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Short sums of restricted Möbius functions
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Olivier Bordellès (Aiguilhe)

1. Introduction and result. In what follows, 10 ≤ y ≤ x are large
real numbers, e(t) = e2πit, [t] is the integer part of t and ψ(t) = t− [t]− 1/2.
Finally, ε > 0 is an arbitrary small real number which does not need to be
the same at each occurrence.

In 1976, Ramachandra [12] proved a general theorem for short sums of
certain multiplicative functions from which he deduced that∑

x<n≤x+y
µ(n) = O(x1−1/B+ε + y exp(−(log x)1/6))

where µ(n) is the Möbius function and B ≥ 2 is an admissible absolute
constant occurring in zero-density estimates. From the work of Huxley [8],
we know that B = 12/5 is admissible so that we have

(1)
∑

x<n≤x+y
µ(n) = O(x7/12+ε + y exp(−(log x)1/6)).

The density hypothesis states that B = 2 is admissible, so that

(2)
∑

x<n≤x+y
µ(n) = O(x1/2+ε + y exp(−(log x)1/6))

if the density hypothesis is true.
It should be mentioned that (1) was also independently discovered by

Motohashi [11], and that the paper of Ramachandra was later refined (see [13,
14]) and generalized to problems in number fields (see [5]).

From (1) we could easily infer that if x7/12+ε ≤ y ≤ x then

(3)
∑

x<n≤x+y
µ(n) = o(y)
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unconditionally. Using the important identity
∑

d|n µ(d) = 0 valid for any
integer n > 1, we can write∑

x<n≤x+y
µ(n) = −

∑
x<n≤x+y

M(n;x)

where we set
M(n; t) :=

∑
d|n
d≤t

µ(d)

so that (3) could be written as

(4)
∑

x<n≤x+y
M(n;x) = o(y)

for x7/12+ε ≤ y ≤ x unconditionally. With (2) and (4) in mind, this paper
deals with the following slightly different version of this problem: we ask for
the greatest exponent θ ∈ (0, 1] so that the estimate∑

x<n≤x+y
M(n;xθ) = o(y)

holds true for x1/2+ε ≤ y ≤ x. If the density hypothesis is true, then θ = 1
is admissible. Unconditionally, the answer depends on estimates of twisted
exponential sums of types I and II. This leads to the following result:

Theorem 1.1. Let x1/2+6ε ≤ y ≤ x be large real numbers. Then∑
x<n≤x+y

M(n;x4/7) = y
∑

d≤x4/7

µ(d)
d

+Oε(yx−ε).

2. The sums
∑

n µ(n)ψ(x/n)

2.1. Introduction of exponential sums. In this section,

‖t‖ = min{1/2 + ψ(t), 1/2− ψ(t)}
is the distance of t to the nearest integer. We begin with the following result:

Proposition 2.1. Let x be a sufficiently large real number, ε > 0 be a
small real number and 4 ≤ H ≤ R ≤ x be integers. Then∑
R<n≤2R

µ(n)ψ
(
x

n

)
= −

∑
0<|h|≤H

1
2πih

∑
R<n≤2R

µ(n)e
(
hx

n

)
+Oε(RH−1xε).

The proof needs the following two lemmata:

Lemma 2.2. Let N ≥ 1 and H ≥ 4 be integers, and f : [N, 2N ]→ R be
any map. For any real number 0 < δ ≤ 1/4 set

R(f,N, δ) := |{n ∈ (N, 2N ] ∩ Z : ‖f(n)‖ < δ}|
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and let K := [logH/log 2]. Then∑
N<n≤2N

min
(

1,
1

H‖f(n)‖

)
< 24NH−1 + 2

K−2∑
k=0

2−kR(f,N, 2kH−1).

Proof. We have∑
N<n≤2N

min
(

1,
1

H‖f(n)‖

)
=

∑
N<n≤2N
‖f(n)‖<H−1

1 +
1
H

∑
N<n≤2N
‖f(n)‖≥H−1

1
‖f(n)‖

= R(f,N,H−1) +
1
H

∑
N<n≤2N
‖f(n)‖≥H−1

1
‖f(n)‖

.

Since

{n ∈ (N, 2N ] ∩ Z : ‖f(n)‖ ≥ H−1}

⊆
K⋃
k=1

{n ∈ (N, 2N ] ∩ Z : 2k−1H−1 ≤ ‖f(n)‖ < 2kH−1}

we get ∑
N<n≤2N
‖f(n)‖≥H−1

1
‖f(n)‖

≤
K∑
k=1

∑
N<n≤2N

2k−1H−1≤‖f(n)‖<2kH−1

1
‖f(n)‖

≤ (N + 1)(21−K + 22−K)H +
K−2∑
k=1

∑
N<n≤2N

2k−1H−1≤‖f(n)‖<2kH−1

1
‖f(n)‖

≤ 6 · 2−K(N + 1)H + 2H
K−2∑
k=1

2−k
∑

N<n≤2N
‖f(n)‖<2kH−1

1

< 12(N + 1) + 2H
K−2∑
k=1

2−kR(f,N, 2kH−1)

since 2−K < 2H−1. Thus we get∑
N<n≤2N

min
(

1,
1

H‖f(n)‖

)
< R(f,N,H−1) + 24NH−1

+ 2
K−2∑
k=1

2−kR(f,N, 2kH−1),

which implies the desired result.
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Lemma 2.3. Let 1 ≤ y ≤ x and 0 < ε < 1/2 be real numbers. If τ(n) is
the usual divisor function, then∑

x−y<n≤x+y
τ(n)�ε yx

ε.

Proof. If 1 ≤ y ≤ xε then∑
x−y<n≤x+y

τ(n) ≤ (2y + 1) max
x−y<n≤x+y

τ(n)�ε yx
ε,

and if xε < y ≤ x then the result is a consequence of Shiu’s theorem [15].

Now we turn to the proof of Proposition 2.1.

Proof of Proposition 2.1. Since

ψ(t) = −
∑

0<|h|≤H

e(ht)
2πih

+O

(
min

(
1,

1
H‖t‖

))
we easily see using Lemma 2.2 that∑

R<n≤2R

µ(n)ψ
(
x

n

)
= −

∑
0<|h|≤H

1
2πih

∑
R<n≤2R

µ(n)e
(
hx

n

)

+O

( ∑
R<n≤2R

min
(

1,
1

H‖x/n‖

))
= −

∑
0<|h|≤H

1
2πih

∑
R<n≤2R

µ(n)e
(
hx

n

)

+O

(
RH−1 +

[logH/log 2]−2∑
k=0

2−kR
(
x

n
,R,

2k

H

))
.

Now interchanging the summations and using Lemma 2.3 we obtain

R
(
x

n
,R,

2k

H

)
≤

∑
R<n≤2R

([
x

n
+

2k

H

]
−
[
x

n
− 2k

H

])
≤

∑
x−2k+1RH−1<m≤x+2k+1RH−1

∑
d|m

R<d≤2R

1

≤
∑

x−2k+1RH−1<m≤x+2k+1RH−1

τ(m)�ε 2kRH−1xε,

which proves Proposition 2.1.

The following result improves slightly on Lemma 8 of [1].
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Corollary 2.4. Under the hypothesis of Proposition 2.1 with 10 ≤ y
≤ x we have∑

R<n≤2R

µ(n)
(
ψ

(
x+ y

n

)
− ψ

(
x

n

))
� y

R
max

R≤R′≤2R
max

x≤z≤x+y
max
H1≤H

∣∣∣∣ ∑
R<n≤R′

µ(n)
∑

H1<h≤2H1

e

(
hz

n

)∣∣∣∣ logH

+RH−1xε.

Proof. Using Proposition 2.1 we get∑
R<n≤2R

µ(n)
(
ψ

(
x+ y

n

)
− ψ

(
x

n

))
= −

∑
0<|h|≤H

1
2πih

∑
R<n≤2R

µ(n)
{
e

(
h(x+ y)

n

)
− e
(
hx

n

)}
+Oε(RH−1xε),

and the identity

e(a(x+ y))− e(ax) = 2πia
x+y�

x

e(at) dt

and Abel summation give the asserted result.

2.2. Sums of types I and II. Corollary 2.4 reduces the problem to
finding bounds for sums ∑

n∼R
µ(n)

∑
h∼H

e

(
hx

n

)
.

Such bounds are achieved by using clever identities discovered by Vaughan
(see [10] for example) and generalized by Heath-Brown [6]. We sum up the
process in Lemma 2.5 below (see also Lemma 2 of [3]). We consider integers
M,N,R,R′ ≥ 1 such that R < R′ ≤ 2R and let S > 0 be any real number.
If f : (R,R′] → C is any function, it is convenient to define sums of type I
(related to f) to be the sums

SI :=
∑

M<m≤2M

∑
N<n≤2N

R<mn≤R′

amf(mn)

and sums of type II (related to f) to be the sums

SII :=
∑

M<m≤2M

∑
N<n≤2N

R<mn≤R′

ambnf(mn)
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where am, bn are complex numbers supported respectively on (M, 2M ] and
(N, 2N ] and satisfying am �ε m

ε and bn �ε n
ε.

Lemma 2.5. Suppose that the estimates

SI � S for N � R1/2,

SII � S for R1/3 � N � R1/2

hold true for all sums of type I and type II. Then∑
R<n≤R′

µ(n)f(n)� S(log 3R)5.

It is well-known that the multiplicative restrictions R < mn ≤ R′ could
be removed from sums SI and SII at a cost of a factor logR (see [1, Lemma
15] for instance).

To treat sums of type I we appeal to the following result which is the
estimate (5.9) of Corollary 8 from [9].

Lemma 2.6. Let X > 0 be a real number, H,M,N ≥ 1 be integers and
α, β ∈ R such that β 6= −1, 0 and α/(1 + β) 6= 0, 1. Let I ⊆ (N, 2N ] and let
(am), (ch) ∈ C satisfy |am|, |ch| ≤ 1. Then for all ε > 0,∑

H≤h<2H

∑
M≤m<2M

∑
n∈I

amche

(
X

(
m

M

)α(hN
nH

)β)
� {(X3H6M6N2)1/8 +H(XM)1/2 +HM

+ (XH3N)1/4M +X−1HMN}(HMN)ε.

In the last two decades, many authors provided nontrivial bounds for
sums of type II. Among these we pick up the following estimate with the
exponent pair (k, l) = (1/2, 1/2) ([4], see also [2]). The idea of the proof goes
back to Heath-Brown [7].

Lemma 2.7. Let z > 0 be a real number, H,M,N ≥ 1 be integers and
let (am), (Bh,n) ∈ C satisfy |am|, |Bh,n| ≤ 1. Set L := log(2HMN). Then∑

M≤m<2M

∑
H≤h<2H

∑
N≤n<2N

amBh,ne

(
hz

mn

)
� {H(zM3N4)1/6 +M(HN)1/2

+M1/2HN + (Hz−1)1/2(MN)3/2}L3.

3. Proof of Theorem 1.1

Proposition 3.1. Let x2/5 ≤ y ≤ x be real numbers, and 10 ≤ R ≤ x
be a large integer. Then for every ε > 0 we have
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∑
R<n≤2R

µ(n)
(
ψ

(
x+ y

n

)
− ψ

(
x

n

))
�{x1/12y1/2R7/24+x−1/24y3/4R3/16+x−1/12y1/2R11/24+x−13/24y3/4R41/48

+ x1/32y7/16R−5/64 + x3/8y1/4R−3/16 + x−1yR}xε.

Proof. Note that if 10 ≤ R ≤ (x2y12)1/17, then x1/12y1/2R7/24 ≥ R so
that we may suppose (x2y12)1/17 < R ≤ x. To treat the sum of Corollary 2.4,
we apply Lemma 2.5 with

f(n) =
∑

H1<h≤2H1

e

(
hz

n

)
where R < n ≤ R′, 1 ≤ H1 ≤ H and x ≤ z ≤ x+ y. Using Lemma 2.6 with
−α = ch = β = 1, H = H1, z = XMNH−1

1 and supposing that MN � R
with N � R1/2, we get

SI � {(zH9
1R)1/8 +(z2H6

1R
−1)1/4 +H1R

1/2 +H1(z2R3)1/8 +z−1R2}(H1R)ε

and, similarly, using Lemma 2.7 with Bh,n = bn, H = H1 and supposing
that MN � R with R1/3 � N � R1/2, we obtain

SII � {H1(z2R7)1/12 +H
1/2
1 R5/6 +H1R

3/4 + (H1z
−1)1/2R3/2}(log 2H1R)4

so that for every integer 4 ≤ H ≤ R, we get, using Corollary 2.4 and
Lemma 2.5,

∑
R<n≤2R

µ(n)
(
ψ

(
x+ y

n

)
− ψ

(
x

n

))
� {yH(x2R−5)1/12 + yH1/2R−1/6 + yHR−1/4 + y(x−1H9R−7)1/8

+ y(x2H6R−5)1/4 + yH(x2R−5)1/8 + x−1yR}(HR)ε +RH−1xε.

Since y ≥ x2/5, we have R > (x2y12)1/17 ≥ x2/5, so that yH(x2R−5)1/8 is
dominated by the first term, and the choice of H = [4x−1/12y−1/2R17/24]
gives the desired result.

The following result is an easy consequence of Proposition 3.1.

Corollary 3.2. If x1/2+6ε ≤ y ≤ x then

max
x1/2<R≤x4/7

∑
R<n≤2R

µ(n)
(
ψ

(
x+ y

n

)
− ψ

(
x

n

))
� yx−2ε.
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Proof. Indeed, we get

max
x1/2<R≤x4/7

∑
R<n≤2R

µ(n)
(
ψ

(
x+ y

n

)
− ψ

(
x

n

))
� x1/4+εy1/2 + x11/168+εy3/4 + x9/32+εy1/4 + yx−3/7+ε � yx−2ε

since x1/2+6ε ≤ y ≤ x.
Now we are able to prove Theorem 1.1. Interchanging the summations

we obtain∑
x<n≤x+y

M(n;x4/7) =
∑

d≤x4/7

µ(d)
([

x+ y

d

]
−
[
x

d

])

= y
∑

d≤x4/7

µ(d)
d
−
∑

d≤x4/7

µ(d)
(
ψ

(
x+ y

d

)
− ψ

(
x

d

))

= y
∑

d≤x4/7

µ(d)
d
−

∑
x1/2<d≤x4/7

µ(d)
(
ψ

(
x+ y

d

)
− ψ

(
x

d

))
+O(x1/2)

and using Corollary 3.2 along with a splitting argument gives the result.

Acknowledgments. I express my gratitude to the referee for his careful
reading of the manuscript.
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