
qβ‖a+b

1.

First we will give an upper bound for the first term. Using (22) we can write∑
pα≤2n

|f2(pα)|2
∑

(a,b)∈A×B
pα‖a+b

1

=
∑
pα≤2n

|f2(pα)|2
(
|A| |B|
pα

(
1− 1

p

)
+R(pα)−R(pα+1)

)

≤ K2
f2(2n)

∑
pα∈P2

(
|A| |B|
pα

(
1− 1

p

)
+ |R(pα)|+ |R(pα+1)|

)
.

Now ∑
pα∈P2

|A| |B|
pα

(
1− 1

p

)
≤ |A| |B|

∑
p≤2n

∑
α≥1

1
pα

(
1− 1

p

)
= |A| |B|

∑
p≤2n

1
p

= O(|A| |B| log log(2n)),

while by (25) we have∑
pα∈P2

|R(pα)|+
∑
pα∈P2

|R(pα+1)| ≤ 14|A| |B|.
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Using these two estimates we obtain, from (28),

(29) S2 =
∑

pαqβ≤2n
p 6=q

f2(pα) f2(qβ)
∑

(a,b)∈A×B
pα‖a+b
qβ‖a+b

1 +O(K2
f2(2n)|A| |B| log log(2n)).

For q 6= p,∑
(a,b)∈A×B
pα‖a+b
qβ‖a+b

1 =
∑

(a,b)∈A×B
pαqβ |a+b

1−
∑

(a,b)∈A×B
pα+1qβ |a+b

1−
∑

(a,b)∈A×B
pαqβ+1|a+b

1 +
∑

(a,b)∈A×B
pα+1qβ+1|a+b

1,

thus using (14) we get∑
(a,b)∈A×B
pα‖a+b
qβ‖a+b

1 =
|A| |B|
pαqβ

(
1− 1

p

)(
1− 1

q

)
(30)

+R(pαqβ)−R(pα+1qβ)−R(pαqβ+1) +R(pα+1qβ+1).

Writing

S′2 =
∑

pαqβ≤2n
p 6=q

f2(pα) f2(qβ)
pαqβ

(
1− 1

p

)(
1− 1

q

)

and

R2 =
∑
pα∈P2

qβ∈P2
p6=q

(|R(pαqβ)|+ |R(pα+1qβ)|+ |R(pαqβ+1)|+ |R(pα+1qβ+1)|),

we deduce from (29) and (30) that

(31)
∣∣S2 − |A| |B|S′2

∣∣� K2
f2(2n)(|A| |B| log log(2n) +R2).

By (15) and (17) we have∑
pα∈P2, qβ∈P2

p 6=q

|R(pαqβ)| � |A| |B| log log(2n).

Using (14) we have

|R(pα+1qβ)| ≤
∑

(a,b)∈A×B
a+b≡0mod pα+1qβ

1 +
|A| |B|
pα+1qβ
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and counting trivially we can write∑
(a,b)∈A×B

a+b≡0mod pα+1qβ

1 ≤ min
(

n|A|
pα+1qβ

,
n|B|
pα+1qβ

)
≤ n

pα+1qβ

√
|A| |B|,

thus using (24)∑
pα∈P2

pα+1 6∈P2

∑
qβ∈P2
q 6=p

|R(pα+1qβ)|

� n
√
|A| |B|

∑
pα∈P2

pα+1 6∈P2

1
pα+1

∑
qβ∈P2
q 6=p

1
qβ
�

n
√
|A| |B|
V

log log n,

and by the definition of V given by (11) we get∑
pα∈P2

pα+1 6∈P2

∑
qβ∈P2
q 6=p

|R(pα+1qβ)| � |A| |B| log log n.

Similarly ∑
qβ∈P2

qβ+1 6∈P2

∑
pα∈P2
q 6=p

|R(pαqβ+1)| � |A| |B| log logn

and ∑
pα∈P2

pα+1 6∈P2

∑
qβ∈P2

qβ+1 6∈P2

|R(pα+1qβ+1)| � |A| |B|.

Thus it follows from (31) that∣∣S2 − |A| |B|S′2
∣∣� K2

f2(2n)|A| |B| log log(2n).

In order to prove (26) it is sufficient to show that∣∣∣∣ ∑
pα≤2n

f2(pα)
pα

(
1− 1

p

)∣∣∣∣2 = S′2 +O(K2
f2(2n)).

We write∣∣∣∣ ∑
pα≤2n

f2(pα)
pα

(
1− 1

p

)∣∣∣∣2 =
∑
pα≤2n
qβ≤2n

f2(pα) f2(qβ)
pαqβ

(
1− 1

p

)(
1− 1

q

)

=
∑
pα≤2n
qβ≤2n
p=q

· · ·+
∑

pαqβ≤2n
p6=q

· · ·+
∑
pα≤2n
qβ≤2n
pαqβ>2n
p 6=q

· · · .
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By the definition of f2 we have f2(pα) f2(qβ) 6= 0 only if pα ≤ 4
√

2n and
qβ ≤ 4

√
2n. This implies that the third sum above is empty (pαqβ > 2n is

not possible). S′2 is the second sum above. The first sum can be majorized
easily:∣∣∣∣ ∑
pα≤2n
qβ≤2n
p=q

f2(pα) f2(qβ)
pαqβ

(
1− 1

p

)(
1− 1

q

)∣∣∣∣
≤ K2

f2(2n)
∑
p

(
1− 1

p

)2∑
α≥1

1
pα

∑
β≥1

1
pβ

= K2
f2(2n)

∑
p

1
p2

= O(K2
f2(2n)).

This completes the proof of (26).

5. Completion of the estimate of T2. Our first step is to replace the
function Af2(n) =

∑
p≤n f2(p)/p in the definition of T2 by

Ef2(n) =
∑
pα≤n

f2(pα)
pα

(
1− 1

p

)
.

We have

Ef2(n)−Af2(n) =
∑
pα≤n
α≥2

f2(pα)
pα

−
∑
pα≤n

f2(pα)
pα+1

,

so that
|Ef2(n)−Af2(n)| ≤ 2Kf2(n)

∑
pα≤n
α≥2

1
pα
.

Observing that∑
pα≤n
α≥2

1
pα
≤
∑
p

∑
α≥2

1
pα

=
∑
p

1
p(p− 1)

≤
∑
n≥2

1
n(n− 1)

= 1,

we obtain
|Ef2(n)−Af2(n)| ≤ 2Kf2(n).

Using the inequality |u+ v|2 ≤ 2|u|2 +2|v|2 with u = f2(a+ b)−Ef2(2n)
and v = Ef2(2n)−Af2(2n) (so that |v| ≤ 2Kf2(2n)), we get

(32)
∑
a∈A

∑
b∈B
|f2(a+ b)−Af2(2n)|2

≤ 2
∑
a∈A

∑
b∈B
|f2(a+ b)− Ef2(2n)|2 + 8|A| |B|K2

f2(2n).
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Now we will prove

(33)
∑
a∈A

∑
b∈B
|f2(a+ b)− Ef2(2n)|2 = O(K2

f2(2n)|A| |B| log log(2n)).

We have∑
a∈A

∑
b∈B
|f2(a+ b)− Ef2(2n)|2

= S2 − S1Ef2(2n)− S1Ef2(2n) + |A| |B| |Ef2(2n)|2,

where S1 and S2 are defined by (21) and (27) respectively. We can rewrite
this as∑

a∈A

∑
b∈B
|f2(a+ b)− Ef2(2n)|2

= (S2 − |A| |B| |Ef2(2n)|2)− (S1 − |A| |B|Ef2(2n))Ef2(2n)

− (S1 − |A| |B|Ef2(2n))Ef2(2n).

By Lemma 2 we have∣∣S1 − |A| |B|Ef2(2n)
∣∣� Kf2(2n)|A| |B|,

and Lemma 3 yields∣∣S2 − |A| |B| |Ef2(2n)|2
∣∣� K2

f2(2n)|A| |B| log log(2n),

thus we obtain∑
a∈A

∑
b∈B
|f2(a+ b)− Ef2(2n)|2

� Kf2(2n)(Kf2(2n) log log(2n) + |Ef2(2n)|)|A| |B|.

Now observing that

|Ef2(2n)| ≤ |Af2(2n)|+ 2Kf2(2n)

≤ Kf2(2n)
∑
p≤2n

1
p

+ 2Kf2(2n)� Kf2(2n) log log(2n),

we get (33). It follows from (32) and (33) that

(34) T2 = O(Kf2(2n) log log(2n)).

6. The estimate of T1. Let ωV (m) be the number of distinct prime
factors of m not exceeding V :

ωV (m) =
∑
p≤V
p|m

1.
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Then for all m ≤ 2n we have

|f1(m)| =
∣∣∣ ∑
pα‖m
pα∈P1

f1(pα)
∣∣∣ ≤ ∑

pα‖m
pα∈P1

|f1(pα)|,

so that

|f1(m)| ≤ Kf1(2n)
∑
pα‖m
pα∈P1

1 = Kf1(2n)
∑
p|m
p≤V

1 = Kf1(2n)ωV (m).

Moreover by (8), (11) and (9) we have∣∣∣∣ ∑
p≤2n

f1(p)
p

∣∣∣∣ ≤ Kf1(2n)
∑
p≤V

1
p

� Kf1(2n) log log V � Kf1(2n) log log log n.

Using the inequality |z1 + z2|2 ≤ 2(|z1|2 + |z2|2) it follows that for a ∈ A and
b ∈ B,∣∣∣∣f1(a+ b)−

∑
p≤2n

f1(p)
p

∣∣∣∣2 ≤ 2|f1(a+ b)|2 + 2
∣∣∣∣ ∑
p≤2n

f1(p)
p

∣∣∣∣2
≤ 2K2

f1(2n)ω2
V (a+ b) +O(K2

f1(2n)(log log log n)2),

so that

T1 =
1

|A| |B|
∑
a∈A

∑
b∈B

∣∣∣∣f1(a+ b)−
∑
p≤2n

f1(p)
p

∣∣∣∣2
≤

2K2
f1

(2n)
|A| |B|

∑
a∈A

∑
b∈B

ω2
V (a+ b) +O(K2

f1(2n)(log log log n)2).

We split this double sum into two parts:

(35) T1 ≤ 2K2
f1(2n)(X1 +X2)

where

X1 =
1

|A| |B|
∑
a∈A

∑
b∈B

ωV (a+b)≤5C(log log(2n))1/2

ω2
V (a+ b),

X2 =
1

|A| |B|
∑
a∈A

∑
b∈B

ωV (a+b)>5C(log log(2n))1/2

ω2
V (a+ b).

Then clearly we have

(36) X1 ≤
1

|A| |B|
∑
a∈A

∑
b∈B

(5C(log log(2n))1/2)2 = 25C2 log log(2n).
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In order to estimate X2, we may assume that
(37) |A| ≤ |B|.
Then we have

X2 =
1

|A| |B|
∑
a∈A

∑
b∈B

ωV (a+b)>5C(log log(2n))1/2

ω2
V (a+ b)(38)

≤ 1
|A| |B|

∑
a∈A

∑
m≤2n

ωV (m)>5C(log log(2n))1/2

ω2
V (m)

≤ 1
|B|

∑
m≤2n

ωV (m)>5C(log log(2n))1/2

ω2
V (m).

The last sum can be rewritten as∑
m≤2n

ωV (m)>5C(log log(2n))1/2

ω2
V (m) =

∑
t>5C(log log(2n))1/2

∑
m≤2n

ωV (m)=t

t2(39)

=
∑

t>5C(log log(2n))1/2

t2
∑
m≤2n

ωV (m)=t

1.

Denote the smallest prime factor of a positive integer i by p(i) (and p(1) = 1).
If an integer m is counted in the inner sum, then there are prime powers
qα1
1 , . . . , qαtt ≤ 2n and an integer r such that q1 < · · · < qt ≤ V , p(r) > V
and qα1

1 · · · q
αt
t r = m (≤ 2n). Thus the last sum in (39) is∑

m≤2n
ωV (m)=t

1 ≤
∑

q
α1
1 ,...,q

αt
t

q1<···<qt≤V

∑
r≤2n/q

α1
1 ···q

αt
t

p(r)>V

1

≤
∑

q
α1
1 ,...,q

αt
t

q1<···<qt≤V

∑
r≤2n/q

α1
1 ···q

αt
t

1

≤
∑

q
α1
1 ,...,q

αt
t

q1<···<qt≤V

2n
qα1
1 · · · q

αt
t

≤ 2n
( ∑
q≤V, qα≤2n

1
qα

)t
· 1
t!
≤ 2n

((1 + o(1)) log log V )t

t!
.

Inserting this estimate in (39) we get∑
m≤2n

ωV (m)>5C(log log(2n))1/2

ω2
V (m)� n

∑
t>5C(log log(2n))1/2

((1 + o(1)) log log V )t

(t− 2)!
.
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Hence, by the definition of V given by (11), (9) and Stirling’s formula, for
large n we have∑

m≤2n
ωV (m)>5C(log log(2n))1/2

ω2
V (m)

� n
∑

t>5C(log log(2n))1/2

((1/2 + o(1)) log log log(2n))t(3/t)t−2

� n exp
(
−(1 + o(1))5C(log log(2n))1/2 log(5C(log log(2n))1/2)

)
� n exp

(
−(1 + o(1))5

2C(log log(2n))1/2 log log log(2n)
)
,

so that

(40)
∑
m≤2n

ωV (m)>5C(log log(2n))1/2

ω2
V (m)

� n exp
(
−2C(log log(2n))1/2 log log log(2n)

)
.

It follows from (9), (37), (38) and (40) that

X2 �
n√
|A| |B|

exp
(
−2C(log log(2n))1/2 log log log(2n)

)
(41)

� exp
(
−C(log log(2n))1/2 log log log(2n)

)
= o(1).

Combining (35), (36) and (41) we obtain

(42) T1 = O(C2K2
f1(2n) log log(2n)).

7. The estimate of T3 and the completion of the proof of Theo-
rem 1. If m ≤ 2n then

|f3(m)| =
∣∣∣ ∑
pα‖m

f3(pα)
∣∣∣ ≤ ∑

pα‖m

|f3(pα)|,

so that, since f3(pα) = 0 whenever pα 6∈ P3 and using (8),

(43) |f3(m)| ≤
∑
pα∈P3

pα‖m

Kf3(2n) = Kf3(2n)
∑
pα∈P3

pα‖m

1.

Here the last sum is ≤ 3 since otherwise we would have

m ≥
∏

pα∈P3

pα‖m

pα >
∏

pα∈P3

pα‖m

4
√

2n ≥ ( 4
√

2n)4 = 2n,

which contradicts our assumption m ≤ 2n. Thus it follows from (43) that

(44) |f3(a+ b)| ≤ 3Kf3(2n) for all a ∈ A, b ∈ B.
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Moreover ∣∣∣∣ ∑
p≤2n

f3(p)
p

∣∣∣∣ ≤ ∑
p≤2n

|f3(p)|
p

≤ Kf3(2n)
∑
p∈P3

1
p
,

so that

(45)
∣∣∣∣ ∑
p≤2n

f3(p)
p

∣∣∣∣ ≤ Kf3(2n)
∑

4√2n<p≤2n

1
p

= O(Kf3(2n)).

It follows from (44) and (45) that

(46) T3 =
1

|A| |B|
∑
a∈A

∑
b∈B
|O(Kf3(2n)) +O(Kf3(2n))|2 = O(K2

f3(2n)).

(10) follows from (12), (34), (42) and (46), observing that Kf (2n) =
max(Kf1(2n),Kf2(2n),Kf3(2n)), and this completes the proof of Theorem 1.
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