Roth's theorem on systems of linear forms in function fields

by
Yu-Ru Liu (Waterloo),
Craig V. Spencer (Princeton, NJ, and Manhattan, KS) and Xiaomei Zhao (Waterloo)

1. Introduction. For $r, s \in \mathbb{N}=\{1,2, \ldots\}$ with $s \geq 2 r+1$, let $\left(b_{i, j}\right)$ be an $r \times s$ matrix whose elements are integers. Suppose that $b_{i, 1}+\cdots+b_{i, s}=0$ ($1 \leq i \leq r$). Suppose further that among the columns of the matrix, there exist r linearly independent columns such that, if any of the r columns are removed, the remaining $n-1$ columns of the matrix can be divided into two sets so that among the columns of each set there are r linearly independent columns. For $k \in \mathbb{N}$, denote by $D([1, k])$ the maximal cardinality of an integer set $A \subseteq[1, k]$ such that the equations $b_{i, 1} x_{1}+\cdots+b_{i, s} x_{s}=0$ $(1 \leq i \leq r)$ are never satisfied simultaneously by distinct elements x_{1}, \ldots, x_{s} $\in A$. Using techniques similar to his work on sets free of three-term arithmetic progressions (see [4]), Roth [5] showed that

$$
D([1, k]) \ll k /(\log \log k)^{1 / r^{2}}
$$

In this paper, we will build upon the methods in [2] to study an analogous question in function fields.

Let $\mathbb{F}_{q}[t]$ denote the ring of polynomials over the finite field \mathbb{F}_{q}. For $N \in \mathbb{N}$, let \mathcal{S}_{N} denote the subset of $\mathbb{F}_{q}[t]$ containing all polynomials of degree strictly less than N. For $R, S \in \mathbb{N}$ with $S \geq 2 R+1$, let $Y=\left(a_{i, j}\right)$ be an $R \times S$ matrix with elements in \mathbb{F}_{q}. Suppose that Y satisfies the following two conditions.

Condition 1. $a_{i, 1}+\cdots+a_{i, S}=0(1 \leq i \leq R)$.
Condition 2. Y has L columns with $L \geq R$ such that:

- any R of these L columns are linearly independent,

[^0]- after removing any $L-R+1$ of these L columns from Y, we can find two disjoint sets of R linearly independent columns among the remaining $S-L+R-1$ columns,
- without loss of generality, we may assume that these L columns are the first L columns of Y.

Consider the system of equations

$$
\begin{equation*}
a_{i, 1} x_{1}+\cdots+a_{i, S} x_{S}=0 \quad(1 \leq i \leq R) \tag{1.1}
\end{equation*}
$$

Let $D_{Y}\left(\mathcal{S}_{N}\right)$ denote the maximal cardinality of a set $A \subseteq \mathcal{S}_{N}$ for which the equations in (1.1) are never satisfied simultaneously by distinct elements $x_{1}, \ldots, x_{S} \in A$. We write $|V|$ for the cardinality of a set V. In this paper, we employ a variant of the Hardy-Littlewood circle method for $\mathbb{F}_{q}[t]$ to prove the following result.

Theorem 1.1. Assume that Y satisfies Conditions 1 and 2. There exists an effectively computable constant $C=C(Y)>0$ such that for $N \in \mathbb{N}$,

$$
D_{Y}\left(\mathcal{S}_{N}\right) \leq q^{N}\left(\frac{C}{N}\right)^{(L-R+1) / R}
$$

We note that the assumptions in Condition 2 are more general than the corresponding assumptions in [5]. Thus, in the special case when $L=R$, we can derive from Theorem 1.1 a function field analogue of Roth's theorem. In addition, on rewriting the upper bound we obtain in Theorem 1.1 as

$$
D_{Y}\left(\mathcal{S}_{N}\right) \ll \frac{\left|\mathcal{S}_{N}\right|}{\left(\log _{q}\left|\mathcal{S}_{N}\right|\right)^{(L-R+1) / R}}
$$

we observe that this result is much sharper than its integer analogue. Our improvement comes from a better estimate of an exponential sum in $\mathbb{F}_{q}[t]$ than in \mathbb{Z} (see Lemma 2.4).

One can also obtain from Theorem 1.1 some information about irreducible polynomials. Let \mathcal{P}_{N} denote the set of all monic irreducible polynomials in $\mathbb{F}_{q}[t]$ of degree strictly less than N, and let A_{N} denote a subset of \mathcal{P}_{N}. By the prime number theorem for $\mathbb{F}_{q}[t]$ (see [3, Theorem 2.2]), we have $\left|\mathcal{P}_{N}\right| \asymp q^{N} / N$. If $L+1>2 R$, Theorem 1.1 implies that there exists a positive constant $E(Y)$ such that whenever

$$
\frac{\left|A_{N}\right|}{\left|\mathcal{P}_{N}\right|} \geq \frac{E(Y)}{N^{(L-2 R+1) / R}}
$$

then (1.1) has a solution with distinct elements $x_{1}, \ldots, x_{S} \in A_{N}$.
We conclude this section by introducing the Fourier analysis of $\mathbb{F}_{q}[t]$. Let $\mathbb{K}=\mathbb{F}_{q}(t)$ be the field of fractions of $\mathbb{F}_{q}[t]$, and let $\mathbb{K}_{\infty}=\mathbb{F}_{q}((1 / t))$ be the completion of \mathbb{K} at ∞. We may write each element $\alpha \in \mathbb{K}_{\infty}$ in the shape $\alpha=\sum_{i \leq v} a_{i} t^{i}$ for some $v \in \mathbb{Z}$ and $a_{i}=a_{i}(\alpha) \in \mathbb{F}_{q}(i \leq v)$. If $a_{v} \neq 0$, we define ord $\alpha=v$. We adopt the convention that ord $0=-\infty$. Also, it is
often convenient to refer to a_{-1} as being the residue of α, denoted by res α. Consider the compact additive subgroup \mathbb{T} of \mathbb{K}_{∞} defined by $\mathbb{T}=\{\alpha \in$ $\mathbb{K}_{\infty} \mid$ ord $\left.\alpha<0\right\}$. Given any Haar measure $d \alpha$ on \mathbb{K}_{∞}, we normalize it in such a manner that $\int_{\mathbb{T}} 1 d \alpha=1$. We now extend the measure to \mathbb{K}_{∞}^{R} by the standard product measure. Thus, if \mathfrak{M} is the subset of \mathbb{K}_{∞}^{R} defined by

$$
\mathfrak{M}=\left\{\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{R}\right) \in \mathbb{K}_{\infty}^{R} \mid \text { ord } \alpha_{i}<-N(1 \leq i \leq R)\right\}
$$

then the measure of \mathfrak{M}, written $\operatorname{mes}(\mathfrak{M})$, is equal to $q^{-N R}$.
We are now equipped to define the exponential function on $\mathbb{F}_{q}[t]$. Suppose that the characteristic of \mathbb{F}_{q} is p. Let $e(z)$ denote $e^{2 \pi i z}$, and let $\operatorname{tr}: \mathbb{F}_{q} \rightarrow \mathbb{F}_{p}$ denote the familiar trace map. There is a non-trivial additive character $e_{q}: \mathbb{F}_{q} \rightarrow \mathbb{C}^{\times}$defined for each $a \in \mathbb{F}_{q}$ by taking $e_{q}(a)=e(\operatorname{tr}(a) / p)$. This character induces a map $e: \mathbb{K}_{\infty} \rightarrow \mathbb{C}^{\times}$by defining, for each element $\alpha \in \mathbb{K}_{\infty}$, the value of $e(\alpha)$ to be $e_{q}(\operatorname{res} \alpha)$. The orthogonality relation underlying the Fourier analysis of $\mathbb{F}_{q}[t]$, established in [1, Lemma 1], takes the shape

$$
\int_{\mathbb{T}} e(h \alpha) d \alpha= \begin{cases}1 & \text { when } h=0 \\ 0 & \text { when } h \in \mathbb{F}_{q}[t] \backslash\{0\} .\end{cases}
$$

Therefore, for $\left(h_{1}, \ldots, h_{R}\right) \in \mathbb{F}_{q}[t]^{R}$ and $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{R}\right) \in \mathbb{K}_{\infty}^{R}$, we have

$$
\begin{align*}
\int_{\mathbb{T}^{R}} e\left(h_{1} \alpha_{1}+\cdots+h_{R} \alpha_{R}\right) d \boldsymbol{\alpha} & =\prod_{i=1}^{R} \int_{\mathbb{T}} e\left(h_{i} \alpha_{i}\right) d \alpha_{i} \tag{1.2}\\
& = \begin{cases}1 & \text { when } h_{j}=0(1 \leq j \leq R) \\
0 & \text { otherwise }\end{cases}
\end{align*}
$$

2. Proof of Theorem 1.1. For $R, S \in \mathbb{N}$ with $S \geq 2 R+1$, let $Y=\left(a_{i, j}\right) \in \mathbb{F}_{q}^{R \times S}$ satisfy Conditions 1 and 2 . For $N \in \mathbb{N}$, let $D_{Y}\left(\mathcal{S}_{N}\right)$ be defined as in Section 1. Write $d_{Y}(N)=D_{Y}\left(\mathcal{S}_{N}\right) / q^{N}$. For convenience, in what follows, we will write $D\left(\mathcal{S}_{N}\right)$ in place of $D_{Y}\left(\mathcal{S}_{N}\right)$ and $d(N)$ in place of $d_{Y}(N)$. Hence, to prove Theorem 1.1, it is equivalent to show that $d(N) \leq(C / N)^{(L-R+1) / R}$.

For a set $A \subseteq \mathcal{S}_{N}$, let $T(A)=T_{Y}(A)$ denote the number of solutions of (1.1) with $x_{i} \in A(1 \leq i \leq S)$. Let 1_{A} be the characteristic function of A, i.e., $1_{A}(x)=1$ if $x \in A$ and $1_{A}(x)=0$ otherwise. For $1 \leq j \leq S$ and $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{R}\right) \in \mathbb{K}_{\infty}^{R}$, define

$$
F_{j}(\boldsymbol{\alpha})=\sum_{x \in A} e\left(\left(a_{1, j} \alpha_{1}+\cdots+a_{R, j} \alpha_{R}\right) x\right)
$$

By (1.2), we see that

$$
T(A)=\int_{\mathbb{T}^{R}} F_{1} \cdots F_{S}(\boldsymbol{\alpha}) d \boldsymbol{\alpha}
$$

We will estimate $T(A)$ by dividing \mathbb{T}^{R} into two parts: the major arc \mathfrak{M} defined by

$$
\mathfrak{M}=\left\{\left(\alpha_{1}, \ldots, \alpha_{R}\right) \in \mathbb{K}_{\infty}^{R} \mid \operatorname{ord} \alpha_{i}<-N(1 \leq i \leq R)\right\}
$$

and the minor arc $\mathfrak{m}=\mathbb{T}^{R} \backslash \mathfrak{M}$. We have

$$
\begin{equation*}
T(A)=\int_{\mathfrak{M}} F_{1} \cdots F_{S}(\boldsymbol{\alpha}) d \boldsymbol{\alpha}+\int_{\mathfrak{m}} F_{1} \cdots F_{S}(\boldsymbol{\alpha}) d \boldsymbol{\alpha} . \tag{2.1}
\end{equation*}
$$

Before proving Theorem 1.1, we will need to obtain bounds on $T(A)$ and the contributions of the major and minor arcs.

Lemma 2.1. Suppose that $Y \in \mathbb{F}_{q}^{R \times S}$ satisfies Condition 2. Suppose also that $A \subseteq \mathcal{S}_{N}$ is a set for which the equations in (1.1) are never satisfied simultaneously by distinct elements $x_{1}, \ldots, x_{S} \in A$. Then

$$
T(A) \leq C_{1}|A|^{S-R-1},
$$

where $C_{1}=C_{1}(Y)=\binom{S}{2}$.
Proof. We have

$$
T(A)=\left|\left\{\mathbf{x} \in A^{S} \mid Y \mathbf{x}=\mathbf{0}\right\}\right| .
$$

Since $A \subseteq \mathcal{S}_{N}$ is such that the equations in (1.1) are never satisfied simultaneously by distinct elements $x_{1}, \ldots, x_{S} \in A$, whenever $Y \mathbf{x}=\mathbf{0}$ for some $\mathbf{x} \in A^{S}$, there exist distinct elements $i, j \in\{1, \ldots, S\}$ with $x_{i}=x_{j}$. Fix one of the C_{1} choices of $\{i, j\}$. Let Y_{1} be the matrix obtained from Y by deleting columns i, j. We consider two cases.

Case 1: $\{i, j\} \cap\{1, \ldots, L\}=\emptyset$. We denote by rk Y_{1} the rank of the matrix Y_{1}. By Condition 2, we have rk $Y_{1}=R$. It follows that

$$
\mid\left\{\mathbf{x} \in A^{S} \mid x_{i}=x_{j} \text { and } Y \mathbf{x}=\mathbf{0}\right\}\left|\leq|A|^{S-R-1}\right.
$$

CASE 2: $\{i, j\} \cap\{1, \ldots, L\} \neq \emptyset$. Without loss of generality, we may assume that $i \in\{1, \ldots, L\}$. By Condition 2, we can find two disjoint subsets I_{1} and I_{2} of $\{1, \ldots, S\} \backslash\{i\}$, each with cardinality R, such that the columns of Y indexed by either set are linearly independent. Since $I_{1} \cap I_{2}=\emptyset$, we may assume that $j \notin I_{1}$. Then $\{i, j\} \cap I_{1}=\emptyset$. Hence, rk $Y_{1}=R$, which implies that

$$
\mid\left\{\mathbf{x} \in A^{S} \mid x_{i}=x_{j} \text { and } Y \mathbf{x}=\mathbf{0}\right\}\left|\leq|A|^{S-R-1} .\right.
$$

On recalling the definition of C_{1} and combining Cases 1 and 2, the lemma follows.

Lemma 2.2. Suppose that $Y \in \mathbb{F}_{q}^{R \times S}$ and $A \subseteq \mathcal{S}_{N}$. Then

$$
\int_{\mathfrak{M}} F_{1} \cdots F_{S}(\boldsymbol{\alpha}) d \boldsymbol{\alpha}=q^{-N R}|A|^{S} .
$$

Proof. For $1 \leq j \leq S, \boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{R}\right) \in \mathfrak{M}$, and $x \in A \subseteq \mathcal{S}_{N}$, we have

$$
\operatorname{ord}\left(\left(a_{1, j} \alpha_{1}+\cdots+a_{R, j} \alpha_{R}\right) x\right) \leq-1+N+\max _{1 \leq i \leq R} \operatorname{ord} \alpha_{i} \leq-2
$$

Thus,

$$
F_{j}(\boldsymbol{\alpha})=\sum_{x \in A} e\left(\left(a_{1, j} \alpha_{1}+\cdots+a_{R, j} \alpha_{R}\right) x\right)=\sum_{x \in A} 1=|A|
$$

Therefore, our major arc contribution is

$$
\int_{\mathfrak{M}} F_{1} \cdots F_{S}(\boldsymbol{\alpha}) d \boldsymbol{\alpha}=\operatorname{mes}(\mathfrak{M})|A|^{S}=q^{-N R}|A|^{S}
$$

Lemma 2.3. For $Y \in \mathbb{F}_{q}^{R \times S}$ and $A \subseteq \mathcal{S}_{N}$, suppose that the columns of Y indexed by k_{1}, \ldots, k_{R} are linearly independent. Then

$$
\int_{\mathbb{T}^{R}}\left|F_{k_{1}} \cdots F_{k_{R}}(\boldsymbol{\alpha})\right|^{2} d \boldsymbol{\alpha}=|A|^{R}
$$

Proof. Let Z denote the matrix $\left(a_{i, k_{j}}\right)_{1 \leq i, j \leq R} \in \mathbb{F}_{q}^{R \times R}$. By 1.2 , we have

$$
\int_{\mathbb{T}^{R}}\left|F_{k_{1}} \cdots F_{k_{R}}(\boldsymbol{\alpha})\right|^{2} d \boldsymbol{\alpha}=\left|\left\{(\mathbf{x}, \mathbf{y}) \in A^{R} \times A^{R} \mid Z \mathbf{x}=Z \mathbf{y}\right\}\right|
$$

Since $\operatorname{det} Z \neq 0, Z \mathbf{x}=Z \mathbf{y}$ if and only if $\mathbf{x}=\mathbf{y}$. Thus,

$$
\int_{\mathbb{T}^{R}}\left|F_{k_{1}} \cdots F_{k_{R}}(\boldsymbol{\alpha})\right|^{2} d \boldsymbol{\alpha}=\left|\left\{(\mathbf{x}, \mathbf{y}) \in A^{R} \times A^{R} \mid \mathbf{x}=\mathbf{y}\right\}\right|=|A|^{R}
$$

Lemma 2.4. Suppose that $Y \in \mathbb{F}_{q}^{R \times S}$ satisfies Condition 1. Suppose also that $A \subseteq \mathcal{S}_{N}$ is a set for which the equations in (1.1) are never satisfied simultaneously by distinct elements $x_{1}, \ldots, x_{S} \in A$. Then

$$
\sup _{-N \leq \operatorname{ord} \beta<0}\left|\sum_{x \in A} e(\beta x)\right| \leq d(N-1) q^{N}-|A| .
$$

Proof. For $-N \leq \operatorname{ord} \beta<0$, let $W=W(\beta)=\left\{y \in \mathcal{S}_{N}: \operatorname{res}(\beta y)=0\right\}$. Since $-N \leq \operatorname{ord} \beta<0$, we can write ord $\beta=-l$ and $\beta=\sum_{j \leq-l} b_{j} t^{j}$ with $-N \leq-l \leq-1, b_{j} \in \mathbb{F}_{q}(j \leq-l)$, and $b_{-l} \neq 0$. Then the polynomial $y=c_{N-1} t^{N-1}+\cdots+c_{0} \in \mathcal{S}_{N}$ is in W if and only if

$$
\operatorname{res}(\beta y)=b_{-l} c_{l-1}+b_{-l-1} c_{l}+\cdots+b_{-N} c_{N-1}=0
$$

Hence, $W \simeq \mathbb{F}_{q}^{N-1}$ as a vector space over \mathbb{F}_{q}.
Since $-N \leq$ ord $\beta<0$, by [1, Lemma 7], we have

$$
\sum_{\text {ord } x<N} e(\beta x)=0
$$

Therefore,
$|W|\left|\sum_{x \in A} e(\beta x)\right|=\left|\sum_{y \in W} \sum_{\operatorname{ord} x<N} d(N-1) e(\beta x)-\sum_{y \in W} \sum_{\operatorname{ord} x<N} 1_{A}(x) e(\beta x)\right|$.

For $y \in W$, since $e(\beta y)=1$ and $y \in \mathcal{S}_{N}$, we deduce by a change of variables that

$$
\sum_{\operatorname{ord} x<N} 1_{A}(x) e(\beta x)=\sum_{\operatorname{ord} x<N} 1_{A}(x) e(\beta(x+y))=\sum_{\operatorname{ord} x<N} 1_{A}(x-y) e(\beta x)
$$

It follows that

$$
\begin{aligned}
|W|\left|\sum_{x \in A} e(\beta x)\right| & =\left|\sum_{\operatorname{ord} x<N}\left(\sum_{y \in W} d(N-1)-\sum_{y \in W} 1_{A}(x-y)\right) e(\beta x)\right| \\
& \leq \sum_{\operatorname{ord} x<N}\left|\sum_{y \in W} d(N-1)-\sum_{y \in W} 1_{A}(x-y)\right| \\
& =\sum_{\operatorname{ord} x<N}|d(N-1)| W|-|W \cap(x-A)||
\end{aligned}
$$

Since $a_{i, 1}+\cdots+a_{i, S}=0(1 \leq i \leq R)$ and the equations in (1.1) are never satisfied simultaneously by distinct $x_{1}, \ldots, x_{S} \in A$, the equations in (1.1) are never satisfied simultaneously by distinct $x_{1}, \ldots, x_{S} \in W \cap(x-A)$. Since $W \simeq \mathcal{S}_{N-1}$ as a vector space over \mathbb{F}_{q} and $Y \in \mathbb{F}_{q}^{R \times S}$, any invertible \mathbb{F}_{q}-linear transformation from W to \mathcal{S}_{N-1} maps $W \cap(x-A)$ to a subset of \mathcal{S}_{N-1} for which the equations in (1.1) are never satisfied simultaneously by distinct elements of the subset. This implies that $|W \cap(x-A)| \leq d(N-1)|W|$. Therefore

$$
\begin{aligned}
|W|\left|\sum_{x \in A} e(\beta x)\right| & \leq \sum_{\operatorname{ord} x<N}(d(N-1)|W|-|W \cap(x-A)|) \\
& =d(N-1)|W| q^{N}-|W||A|
\end{aligned}
$$

Thus, if $-N \leq \operatorname{ord} \beta<0$, we have

$$
\left|\sum_{x \in A} e(\beta x)\right| \leq d(N-1) q^{N}-|A| .
$$

Lemma 2.5. Suppose that $Y \in \mathbb{F}_{q}^{R \times S}$ satisfies Condition 2. Let

$$
Q=Q(Y)=\{B \subseteq\{1, \ldots, L\}| | B \mid=L-R+1\} .
$$

For $B \in Q$, let

$$
\mathfrak{m}_{B}=\left\{\boldsymbol{\alpha} \in \mathbb{T}^{R} \mid \operatorname{ord}\left(\sum_{i=1}^{R} a_{i, k} \alpha_{i}\right) \geq-N(k \in B)\right\} .
$$

Then

$$
\mathfrak{m} \subseteq \bigcup_{B \in Q} \mathfrak{m}_{B}
$$

Proof. Let $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{R}\right) \in \mathfrak{m}$. Select any R columns k_{1}, \ldots, k_{R} from the first L columns of Y, and denote by $X=\left(a_{i, k_{j}}\right)_{1 \leq i, j \leq R} \in \mathbb{F}_{q}^{R \times R}$ the
matrix formed by these columns. By Condition 2, we have $\operatorname{det} X \neq 0$. Write $\alpha_{i}=\sum_{m \leq-1} b_{i, m} t^{m}(1 \leq i \leq R)$ with $b_{i, m} \in \mathbb{F}_{q}(1 \leq i \leq R, m \leq-1)$. Thus,

$$
\sum_{i=1}^{R} a_{i, k_{j}} \alpha_{i}=\sum_{m \leq-1} \sum_{i=1}^{R} a_{i, k_{j}} b_{i, m} t^{m} \quad(1 \leq j \leq R) .
$$

Suppose for the moment that for all $1 \leq j \leq R$, we have ord $\left(\sum_{i=1}^{R} a_{i, k_{j}} \alpha_{i}\right)$ $<-N$. It follows that

$$
\begin{equation*}
\sum_{i=1}^{R} a_{i, k_{j}} b_{i, m}=0 \quad(-N \leq m \leq-1,1 \leq j \leq R) \tag{2.2}
\end{equation*}
$$

Write $\mathbf{b}_{m}=\left(b_{1, m}, \ldots, b_{R, m}\right)$. Then (2.2) is equivalent to having $\mathbf{b}_{m} X=\mathbf{0}$ $(-N \leq m \leq-1)$. Since $\operatorname{det} X \neq 0$, we have $\mathbf{b}_{m}=\mathbf{0}(-N \leq m \leq-1)$. Thus, $\alpha_{i}=\sum_{m<-N} b_{i, m} t^{m}(1 \leq i \leq R)$, contradicting the fact that $\boldsymbol{\alpha} \in \mathfrak{m}$. Thus, $\operatorname{ord}\left(\sum_{i=1}^{R} a_{i, k_{j}} \alpha_{i}\right) \geq-N$ for at least one $1 \leq j \leq R$.

Since we can find an element k such that $\operatorname{ord}\left(\sum_{i=1}^{R} a_{i, k} \alpha_{i}\right) \geq-N$ amongst any R-element subset of $\{1, \ldots, L\}$, it follows that there are at least $L-R+1$ values $k \in\{1, \ldots, L\}$ with $\operatorname{ord}\left(\sum_{i=1}^{R} a_{i, k} \alpha_{i}\right) \geq-N$. That is, there exists $B \subseteq\{1, \ldots, L\}$ with $|B|=L-R+1$ such that $\boldsymbol{\alpha} \in \mathfrak{m}_{B}$. This completes the proof of the lemma.

Lemma 2.6. Suppose that $Y \in \mathbb{F}_{q}^{R \times S}$ satisfies Conditions 1 and 2. Suppose also that $A \subseteq \mathcal{S}_{N}$ is such that the equations in (1.1) are never satisfied simultaneously by distinct elements $x_{1}, \ldots, x_{S} \in A$ and $|A|=d(N) q^{N}$. Then

$$
\int_{\mathfrak{m}}\left|F_{1} \cdots F_{S}(\boldsymbol{\alpha})\right| d \boldsymbol{\alpha} \leq C_{2}(d(N-1)-d(N))^{L-R+1} d(N)^{S-L-1} q^{N(S-R)},
$$

where $C_{2}=C_{2}(Y)=\binom{L}{L-R+1}$.
Proof. Let $Q=Q(Y)$ and $\mathfrak{m}_{B}(B \in Q)$ be as in Lemma 2.5. We have

$$
\int_{\mathfrak{m}_{B}}\left|F_{1} \cdots F_{S}(\boldsymbol{\alpha})\right| d \boldsymbol{\alpha} \leq\left(\sup _{\boldsymbol{\alpha} \in \mathfrak{m}_{B}} \prod_{j \in B}\left|F_{j}(\boldsymbol{\alpha})\right|\right) \int_{\mathbb{T}^{R}}\left|\prod_{j \notin B} F_{j}(\boldsymbol{\alpha})\right| d \boldsymbol{\alpha} .
$$

By Condition 2, there are two disjoint R-element subsets U and V of $\{1, \ldots, S\} \backslash B$ such that the columns of Y indexed by either set are linearly independent. By Lemma 2.3 and the Cauchy-Schwarz inequality,

$$
\begin{aligned}
& \int_{\mathbb{T}^{R}}\left|\prod_{j \notin B} F_{j}(\boldsymbol{\alpha})\right| d \boldsymbol{\alpha} \leq|A|^{S-|B|-2 R} \int_{\mathbb{T}^{R}}\left|\prod_{j \in U} F_{j}(\boldsymbol{\alpha})\right|\left|\prod_{j \in V} F_{j}(\boldsymbol{\alpha})\right| d \boldsymbol{\alpha} \\
& \leq|A|^{S-|B|-2 R}\left(\int_{\mathbb{T}^{R}}\left|\prod_{j \in U} F_{j}(\boldsymbol{\alpha})\right|^{2} d \boldsymbol{\alpha}\right)^{1 / 2}\left(\int_{\mathbb{T}^{R}}\left|\prod_{j \in V} F_{j}(\boldsymbol{\alpha})\right|^{2} d \boldsymbol{\alpha}\right)^{1 / 2} \\
&=|A|^{S-|B|-2 R}|A|^{R}=|A|^{S-|B|-R}
\end{aligned}
$$

By Lemma 2.4, we see that for $j \in B$,

$$
\sup _{\boldsymbol{\alpha} \in \mathfrak{m}_{B}}\left|F_{j}(\boldsymbol{\alpha})\right| \leq(d(N-1)-d(N)) q^{N}
$$

Thus,

$$
\int_{\mathfrak{m}_{B}}\left|F_{1} \cdots F_{S}(\boldsymbol{\alpha})\right| d \boldsymbol{\alpha} \leq(d(N-1)-d(N))^{L-R+1} d(N)^{S-L-1} q^{N(S-R)}
$$

We have seen in Lemma 2.5 that $\mathfrak{m} \subseteq \bigcup_{B \in Q} \mathfrak{m}_{B}$. Since $|Q|=\binom{L}{L-R+1}=C_{2}$, we can deduce from the above inequality that

$$
\int_{\mathfrak{m}}\left|F_{1} \cdots F_{S}(\boldsymbol{\alpha})\right| d \boldsymbol{\alpha} \leq C_{2}(d(N-1)-d(N))^{L-R+1} d(N)^{S-L-1} q^{N(S-R)}
$$

This completes the proof of the lemma.
We are now ready to prove Theorem 1.1.
Proof of Theorem 1.1. Suppose that $A \subseteq \mathcal{S}_{N}$ is a set for which the equations in (1.1) are never satisfied simultaneously by distinct $x_{1}, \ldots, x_{S} \in A$ and $|A|=d(N) q^{N}$. By (2.1), we have

$$
\left|\int_{\mathfrak{M}} F_{1} \cdots F_{S}(\boldsymbol{\alpha}) d \boldsymbol{\alpha}\right|-\left|\int_{\mathfrak{m}} F_{1} \cdots F_{S}(\boldsymbol{\alpha}) d \boldsymbol{\alpha}\right| \leq T(A)
$$

On applying Lemmas 2.1, 2.2, and 2.6, there exist positive constants C_{1} and C_{2} such that

$$
\begin{array}{r}
d(N)^{S} q^{N(S-R)}-C_{2}(d(N-1)-d(N))^{L-R+1} d(N)^{S-L-1} q^{N(S-R)} \\
\leq C_{1} d(N)^{S-R-1} q^{N(S-R-1)}
\end{array}
$$

Thus,

$$
\begin{equation*}
d(N)^{S}-C_{1} d(N)^{S-R-1} q^{-N}-C_{2}(d(N-1)-d(N))^{L-R+1} d(N)^{S-L-1} \leq 0 \tag{2.3}
\end{equation*}
$$

Let

$$
\begin{aligned}
& C=\max \left\{\left(2 C_{1}\right)^{R /((R+1)(L-R+1))} \sup _{N \in \mathbb{N}}\left(N q^{-N R /((R+1)(L-R+1))}\right)\right. \\
& \left.\quad\left(2 C_{2}\right)^{1 /(L-R+1)} 2^{(L+1) / R}(L-R+1) / R, 1\right\} .
\end{aligned}
$$

We now claim that for all $N \in \mathbb{N}$, one has

$$
\begin{equation*}
d(N) \leq\left(\frac{C}{N}\right)^{(L-R+1) / R} \tag{2.4}
\end{equation*}
$$

This statement will follow by induction. Since $d(N) \leq 1,2.4$ holds trivially when $N=1$. Let $N>1$, and assume that

$$
d(N-1) \leq\left(\frac{C}{N-1}\right)^{(L-R+1) / R}
$$

We consider two cases.

CASE 1: $d(N)^{S}-C_{1} d(N)^{S-R-1} q^{-N} \leq \frac{1}{2} d(N)^{S}$. Then

$$
d(N) \leq\left(2 C_{1}\right)^{1 /(R+1)} q^{-N /(R+1)}
$$

Since

$$
C \geq\left(2 C_{1}\right)^{R /((R+1)(L-R+1))}\left(N q^{-N R /((R+1)(L-R+1))}\right)
$$

we obtain

$$
d(N) \leq(C / N)^{(L-R+1) / R}
$$

CASE 2: $d(N)^{S}-C_{1} d(N)^{S-R-1} q^{-N}>\frac{1}{2} d(N)^{S}$. We may deduce from (2.3) that

$$
d(N)^{L+1}<2 C_{2}(d(N-1)-d(N))^{L-R+1}
$$

By setting $C_{3}=\left(2 C_{2}\right)^{-1 /(L-R+1)}$, we have

$$
\begin{equation*}
C_{3} d(N)^{(L+1) /(L-R+1)}+d(N)<d(N-1) \tag{2.5}
\end{equation*}
$$

Let $f(x)=(C / x)^{(L-R+1) / R}$. By the mean value theorem, there exists $\theta_{N} \in[0,1]$ such that

$$
\begin{aligned}
f(N-1)-f(N) & =f^{\prime}\left(N-\theta_{N}\right)(-1) \\
& =C^{(L-R+1) / R}(L-R+1) R^{-1}\left(N-\theta_{N}\right)^{-(L+1) / R}
\end{aligned}
$$

Since $C \geq C_{3}^{-1} 2^{(L+1) / R}(L-R+1) / R$, it follows that

$$
\begin{align*}
f(N-1)-f(N) & \leq C^{(L-R+1) / R}(L-R+1) R^{-1}(N-1)^{-(L+1) / R} \tag{2.6}\\
& =C^{(L+1) / R} C^{-1}(L-R+1) R^{-1}(N-1)^{-(L+1) / R} \\
& \leq C^{(L+1) / R} C_{3} 2^{-(L+1) / R}(N-1)^{-(L+1) / R} \\
& \leq C_{3} C^{(L+1) / R} N^{-(L+1) / R}
\end{align*}
$$

From the induction hypothesis and (2.6), we obtain

$$
\begin{aligned}
d(N-1) & \leq f(N-1) \leq C_{3}(C / N)^{\frac{L+1}{R}}+f(N) \\
& =C_{3}(C / N)^{\frac{L-R+1}{R}} \cdot \frac{L+1}{L-R+1}+(C / N)^{\frac{L-R+1}{R}}
\end{aligned}
$$

On recalling 2.5), we have

$$
\begin{aligned}
C_{3} d(N)^{\frac{L+1}{L-R+1}}+d(N) & <d(N-1) \\
& \leq C_{3}(C / N)^{\frac{L-R+1}{R} \cdot \frac{L+1}{L-R+1}}+(C / N)^{\frac{L-R+1}{R}}
\end{aligned}
$$

Since $C_{3} x^{\frac{L+1}{L-R+1}}+x$ is an increasing function in x, we have

$$
d(N) \leq(C / N)^{(L-R+1) / R}
$$

On combining Cases 1 and 2, the inequality (2.4) follows. This completes the proof of Theorem 1.1 .

Acknowledgements. The research of the first author is supported in part by an NSERC discovery grant. The research of the second author is supported in part by NSF grant DMS-0635607 and NSA Young Investigators Grant H98230-10-1-0155. The authors would like to thank the referee for carefully reading the paper and making numerous valuable suggestions.

References

[1] R. M. Kubota, Waring's problem for $\mathbb{F}_{q}[x]$, Dissertationes Math. (Rozprawy Mat.) 117 (1974).
[2] Y.-R. Liu and C. V. Spencer, A generalization of Roth's theorem in function fields, Int. J. Number Theory 5 (2009), 1149-1154.
[3] M. Rosen, Number Theory in Function Fields, Springer, New York, 2002.
[4] K. F. Roth, On certain sets of integers, J. London Math. Soc. 28 (1953), 104-109.
[5] -, On certain sets of integers (II), ibid. 29 (1954), 20-26.

Yu-Ru Liu, Xiaomei Zhao
Department of Pure Mathematics
Faculty of Mathematics
University of Waterloo
Waterloo, Ontario, Canada N2L 3G1
E-mail: yrliu@math.uwaterloo.ca
x8zhao@math.uwaterloo.ca

Craig V. Spencer
School of Mathematics Institute for Advanced Study

1 Einstein Drive
Princeton, NJ 08540, U.S.A.
and
Department of Mathematics Kansas State University

138 Cardwell Hall
Manhattan, KS 66506, U.S.A.
E-mail: craigvspencer@gmail.com

[^0]: 2010 Mathematics Subject Classification: Primary 11P55; Secondary 11T55.
 Key words and phrases: Roth's theorem, function fields, circle method.

