Roth's theorem on systems of linear forms in function fields

by

Yu-Ru Liu (Waterloo), Craig V. Spencer (Princeton, NJ, and Manhattan, KS) and Xiaomei Zhao (Waterloo)

1. Introduction. For $r, s \in \mathbb{N} = \{1, 2, \ldots\}$ with $s \geq 2r + 1$, let $(b_{i,j})$ be an $r \times s$ matrix whose elements are integers. Suppose that $b_{i,1} + \cdots + b_{i,s} = 0$ $(1 \leq i \leq r)$. Suppose further that among the columns of the matrix, there exist r linearly independent columns such that, if any of the r columns are removed, the remaining n-1 columns of the matrix can be divided into two sets so that among the columns of each set there are r linearly independent columns. For $k \in \mathbb{N}$, denote by D([1,k]) the maximal cardinality of an integer set $A \subseteq [1,k]$ such that the equations $b_{i,1}x_1 + \cdots + b_{i,s}x_s = 0$ $(1 \leq i \leq r)$ are never satisfied simultaneously by distinct elements $x_1, \ldots, x_s \in A$. Using techniques similar to his work on sets free of three-term arithmetic progressions (see [4]), Roth [5] showed that

$$D([1,k]) \ll k/(\log \log k)^{1/r^2}$$
.

In this paper, we will build upon the methods in [2] to study an analogous question in function fields.

Let $\mathbb{F}_q[t]$ denote the ring of polynomials over the finite field \mathbb{F}_q . For $N \in \mathbb{N}$, let \mathcal{S}_N denote the subset of $\mathbb{F}_q[t]$ containing all polynomials of degree strictly less than N. For $R, S \in \mathbb{N}$ with $S \geq 2R + 1$, let $Y = (a_{i,j})$ be an $R \times S$ matrix with elements in \mathbb{F}_q . Suppose that Y satisfies the following two conditions.

Condition 1. $a_{i,1} + \cdots + a_{i,S} = 0 \ (1 \le i \le R).$

CONDITION 2. Y has L columns with $L \geq R$ such that:

 \bullet any R of these L columns are linearly independent,

2010 Mathematics Subject Classification: Primary 11P55; Secondary 11T55. Key words and phrases: Roth's theorem, function fields, circle method.

- after removing any L R + 1 of these L columns from Y, we can find two disjoint sets of R linearly independent columns among the remaining S L + R 1 columns,
- without loss of generality, we may assume that these L columns are the first L columns of Y.

Consider the system of equations

$$(1.1) a_{i,1}x_1 + \dots + a_{i,S}x_S = 0 (1 \le i \le R).$$

Let $D_Y(S_N)$ denote the maximal cardinality of a set $A \subseteq S_N$ for which the equations in (1.1) are never satisfied simultaneously by distinct elements $x_1, \ldots, x_S \in A$. We write |V| for the cardinality of a set V. In this paper, we employ a variant of the Hardy–Littlewood circle method for $\mathbb{F}_q[t]$ to prove the following result.

THEOREM 1.1. Assume that Y satisfies Conditions 1 and 2. There exists an effectively computable constant C = C(Y) > 0 such that for $N \in \mathbb{N}$,

$$D_Y(\mathcal{S}_N) \le q^N \left(\frac{C}{N}\right)^{(L-R+1)/R}.$$

We note that the assumptions in Condition 2 are more general than the corresponding assumptions in [5]. Thus, in the special case when L=R, we can derive from Theorem 1.1 a function field analogue of Roth's theorem. In addition, on rewriting the upper bound we obtain in Theorem 1.1 as

$$D_Y(\mathcal{S}_N) \ll \frac{|\mathcal{S}_N|}{(\log_a |\mathcal{S}_N|)^{(L-R+1)/R}},$$

we observe that this result is much sharper than its integer analogue. Our improvement comes from a better estimate of an exponential sum in $\mathbb{F}_q[t]$ than in \mathbb{Z} (see Lemma 2.4).

One can also obtain from Theorem 1.1 some information about irreducible polynomials. Let \mathcal{P}_N denote the set of all monic irreducible polynomials in $\mathbb{F}_q[t]$ of degree strictly less than N, and let A_N denote a subset of \mathcal{P}_N . By the prime number theorem for $\mathbb{F}_q[t]$ (see [3, Theorem 2.2]), we have $|\mathcal{P}_N| \simeq q^N/N$. If L+1>2R, Theorem 1.1 implies that there exists a positive constant E(Y) such that whenever

$$\frac{|A_N|}{|\mathcal{P}_N|} \ge \frac{E(Y)}{N^{(L-2R+1)/R}},$$

then (1.1) has a solution with distinct elements $x_1, \ldots, x_S \in A_N$.

We conclude this section by introducing the Fourier analysis of $\mathbb{F}_q[t]$. Let $\mathbb{K} = \mathbb{F}_q(t)$ be the field of fractions of $\mathbb{F}_q[t]$, and let $\mathbb{K}_{\infty} = \mathbb{F}_q((1/t))$ be the completion of \mathbb{K} at ∞ . We may write each element $\alpha \in \mathbb{K}_{\infty}$ in the shape $\alpha = \sum_{i \leq v} a_i t^i$ for some $v \in \mathbb{Z}$ and $a_i = a_i(\alpha) \in \mathbb{F}_q$ $(i \leq v)$. If $a_v \neq 0$, we define ord $\alpha = v$. We adopt the convention that ord $0 = -\infty$. Also, it is

often convenient to refer to a_{-1} as being the residue of α , denoted by res α . Consider the compact additive subgroup \mathbb{T} of \mathbb{K}_{∞} defined by $\mathbb{T} = \{\alpha \in \mathbb{K}_{\infty} \mid \operatorname{ord} \alpha < 0\}$. Given any Haar measure $d\alpha$ on \mathbb{K}_{∞} , we normalize it in such a manner that $\int_{\mathbb{T}} 1 \, d\alpha = 1$. We now extend the measure to \mathbb{K}_{∞}^R by the standard product measure. Thus, if \mathfrak{M} is the subset of \mathbb{K}_{∞}^R defined by

$$\mathfrak{M} = \{ \boldsymbol{\alpha} = (\alpha_1, \dots, \alpha_R) \in \mathbb{K}_{\infty}^R \mid \operatorname{ord} \alpha_i < -N \ (1 \le i \le R) \},$$

then the measure of \mathfrak{M} , written $\operatorname{mes}(\mathfrak{M})$, is equal to q^{-NR} .

We are now equipped to define the exponential function on $\mathbb{F}_q[t]$. Suppose that the characteristic of \mathbb{F}_q is p. Let e(z) denote $e^{2\pi iz}$, and let $\operatorname{tr}: \mathbb{F}_q \to \mathbb{F}_p$ denote the familiar trace map. There is a non-trivial additive character $e_q: \mathbb{F}_q \to \mathbb{C}^\times$ defined for each $a \in \mathbb{F}_q$ by taking $e_q(a) = e(\operatorname{tr}(a)/p)$. This character induces a map $e: \mathbb{K}_\infty \to \mathbb{C}^\times$ by defining, for each element $\alpha \in \mathbb{K}_\infty$, the value of $e(\alpha)$ to be $e_q(\operatorname{res} \alpha)$. The orthogonality relation underlying the Fourier analysis of $\mathbb{F}_q[t]$, established in [1, Lemma 1], takes the shape

$$\int_{\mathbb{T}} e(h\alpha) d\alpha = \begin{cases} 1 & \text{when } h = 0, \\ 0 & \text{when } h \in \mathbb{F}_q[t] \setminus \{0\}. \end{cases}$$

Therefore, for $(h_1, \ldots, h_R) \in \mathbb{F}_q[t]^R$ and $\boldsymbol{\alpha} = (\alpha_1, \ldots, \alpha_R) \in \mathbb{K}_{\infty}^R$, we have

(1.2)
$$\int_{\mathbb{T}^R} e(h_1 \alpha_1 + \dots + h_R \alpha_R) d\boldsymbol{\alpha} = \prod_{i=1}^R \int_{\mathbb{T}} e(h_i \alpha_i) d\alpha_i$$
$$= \begin{cases} 1 & \text{when } h_j = 0 \ (1 \le j \le R), \\ 0 & \text{otherwise.} \end{cases}$$

2. Proof of Theorem 1.1. For $R, S \in \mathbb{N}$ with $S \geq 2R + 1$, let $Y = (a_{i,j}) \in \mathbb{F}_q^{R \times S}$ satisfy Conditions 1 and 2. For $N \in \mathbb{N}$, let $D_Y(\mathcal{S}_N)$ be defined as in Section 1. Write $d_Y(N) = D_Y(\mathcal{S}_N)/q^N$. For convenience, in what follows, we will write $D(\mathcal{S}_N)$ in place of $D_Y(\mathcal{S}_N)$ and d(N) in place of $d_Y(N)$. Hence, to prove Theorem 1.1, it is equivalent to show that $d(N) \leq (C/N)^{(L-R+1)/R}$.

For a set $A \subseteq \mathcal{S}_N$, let $T(A) = T_Y(A)$ denote the number of solutions of (1.1) with $x_i \in A$ ($1 \le i \le S$). Let 1_A be the characteristic function of A, i.e., $1_A(x) = 1$ if $x \in A$ and $1_A(x) = 0$ otherwise. For $1 \le j \le S$ and $\boldsymbol{\alpha} = (\alpha_1, \ldots, \alpha_R) \in \mathbb{K}_{\infty}^R$, define

$$F_j(\boldsymbol{\alpha}) = \sum_{x \in A} e((a_{1,j}\alpha_1 + \dots + a_{R,j}\alpha_R)x).$$

By (1.2), we see that

$$T(A) = \int_{\mathbb{T}^R} F_1 \cdots F_S(\boldsymbol{\alpha}) d\boldsymbol{\alpha}.$$

We will estimate T(A) by dividing \mathbb{T}^R into two parts: the major arc \mathfrak{M} defined by

$$\mathfrak{M} = \{ (\alpha_1, \dots, \alpha_R) \in \mathbb{K}_{\infty}^R \mid \operatorname{ord} \alpha_i < -N \ (1 \le i \le R) \}$$

and the minor arc $\mathfrak{m} = \mathbb{T}^R \setminus \mathfrak{M}$. We have

(2.1)
$$T(A) = \int_{\mathfrak{M}} F_1 \cdots F_S(\boldsymbol{\alpha}) d\boldsymbol{\alpha} + \int_{\mathfrak{M}} F_1 \cdots F_S(\boldsymbol{\alpha}) d\boldsymbol{\alpha}.$$

Before proving Theorem 1.1, we will need to obtain bounds on T(A) and the contributions of the major and minor arcs.

LEMMA 2.1. Suppose that $Y \in \mathbb{F}_q^{R \times S}$ satisfies Condition 2. Suppose also that $A \subseteq \mathcal{S}_N$ is a set for which the equations in (1.1) are never satisfied simultaneously by distinct elements $x_1, \ldots, x_S \in A$. Then

$$T(A) \le C_1 |A|^{S-R-1},$$

where $C_1 = C_1(Y) = {S \choose 2}$.

Proof. We have

$$T(A) = |\{\mathbf{x} \in A^S \mid Y\mathbf{x} = \mathbf{0}\}|.$$

Since $A \subseteq \mathcal{S}_N$ is such that the equations in (1.1) are never satisfied simultaneously by distinct elements $x_1, \ldots, x_S \in A$, whenever $Y\mathbf{x} = \mathbf{0}$ for some $\mathbf{x} \in A^S$, there exist distinct elements $i, j \in \{1, \ldots, S\}$ with $x_i = x_j$. Fix one of the C_1 choices of $\{i, j\}$. Let Y_1 be the matrix obtained from Y by deleting columns i, j. We consider two cases.

CASE 1: $\{i,j\} \cap \{1,\ldots,L\} = \emptyset$. We denote by $\operatorname{rk} Y_1$ the rank of the matrix Y_1 . By Condition 2, we have $\operatorname{rk} Y_1 = R$. It follows that

$$|\{\mathbf{x} \in A^S \mid x_i = x_j \text{ and } Y\mathbf{x} = \mathbf{0}\}| \le |A|^{S-R-1}.$$

CASE 2: $\{i,j\} \cap \{1,\ldots,L\} \neq \emptyset$. Without loss of generality, we may assume that $i \in \{1,\ldots,L\}$. By Condition 2, we can find two disjoint subsets I_1 and I_2 of $\{1,\ldots,S\} \setminus \{i\}$, each with cardinality R, such that the columns of Y indexed by either set are linearly independent. Since $I_1 \cap I_2 = \emptyset$, we may assume that $j \notin I_1$. Then $\{i,j\} \cap I_1 = \emptyset$. Hence, $\operatorname{rk} Y_1 = R$, which implies that

$$|\{\mathbf{x} \in A^S \mid x_i = x_j \text{ and } Y\mathbf{x} = \mathbf{0}\}| \le |A|^{S-R-1}.$$

On recalling the definition of C_1 and combining Cases 1 and 2, the lemma follows. \blacksquare

LEMMA 2.2. Suppose that $Y \in \mathbb{F}_q^{R \times S}$ and $A \subseteq \mathcal{S}_N$. Then

$$\int_{\mathfrak{M}} F_1 \cdots F_S(\boldsymbol{\alpha}) \, d\boldsymbol{\alpha} = q^{-NR} |A|^S.$$

Proof. For $1 \leq j \leq S$, $\boldsymbol{\alpha} = (\alpha_1, \dots, \alpha_R) \in \mathfrak{M}$, and $x \in A \subseteq \mathcal{S}_N$, we have $\operatorname{ord}((a_{1,j}\alpha_1 + \dots + a_{R,j}\alpha_R)x) \leq -1 + N + \max_{1 \leq i \leq R} \operatorname{ord} \alpha_i \leq -2$.

Thus,

$$F_j(\boldsymbol{\alpha}) = \sum_{x \in A} e((a_{1,j}\alpha_1 + \dots + a_{R,j}\alpha_R)x) = \sum_{x \in A} 1 = |A|.$$

Therefore, our major arc contribution is

$$\int_{\mathfrak{M}} F_1 \cdots F_S(\boldsymbol{\alpha}) d\boldsymbol{\alpha} = \operatorname{mes}(\mathfrak{M}) |A|^S = q^{-NR} |A|^S. \blacksquare$$

LEMMA 2.3. For $Y \in \mathbb{F}_q^{R \times S}$ and $A \subseteq \mathcal{S}_N$, suppose that the columns of Y indexed by k_1, \ldots, k_R are linearly independent. Then

$$\int_{\mathbb{T}^R} |F_{k_1} \cdots F_{k_R}(\boldsymbol{\alpha})|^2 d\boldsymbol{\alpha} = |A|^R.$$

Proof. Let Z denote the matrix $(a_{i,k_j})_{1 \leq i,j \leq R} \in \mathbb{F}_q^{R \times R}$. By (1.2), we have

$$\int_{\mathbb{T}^R} |F_{k_1} \cdots F_{k_R}(\boldsymbol{\alpha})|^2 d\boldsymbol{\alpha} = |\{(\mathbf{x}, \mathbf{y}) \in A^R \times A^R \mid Z\mathbf{x} = Z\mathbf{y}\}|.$$

Since det $Z \neq 0$, $Z\mathbf{x} = Z\mathbf{y}$ if and only if $\mathbf{x} = \mathbf{y}$. Thus,

$$\int_{\mathbb{T}^R} |F_{k_1} \cdots F_{k_R}(\boldsymbol{\alpha})|^2 d\boldsymbol{\alpha} = |\{(\mathbf{x}, \mathbf{y}) \in A^R \times A^R \mid \mathbf{x} = \mathbf{y}\}| = |A|^R. \blacksquare$$

LEMMA 2.4. Suppose that $Y \in \mathbb{F}_q^{R \times S}$ satisfies Condition 1. Suppose also that $A \subseteq \mathcal{S}_N$ is a set for which the equations in (1.1) are never satisfied simultaneously by distinct elements $x_1, \ldots, x_S \in A$. Then

$$\sup_{-N \le \operatorname{ord} \beta < 0} \left| \sum_{x \in A} e(\beta x) \right| \le d(N-1)q^N - |A|.$$

Proof. For $-N \leq \operatorname{ord} \beta < 0$, let $W = W(\beta) = \{y \in \mathcal{S}_N : \operatorname{res}(\beta y) = 0\}$. Since $-N \leq \operatorname{ord} \beta < 0$, we can write $\operatorname{ord} \beta = -l$ and $\beta = \sum_{j \leq -l} b_j t^j$ with $-N \leq -l \leq -1$, $b_j \in \mathbb{F}_q$ $(j \leq -l)$, and $b_{-l} \neq 0$. Then the polynomial $y = c_{N-1} t^{N-1} + \cdots + c_0 \in \mathcal{S}_N$ is in W if and only if

$$res(\beta y) = b_{-l}c_{l-1} + b_{-l-1}c_l + \dots + b_{-N}c_{N-1} = 0.$$

Hence, $W \simeq \mathbb{F}_q^{N-1}$ as a vector space over \mathbb{F}_q .

Since $-N \stackrel{q}{\leq} \operatorname{ord} \beta < 0$, by [1, Lemma 7], we have

$$\sum_{\text{ord } x < N} e(\beta x) = 0.$$

Therefore,

$$|W| \left| \sum_{x \in A} e(\beta x) \right| = \left| \sum_{y \in W} \sum_{\text{ord } x < N} d(N-1)e(\beta x) - \sum_{y \in W} \sum_{\text{ord } x < N} 1_A(x)e(\beta x) \right|.$$

For $y \in W$, since $e(\beta y) = 1$ and $y \in \mathcal{S}_N$, we deduce by a change of variables that

$$\sum_{\operatorname{ord} x < N} 1_A(x) e(\beta x) = \sum_{\operatorname{ord} x < N} 1_A(x) e(\beta(x+y)) = \sum_{\operatorname{ord} x < N} 1_A(x-y) e(\beta x).$$

It follows that

$$|W| \left| \sum_{x \in A} e(\beta x) \right| = \left| \sum_{\text{ord } x < N} \left(\sum_{y \in W} d(N-1) - \sum_{y \in W} 1_A(x-y) \right) e(\beta x) \right|$$

$$\leq \sum_{\text{ord } x < N} \left| \sum_{y \in W} d(N-1) - \sum_{y \in W} 1_A(x-y) \right|$$

$$= \sum_{\text{ord } x < N} \left| d(N-1)|W| - |W \cap (x-A)| \right|.$$

Since $a_{i,1} + \cdots + a_{i,S} = 0$ $(1 \le i \le R)$ and the equations in (1.1) are never satisfied simultaneously by distinct $x_1, \ldots, x_S \in A$, the equations in (1.1) are never satisfied simultaneously by distinct $x_1, \ldots, x_S \in W \cap (x-A)$. Since $W \simeq \mathcal{S}_{N-1}$ as a vector space over \mathbb{F}_q and $Y \in \mathbb{F}_q^{R \times S}$, any invertible \mathbb{F}_q -linear transformation from W to \mathcal{S}_{N-1} maps $W \cap (x-A)$ to a subset of \mathcal{S}_{N-1} for which the equations in (1.1) are never satisfied simultaneously by distinct elements of the subset. This implies that $|W \cap (x-A)| \le d(N-1)|W|$. Therefore

$$|W| \left| \sum_{x \in A} e(\beta x) \right| \le \sum_{\text{ord } x < N} (d(N-1)|W| - |W \cap (x-A)|)$$
$$= d(N-1)|W|q^N - |W||A|.$$

Thus, if $-N \leq \operatorname{ord} \beta < 0$, we have

$$\Big|\sum_{x\in A} e(\beta x)\Big| \le d(N-1)q^N - |A|. \blacksquare$$

Lemma 2.5. Suppose that $Y \in \mathbb{F}_q^{R \times S}$ satisfies Condition 2. Let

$$Q = Q(Y) = \{B \subseteq \{1, \dots, L\} \mid |B| = L - R + 1\}.$$

For $B \in Q$, let

$$\mathfrak{m}_B = \left\{ \boldsymbol{\alpha} \in \mathbb{T}^R \mid \operatorname{ord}\left(\sum_{i=1}^R a_{i,k} \alpha_i\right) \ge -N \ (k \in B) \right\}.$$

Then

$$\mathfrak{m}\subseteq\bigcup_{B\in Q}\mathfrak{m}_B.$$

Proof. Let $\boldsymbol{\alpha} = (\alpha_1, \dots, \alpha_R) \in \mathfrak{m}$. Select any R columns k_1, \dots, k_R from the first L columns of Y, and denote by $X = (a_{i,k_j})_{1 \leq i,j \leq R} \in \mathbb{F}_q^{R \times R}$ the

matrix formed by these columns. By Condition 2, we have det $X \neq 0$. Write $\alpha_i = \sum_{m \leq -1} b_{i,m} t^m \ (1 \leq i \leq R)$ with $b_{i,m} \in \mathbb{F}_q \ (1 \leq i \leq R, m \leq -1)$. Thus,

$$\sum_{i=1}^{R} a_{i,k_j} \alpha_i = \sum_{m < -1} \sum_{i=1}^{R} a_{i,k_j} b_{i,m} t^m \quad (1 \le j \le R).$$

Suppose for the moment that for all $1 \leq j \leq R$, we have $\operatorname{ord}(\sum_{i=1}^R a_{i,k_j}\alpha_i) < -N$. It follows that

(2.2)
$$\sum_{i=1}^{R} a_{i,k_j} b_{i,m} = 0 \quad (-N \le m \le -1, \ 1 \le j \le R).$$

Write $\mathbf{b}_m = (b_{1,m}, \dots, b_{R,m})$. Then (2.2) is equivalent to having $\mathbf{b}_m X = \mathbf{0}$ ($-N \le m \le -1$). Since det $X \ne 0$, we have $\mathbf{b}_m = \mathbf{0}$ ($-N \le m \le -1$). Thus, $\alpha_i = \sum_{m < -N} b_{i,m} t^m$ ($1 \le i \le R$), contradicting the fact that $\alpha \in \mathfrak{m}$. Thus, $\operatorname{ord}(\sum_{i=1}^R a_{i,k_i} \alpha_i) \ge -N$ for at least one $1 \le j \le R$.

Since we can find an element k such that $\operatorname{ord}(\sum_{i=1}^R a_{i,k}\alpha_i) \geq -N$ amongst any R-element subset of $\{1,\ldots,L\}$, it follows that there are at least L-R+1 values $k \in \{1,\ldots,L\}$ with $\operatorname{ord}(\sum_{i=1}^R a_{i,k}\alpha_i) \geq -N$. That is, there exists $B \subseteq \{1,\ldots,L\}$ with |B| = L - R + 1 such that $\alpha \in \mathfrak{m}_B$. This completes the proof of the lemma. \blacksquare

LEMMA 2.6. Suppose that $Y \in \mathbb{F}_q^{R \times S}$ satisfies Conditions 1 and 2. Suppose also that $A \subseteq \mathcal{S}_N$ is such that the equations in (1.1) are never satisfied simultaneously by distinct elements $x_1, \ldots, x_S \in A$ and $|A| = d(N)q^N$. Then

$$\int_{m} |F_1 \cdots F_S(\boldsymbol{\alpha})| \, d\boldsymbol{\alpha} \le C_2 (d(N-1) - d(N))^{L-R+1} d(N)^{S-L-1} q^{N(S-R)},$$

where $C_2 = C_2(Y) = {L \choose L - R + 1}$.

Proof. Let Q = Q(Y) and \mathfrak{m}_B $(B \in Q)$ be as in Lemma 2.5. We have

$$\int_{\mathfrak{m}_B} |F_1 \cdots F_S(\boldsymbol{\alpha})| \, d\boldsymbol{\alpha} \leq \left(\sup_{\boldsymbol{\alpha} \in \mathfrak{m}_B} \prod_{j \in B} |F_j(\boldsymbol{\alpha})| \right) \int_{\mathbb{T}^R} \left| \prod_{j \notin B} F_j(\boldsymbol{\alpha}) \right| d\boldsymbol{\alpha}.$$

By Condition 2, there are two disjoint R-element subsets U and V of $\{1,\ldots,S\}\setminus B$ such that the columns of Y indexed by either set are linearly independent. By Lemma 2.3 and the Cauchy–Schwarz inequality,

$$\int_{\mathbb{T}^R} \left| \prod_{j \notin B} F_j(\boldsymbol{\alpha}) \right| d\boldsymbol{\alpha} \leq |A|^{S-|B|-2R} \int_{\mathbb{T}^R} \left| \prod_{j \in U} F_j(\boldsymbol{\alpha}) \right| \left| \prod_{j \in V} F_j(\boldsymbol{\alpha}) \right| d\boldsymbol{\alpha}
\leq |A|^{S-|B|-2R} \left(\int_{\mathbb{T}^R} \left| \prod_{j \in U} F_j(\boldsymbol{\alpha}) \right|^2 d\boldsymbol{\alpha} \right)^{1/2} \left(\int_{\mathbb{T}^R} \left| \prod_{j \in V} F_j(\boldsymbol{\alpha}) \right|^2 d\boldsymbol{\alpha} \right)^{1/2}
= |A|^{S-|B|-2R} |A|^R = |A|^{S-|B|-R}.$$

By Lemma 2.4, we see that for $j \in B$,

$$\sup_{\boldsymbol{\alpha} \in \mathfrak{m}_B} |F_j(\boldsymbol{\alpha})| \le (d(N-1) - d(N))q^N.$$

Thus,

$$\int_{\mathfrak{m}_{B}} |F_{1} \cdots F_{S}(\boldsymbol{\alpha})| \, d\boldsymbol{\alpha} \leq (d(N-1) - d(N))^{L-R+1} d(N)^{S-L-1} q^{N(S-R)}.$$

We have seen in Lemma 2.5 that $\mathfrak{m} \subseteq \bigcup_{B \in Q} \mathfrak{m}_B$. Since $|Q| = {L \choose L-R+1} = C_2$, we can deduce from the above inequality that

$$\int_{m} |F_1 \cdots F_S(\alpha)| d\alpha \le C_2 (d(N-1) - d(N))^{L-R+1} d(N)^{S-L-1} q^{N(S-R)}.$$

This completes the proof of the lemma.

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Suppose that $A \subseteq \mathcal{S}_N$ is a set for which the equations in (1.1) are never satisfied simultaneously by distinct $x_1, \ldots, x_S \in A$ and $|A| = d(N)q^N$. By (2.1), we have

$$\left| \int_{\mathfrak{M}} F_1 \cdots F_S(\boldsymbol{\alpha}) d\boldsymbol{\alpha} \right| - \left| \int_{\mathfrak{M}} F_1 \cdots F_S(\boldsymbol{\alpha}) d\boldsymbol{\alpha} \right| \leq T(A).$$

On applying Lemmas 2.1, 2.2, and 2.6, there exist positive constants C_1 and C_2 such that

$$\begin{split} d(N)^S q^{N(S-R)} - C_2 (d(N-1) - d(N))^{L-R+1} d(N)^{S-L-1} q^{N(S-R)} \\ & \leq C_1 d(N)^{S-R-1} q^{N(S-R-1)}. \end{split}$$

Thus,

$$(2.3) \quad d(N)^S - C_1 d(N)^{S-R-1} q^{-N} - C_2 (d(N-1) - d(N))^{L-R+1} d(N)^{S-L-1} \le 0.$$
 Let

$$C = \max\{(2C_1)^{R/((R+1)(L-R+1))} \sup_{N \in \mathbb{N}} (Nq^{-NR/((R+1)(L-R+1))}),$$
$$(2C_2)^{1/(L-R+1)} 2^{(L+1)/R} (L-R+1)/R, 1\}.$$

We now claim that for all $N \in \mathbb{N}$, one has

(2.4)
$$d(N) \le \left(\frac{C}{N}\right)^{(L-R+1)/R}.$$

This statement will follow by induction. Since $d(N) \leq 1$, (2.4) holds trivially when N = 1. Let N > 1, and assume that

$$d(N-1) \le \left(\frac{C}{N-1}\right)^{(L-R+1)/R}.$$

We consider two cases.

CASE 1:
$$d(N)^S - C_1 d(N)^{S-R-1} q^{-N} \le \frac{1}{2} d(N)^S$$
. Then
$$d(N) \le (2C_1)^{1/(R+1)} q^{-N/(R+1)}.$$

Since

$$C \ge (2C_1)^{R/((R+1)(L-R+1))} (Nq^{-NR/((R+1)(L-R+1))}),$$

we obtain

$$d(N) < (C/N)^{(L-R+1)/R}$$
.

Case 2: $d(N)^S - C_1 d(N)^{S-R-1} q^{-N} > \frac{1}{2} d(N)^S$. We may deduce from (2.3) that

$$d(N)^{L+1} < 2C_2(d(N-1) - d(N))^{L-R+1}$$
.

By setting $C_3 = (2C_2)^{-1/(L-R+1)}$, we have

(2.5)
$$C_3 d(N)^{(L+1)/(L-R+1)} + d(N) < d(N-1).$$

Let $f(x) = (C/x)^{(L-R+1)/R}$. By the mean value theorem, there exists $\theta_N \in [0,1]$ such that

$$f(N-1) - f(N) = f'(N - \theta_N)(-1)$$

= $C^{(L-R+1)/R}(L-R+1)R^{-1}(N-\theta_N)^{-(L+1)/R}$.

Since $C \geq C_3^{-1} 2^{(L+1)/R} (L-R+1)/R$, it follows that

$$(2.6) f(N-1) - f(N) \le C^{(L-R+1)/R} (L-R+1) R^{-1} (N-1)^{-(L+1)/R}$$

$$= C^{(L+1)/R} C^{-1} (L-R+1) R^{-1} (N-1)^{-(L+1)/R}$$

$$\le C^{(L+1)/R} C_3 2^{-(L+1)/R} (N-1)^{-(L+1)/R}$$

$$< C_3 C^{(L+1)/R} N^{-(L+1)/R}.$$

From the induction hypothesis and (2.6), we obtain

$$d(N-1) \le f(N-1) \le C_3 (C/N)^{\frac{L+1}{R}} + f(N)$$

= $C_3 (C/N)^{\frac{L-R+1}{R} \cdot \frac{L+1}{L-R+1}} + (C/N)^{\frac{L-R+1}{R}}$.

On recalling (2.5), we have

$$C_3 d(N)^{\frac{L+1}{L-R+1}} + d(N) < d(N-1)$$

$$\leq C_3 (C/N)^{\frac{L-R+1}{R} \cdot \frac{L+1}{L-R+1}} + (C/N)^{\frac{L-R+1}{R}}.$$

Since $C_3 x^{\frac{L+1}{L-R+1}} + x$ is an increasing function in x, we have

$$d(N) \le (C/N)^{(L-R+1)/R}.$$

On combining Cases 1 and 2, the inequality (2.4) follows. This completes the proof of Theorem 1.1. \blacksquare

Acknowledgements. The research of the first author is supported in part by an NSERC discovery grant. The research of the second author is supported in part by NSF grant DMS-0635607 and NSA Young Investigators Grant H98230-10-1-0155. The authors would like to thank the referee for carefully reading the paper and making numerous valuable suggestions.

References

- [1] R. M. Kubota, Waring's problem for $\mathbb{F}_q[x]$, Dissertationes Math. (Rozprawy Mat.) 117 (1974).
- Y.-R. Liu and C. V. Spencer, A generalization of Roth's theorem in function fields, Int. J. Number Theory 5 (2009), 1149–1154.
- [3] M. Rosen, Number Theory in Function Fields, Springer, New York, 2002.
- [4] K. F. Roth, On certain sets of integers, J. London Math. Soc. 28 (1953), 104–109.
- [5] —, On certain sets of integers (II), ibid. 29 (1954), 20–26.

Yu-Ru Liu, Xiaomei Zhao
Department of Pure Mathematics
Faculty of Mathematics
University of Waterloo
Waterloo, Ontario, Canada N2L 3G1
E-mail: yrliu@math.uwaterloo.ca
x8zhao@math.uwaterloo.ca

Craig V. Spencer
School of Mathematics
Institute for Advanced Study
1 Einstein Drive
Princeton, NJ 08540, U.S.A.
and
Department of Mathematics
Kansas State University
138 Cardwell Hall
Manhattan, KS 66506, U.S.A.
E-mail: craigyspencer@gmail.com

Received on 16.7.2009 and in revised form on 1.11.2009 (6088)