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1. Introduction and result. In what follows, 10 < y < z are large
real numbers, e(t) = e?™_ [t] is the integer part of t and ¥(t) =t — [t] — 1/2.
Finally, € > 0 is an arbitrary small real number which does not need to be
the same at each occurrence.

In 1976, Ramachandra [12] proved a general theorem for short sums of
certain multiplicative functions from which he deduced that

S uln) = 0@ B 4 yexp(—(log ) /%))
r<n<z+y

where u(n) is the Mébius function and B > 2 is an admissible absolute
constant occurring in zero-density estimates. From the work of Huxley [§],
we know that B = 12/5 is admissible so that we have

(1) > uln) =0T+ yexp(—(logx)%)).
r<nlz+y

The density hypothesis states that B = 2 is admissible, so that

(2) Y wn) = 0" 4 yexp(—(logz)'/%))
rz<nlz+y

if the density hypothesis is true.

It should be mentioned that (1) was also independently discovered by
Motohashi [11], and that the paper of Ramachandra was later refined (see [13]
14]) and generalized to problems in number fields (see [5]).

From (1) we could easily infer that if 7/12*¢ < ¢ < z then

(3) > un) =oly)

r<n<lz+y
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unconditionally. Using the important identity > din wu(d) = 0 valid for any
integer n > 1, we can write

S oy == 3 M)

r<n<z+y rz<n<lz+y

)= p(d)

din
d<t

where we set

so that (3) could be written as
(4) Y. M(nz)=oly)
r<n<z+y

for £7/12+¢ < y < x unconditionally. With (2) and (4) in mind, this paper
deals with the following slightly different version of this problem: we ask for
the greatest exponent 6 € (0,1] so that the estimate

S Mmnia®) = o(y)
r<nlzr+y

holds true for z1/2¢ < y < z. If the density hypothesis is true, then 6 = 1
is admissible. Unconditionally, the answer depends on estimates of twisted
exponential sums of types I and II. This leads to the following result:

THEOREM 1.1. Let z'/216¢ < y < z be large real numbers. Then

Yo MmNy =y > L+O ).

z<n<lzr+y d<xM7

2. The sums ) p(n)y(z/n)

2.1. Introduction of exponential sums. In this section,
[#]] = min{1/2 +1(t),1/2 — ¥ (t)}
is the distance of ¢ to the nearest integer. We begin with the following result:

PROPOSITION 2.1. Let x be a sufficiently large real number, € > 0 be a
small real number and 4 < H < R < x be integers. Then

T\ 1 hx 1.
Z p(n)i <n> = - Z il Z M(”)e<n> + O:(RH™ "a°).
R<n<2R 0<|h|<H R<n<2R
The proof needs the following two lemmata:

LEMMA 2.2. Let N > 1 and H > 4 be integers, and f : [N,2N] — R be
any map. For any real number 0 < § < 1/4 set

R(f,N,6) := [{n € (N,2NINZ: |[f(n)[| < 6}
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and let K := [log H/log2]. Then

K-2
> min< AT )”> <24NH ' +2) 27FR(f,N,2FH ™).

N<n<2N =0
Proof. We have

. 1 1 1
2 mm( HIf )H) PORRRS BS ol

N<n<2N N<n<2N N<n<2N
lF(n)l|<H™! F(m)|>H1
1 1
=R(f,N,H N+ —
H N;m £ (n)]
()| >H=!
Since

{ne (N, 2N]ﬂZ If(n)] > H'}
C U{n € (N,2N|NZ:2""H= <||f(n)|| < 2FH'}

we get

Y oy oy L
I f(n)]] — |Lf(n)l

N<n<2N k=1 N<n<2N
If(n)||>H~! k=L -1<| f(n)|| <2k H~1
K-2 1
S(N+1ERVR 422 E 4+ > >
—1 NemZan [f(n)]
2 LH 1< f(n) || <2bH
K-2
<62 K (N+DH+2HY 27F Y"1
k=1 N<n<2N
IF(n)l|<2kH~?
K-2
<12(N+1)+2H ) 27*R(f,N,2*H )
k=1

since 27K < 2H~!. Thus we get

> min( H||f1( )’><R(f,N,H_1)+24NH_1
N<n<2N
K-2

+2) 2 FR(f,N, 2" H Y,
k=1
which implies the desired result. =



370 O. Bordellés

LEMMA 2.3. Let 1 <y <z and 0 < & < 1/2 be real numbers. If 7(n) is
the usual divisor function, then

Z T(n) < yat.

z—y<n<z+y
Proof. If 1 <y < x° then

E T(n) < (2y+1) max 7(n) < ya,
z—y<n<z+y
z—y<n<z+y

and if 2° < y < z then the result is a consequence of Shiu’s theorem [I5]. =
Now we turn to the proof of Proposition [2:1]
Proof of Proposition[2.1. Since
e(ht . 1
Y(t) = — 0<%:<H 2(mf3 + O<m1n <1, HHtH))
we easily see using Lemma that

S o)== X S 3 we(™)

R<n<2R 0<|h|<H R<n<2R

co( 3 mn(pza))
-y L M(n)e(f)

0<|h|<H R<n<2R
[log H/log 2]—2 . . ok

H! 27"R(=,R, =) ).

+O<R + kZ_O R(n,R, H))

Now interchanging the summations and using Lemma [2.3] we obtain

(o), 2, (55 3]
< > 2 1

z—2kF1RA-1<m<a+2k+1RH-1 dm
R<d<2R

< > 7(m) <. 2"RH a7,
c—2kt1RH-1<m<g+4+2+k+1RH-1
which proves Proposition .

The following result improves slightly on Lemma 8 of [I].
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COROLLARY 2.4. Under the hypothesis of Proposition with 10 < y
< x we have

> () ()

R<n<2R
> oum ¥ (%)
n
Hi<h<2H;

Y
R<n<R/

log H

< = max max max
R R<R'<2R x<z<z+y H,<H

+ RH '2°.
Proof. Using Proposition [2.1 we get

= snle(=22)+(2)

R<n<2R
= 2w 2o () ()

0<|h|<H R<n<2R
+ O.(RH '2°),
and the identity

r+y
e(a(x +y)) — e(azx) = 2mia S e(at) dt

and Abel summation give the asserted result. m

2.2. Sums of types I and II. Corollary [2.4] reduces the problem to
finding bounds for sums

hx
w(n) e () .
Such bounds are achieved by using clever identities discovered by Vaughan
(see |I0] for example) and generalized by Heath-Brown [6]. We sum up the
process in Lemma below (see also Lemma 2 of [3]). We consider integers
M,N,R,R' > 1 such that R < R’ < 2R and let S > 0 be any real number.
If f:(R,R] — Cis any function, it is convenient to define sums of type I
(related to f) to be the sums

Sr= Z Z am f(mn)

M<m<2M N<n<2N
R<mn<R’

and sums of type II (related to f) to be the sums

Sir = Z Z by, f(mn)

M<m<2M N<n<2N
R<mn<R/
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where a,, b, are complex numbers supported respectively on (M, 2M] and
(N, 2N] and satisfying a,, <. m® and b, <. n°.

LEMMA 2.5. Suppose that the estimates
S < S for N> RY?,
Sip< S for RY3 < N « RY?
hold true for all sums of type I and type II. Then
Z u(n)f(n) < S(log3R)°.
R<n<R'

It is well-known that the multiplicative restrictions R < mn < R’ could
be removed from sums S; and Syy at a cost of a factor log R (see [I, Lemma
15| for instance).

To treat sums of type I we appeal to the following result which is the
estimate (5.9) of Corollary 8 from [9].

LEMMA 2.6. Let X > 0 be a real number, H M, N > 1 be integers and
a, 3 € R such that 8 # —1,0 and o/(1 + 3) #0,1. Let I C (N,2N] and let
(am), (cn) € C satisfy |aml, |cn| < 1. Then for alle > 0,

m\®/hN\"
X Sea(x(5) (F))
H<h<2H M<m<2M n€el
< {(X3HSMONHYE + H(XM)Y? + HM
+ (XH3N)YAM + X "HMNYHMN)®.

In the last two decades, many authors provided nontrivial bounds for
sums of type II. Among these we pick up the following estimate with the
exponent pair (k,1) = (1/2,1/2) (4], see also [2]). The idea of the proof goes
back to Heath-Brown [7].

LEMMA 2.7. Let z > 0 be a real number, H,M, N > 1 be integers and
let (am), (Bhn) € C satisfy |am|, |Brn| < 1. Set L :=1log(2HMN). Then

X% 3 ()

M<m<2M H<h<2H N<n<2N
< {H(zM3*NHYS + M(HN)Y?
+ MY2HN + (Hz"H)Y2(MN)3/?}L3.

3. Proof of Theorem [I.1]

PROPOSITION 3.1. Let x2/° <y < x be real numbers, and 10 < R < x
be a large integer. Then for every ¢ > 0 we have
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R<;2Ru<n> <¢<x Z y) - ¢<z>>

< {x1/12y1/2R7/24+:L‘_1/24y3/4R3/16+x_l/12y1/2R11/24+m_13/24y3/4R41/48
4 /32 T/16 p=5/64 | ;3/8,1/4 p=3/16 +LyRYat.

Proof. Note that if 10 < R < (22y2)Y/17 then z'/12yY/2R7/24 > R so
that we may suppose ( 2 12)1/17 < R < z. To treat the sum of Corollary

we apply Lemma [2.5] with
hz
= ¥ (%)
Hi1<h<2H;

where R<n<R,1<Hy<Handz<z<z+y. Using Lemmawith
—a=c,=0=1 H=Hq, z= XMNHl_1 and supposing that MN =< R
with N > RY2, we get

Sy < {(zH{R)'®+ (z2HS R4+ H\RY?+ H, (2*R*)"/® 4+ 2 ' R®}(H, R)*

and, similarly, using Lemma with By, = b,, H = H; and supposing
that MN = R with RY/? < N < R'/2, we obtain

Si < {H1(z*R")V/"2 + H[?R%6 + HyR¥* 4 (H12~")"2R¥?} (log 2H, R)*

so that for every integer 4 < H < R, we get, using Corollary and
Lemma

R<n2§2RM(n) <¢<x Z y) - Q’ZJ<2>)

< {yH(l‘2R_5)1/12 + yH1/2R_1/6 + yHR—1/4 + y(x—IHQR—’?)l/S
y(@?HOR™)Y4 4 yH (z* R°)Y® 4+ &« YR} (HR)®* + RH ‘2

Since y > x%/°, we have R > (22y'?)'/17 > 22/° so that yH(z?R~°)'/% is
dominated by the first term, and the choice of H = [4z~1/12y~1/2R17/24]
gives the desired result. m

The following result is an easy consequence of Proposition [3.1]

COROLLARY 3.2. If z1/2165 <y < 2 then

5 (o) () <

R<n<2R
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Proof. Indeed, we get

o 3 (e() <o (3))

R<n<2R
< $1/4+5y1/2 +x11/168+5y3/4+x9/32+5y1/4 +y$—3/7+a < yl,—Za

since z1/2166 <y < 2. w

Now we are able to prove Theorem Interchanging the summations
we obtain

> Mty = > “(d)<[xzy}_[fl]>

z<n<a+y d<a*/7
v 2 10 3 wa(v(*) -o(3))
S 2w wa(e(5Y) -o(3)
o

and using Corollary [3.2] along with a splitting argument gives the result. =
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