On the indices of multiquadratic number fields

by

Attila Рethő (Debrecen) and Michael E. Pohst (Berlin)

1. Introduction. Let K be an algebraic number field with maximal order o_{K}. For $\alpha \in o_{K}$ the \mathbb{Z}-module index $I(\alpha)=\left(o_{K}: \mathbb{Z}[\alpha]\right)$ is also said to be the index of the element α. The greatest common divisor of the indices of all integral elements of K is called the field index of K. (In older literature, see Hasse 4 for example, the field index is also referred to as common inessential discriminant divisor.) Problem 22 in the "Problems" chapter of Narkiewicz [8] asks for an explicit formula for the exact power of a prime number p dividing the field index.

The first result in this direction is due to T. Engstrom [2] who showed in 1930 that for number fields K of degree less than eight the exact power of a prime p dividing the field index is determined by the decomposition type of the prime ideal generated by p in K. He explicitly formulated that dependence. His results were generalized in the 1985 thesis of E. Nart 9 who developed a p-adic characterization of the field index.

Engstrom also showed that for quartic fields K the field index is of the form $2^{\alpha} 3^{\beta}$ with $\alpha \leq 2$ and $\beta \leq 1$. This result was reproved by T. Nakahara [7] in 1983 for biquadratic fields. Nakahara also showed that the field index is odd precisely when the discriminant of the field is even. The case of biquadratic fields was taken up again by Gaál, Pethő and Pohst [3] who showed in 1991 that each possible value $2^{\alpha} 3^{\beta}$ indeed occurs as the field index of a biquadratic field and presented infinite families of fields having the pertinent field index.

The results of Engstrom were explicitly extended to fields up to degree 12 by J. Śliwa [13] already in 1982, however only for non-ramified primes p. We note that our results for non-ramified primes p dividing the field index of $K=\mathbb{Q}(\sqrt{a}, \sqrt{b}, \sqrt{c})$ together with Śliwa's tables determine the decomposition type of the principal ideal generated by p in terms of arithmetical properties of the generating elements a, b, c.

Later G. Nyul [10] studied the case of multiquadratic number fields $K=$ $K_{r}=\mathbb{Q}\left(\sqrt{a_{1}}, \ldots, \sqrt{a_{r}}\right)$ of degree 2^{r} in 2002 . He proved that fields K_{r} with odd discriminant do not have a power integral basis. For $r=3$ he showed non-monogeneity under suitable conditions on the generators. His results were made more precise by Motoda and Nakahara [5] who showed in 2004 that multiquadratic number fields K_{r} are never monogenic for $r \geq 4$. Again two years later, Motoda, Nakahara and Park [6] proved that the cyclotomic field $K=\mathbb{Q}\left(\zeta_{24}\right)=\mathbb{Q}(\sqrt{2}, \sqrt{-1}, \sqrt{-3})$ is the only monogenic multiquadratic field for $r=3$.

In this paper we generalize previous results for multiquadratic number fields K_{r} of degree 2^{r} in two respects. Starting from a suitable integral basis of such fields given in [11] and [12] we develop two versions of the corresponding index form, both of which split over \mathbb{Z} into a product of $2^{r}-1$ factors of degree 2^{r-1} each. Then we solve the problem of Narkiewicz for $r=3$. We emphasize that our method is completely different from previous ones. In contrast to [3] no computer calculations are needed. Finally, we use the new method to show that the field index of K_{r} is divisible by any prime power p^{k} provided that r is large enough.
2. Multiquadratic number fields and their index forms. We shall consider multiquadratic number fields $K=K_{r}=\mathbb{Q}\left(\sqrt{a_{1}}, \ldots, \sqrt{a_{r}}\right)$ for square-free rational integers a_{1}, \ldots, a_{r} which need to be chosen such that the field K has degree 2^{r}. The case $r=1$ being trivial and the case $r=2$ having been solved by Gaál, Pethő and Pohst [3], we concentrate on $r \in \mathbb{Z} \geq 3$ in the remainder of this paper.

In order to make the presentation easier we adopt a normalization of the generating elements of K / \mathbb{Q} introduced by B. Schmal in [11].

Step 1. Let p be a fixed prime number and let $i \in\{1, \ldots, r\}$ be minimal such that p divides a_{i}. If there exists an index $i<j \leq r$ with $p \mid a_{j}$ then we replace the pair $\left(a_{i}, a_{j}\right)$ by $\left(a_{i}, a_{i} a_{j} / \operatorname{gcd}\left(a_{i}, a_{j}\right)^{2}\right)$. For the new generators, only one of a_{i}, a_{j} will be divisible by p. Repeated application of this procedure yields elements a_{1}, \ldots, a_{r}, only one of which, say a_{1}, is divisible by p.

Step 2. After Step 1 we may assume that there is at most one generating element which is divisible by 2 , say a_{1}. Then all generating elements except maybe a_{1} are odd. We claim that we can alter them in such a way that at most one odd generator is congruent to 3 modulo 4 . Namely, if there exist $a_{i} \neq a_{j}$ which are both congruent to 3 modulo 4 we replace the pair (a_{i}, a_{j}) by $\left(a_{i},\left(a_{i} a_{j}\right) / \operatorname{gcd}\left(a_{i}, a_{j}\right)^{2}\right)$.

After this procedure we obtain normalized generators.

Lemma 2.1 (Schmal). Generating square-free integers a_{1}, \ldots, a_{r} of a multiquadratic number field $K_{r}=\mathbb{Q}\left(\sqrt{a_{1}}, \ldots, \sqrt{a_{r}}\right)$ can be chosen subject to the following conditions: $a_{i} \equiv 1 \bmod 4$ for $3 \leq i \leq r$, and the pair $\left(a_{1}, a_{2}\right)$ belongs to one of three categories:
(i) $a_{1} \equiv 1 \bmod 4, a_{2} \equiv 1 \bmod 4$;
(ii) $a_{2} \equiv 1 \bmod 4, a_{1} \equiv 3,2 \bmod 4$;
(iii) $a_{1} \equiv 2 \bmod 4, a_{2} \equiv 3 \bmod 4$.

For this special form of the generators B. Schmal established integral bases for K_{r}. We follow his ideas but rather use the notation of Schmitt and Zimmer [12]. Let $n:=2^{r}$. For each integer $j \in\{1, \ldots, n\}$ there is a unique 2 -adic presentation

$$
j-1=\sum_{i=1}^{r} \alpha_{j i} i^{i-1}
$$

Accordingly, we put

$$
\begin{equation*}
\gamma_{j}=\prod_{i=1}^{r}{\sqrt{a_{i}}}^{\alpha_{j i}} . \tag{1}
\end{equation*}
$$

Next we shall make the radicands

$$
b_{j}:=\prod_{i=1}^{r} a_{i}^{\alpha_{j i}}
$$

square-free. For any prime number p we denote by ν_{p} the corresponding exponential valuation, i.e. $\nu_{p}(x)$ is the exact power of p dividing x for $x \in \mathbb{Z}$. We put

$$
g_{j}:=\prod_{p \mid b_{j}} p^{\mu_{j}} \quad \text { with } \quad \mu_{j}= \begin{cases}\nu_{p}\left(b_{j}\right) / 2 & \text { for } \nu_{p}\left(b_{j}\right) \text { even }, \tag{2}\\ \left(\nu_{p}\left(b_{j}\right)-1\right) / 2 & \text { for } \nu_{p}\left(b_{j}\right) \text { odd } .\end{cases}
$$

Lemma 2.2 (Schmal). An integral basis of K_{r} is given by

$$
\omega_{j}:=\frac{1}{2^{\delta_{j}} g_{j}} \prod_{i=1}^{r}\left(\sqrt{a_{i}}-a_{i}\right)^{\alpha_{j i}} \quad\left(i \leq j \leq 2^{r}\right)
$$

where the $\alpha_{j i}$ are defined in (11), the g_{j} in (2) and the δ_{j} satisfy

$$
\delta_{1}=0, \delta_{2}=\left\{\begin{array}{ll}
1 & \text { for } a_{1} \equiv 1 \bmod 4, \\
0 & \text { for } a_{1} \equiv 2,3 \bmod 4,
\end{array} \quad \delta_{j}=\sum_{i=1}^{r} \alpha_{j i}-\beta_{j}(j>2)\right.
$$

with

$$
\beta_{j}= \begin{cases}1 & \text { for }\left(a_{1}, a_{2}\right) \equiv(2,1),(3,1) \bmod 4, \alpha_{j 1}=1 \\ 1 & \text { for }\left(a_{1}, a_{2}\right) \equiv(2,3) \bmod 4, \alpha_{j 1}=1 \text { or } \alpha_{j 2}=1, \\ 0 & \text { else. }\end{cases}
$$

If p_{1}, \ldots, p_{s} denote the different prime numbers dividing $a_{1} \cdots a_{r}$, the discriminant of $K=K_{r}$ becomes

$$
d_{K}=\left(2^{\ell} p_{1} \cdots p_{s}\right)^{2^{r-1}}
$$

with

$$
\ell=\left\{\begin{array}{lll}
0 & \text { for }\left(a_{1}, a_{2}\right) \equiv(1,1) \bmod 4, & \text { case }(\mathrm{i}) \\
2 & \text { for }\left(a_{1}, a_{2}\right) \equiv(3,1),(2,1) \bmod 4, & \text { case (ii) } \\
3 & \text { for }\left(a_{1}, a_{2}\right) \equiv(2,3) \bmod 4, & \text { case (iii). }
\end{array}\right.
$$

Example. For $r=3$ we improve on the form of that integral basis. We follow the ideas in the proof of Satz 3.2 in [11]. For abbreviation we write $a=a_{1}, b=a_{2}, c=a_{3}$ and set

$$
g=\operatorname{gcd}(a, b), h=\operatorname{gcd}(a, c), k=\operatorname{gcd}(b, c), l=g h k / \operatorname{gcd}(a, b, c)^{2}, f=l / g
$$

Then we obtain the following \mathbb{Z}-basis $\omega_{1}, \ldots, \omega_{8}$ for the maximal order o_{3} of K_{3}. (We remark that also in the case $r=2$ we need to consider only three cases instead of five in the earlier paper by K. S. Williams [14].)
$\left.\left.\begin{array}{|c|c|c|c|}\hline & (\mathrm{i}) & \text { (ii) } & \text { (iii) } \\ & (a, b, c) \equiv(1,1,1) \bmod 4 & a \equiv 3,2 \bmod 4 \\ (b, c) \equiv(1,1) \bmod 4\end{array}\right)(a, b, c) \equiv(2,3,1) \bmod 4\right)$ (1)

Later we shall use the fact that this integral basis is obtained from the \mathbb{Q}-basis

$$
\left(\gamma_{1}, \ldots, \gamma_{8}\right)=(1, \sqrt{a}, \sqrt{b}, \sqrt{a b}, \sqrt{c}, \sqrt{a c}, \sqrt{b c}, \sqrt{a b c})
$$

of (1) upon multiplication by an upper triangular matrix $T=\left(t_{i j}\right) \in \mathbb{Q}^{8 \times 8}$:

$$
\begin{equation*}
\left(\omega_{1}, \ldots, \omega_{8}\right)=\left(\gamma_{1}, \ldots, \gamma_{8}\right) T \tag{3}
\end{equation*}
$$

The denominators of the $t_{i j}$ are products of a power of 2 with exponent ≤ 3 and a divisor of $a b c$. In particular, the diagonal elements $t_{i i}$ are fractions with numerator 1 . Their product equals the inverse of the index of the order generated by $\gamma_{1}, \ldots, \gamma_{8}$ in the maximal order o_{3} of ${ }^{\natural} K_{3}$.

The conjugates of $K=K_{r}$ are denoted by $K^{(1)}=K, \ldots, K^{(n)}$. We define linear forms

$$
\begin{equation*}
L_{j}(\mathbf{x}):=\sum_{i=1}^{n} x_{i} \omega_{i}^{(j)} \quad(1 \leq j \leq n) \tag{4}
\end{equation*}
$$

Then the index form I of K becomes

$$
\begin{equation*}
I=I\left(x_{2}, \ldots, x_{n}\right)=\frac{1}{\sqrt{d_{K}}} \prod_{1 \leq \nu<\mu \leq n}\left(L_{\mu}(\mathbf{x})-L_{\nu}(\mathbf{x})\right) \tag{5}
\end{equation*}
$$

It is a homogeneous polynomial in x_{2}, \ldots, x_{n} of degree $n(n-1) / 2$. We will see that it factors over \mathbb{Z} into polynomials of degree $n / 2$. (For $r=1$ this is trivial, for $r=2$ it was shown in [3].)

It is well-known that K_{r} / \mathbb{Q} is Galois with Galois group $G=G_{r}=$ $\operatorname{Gal}\left(K_{r} / \mathbb{Q}\right) \cong C_{2}^{r}$. More precisely, we have

$$
G=G_{r}=\left\langle\sigma_{1}\right\rangle \times \cdots \times\left\langle\sigma_{r}\right\rangle
$$

with

$$
\sigma_{i}\left(\sqrt{a_{j}}\right)=\left\{\begin{array}{ll}
\sqrt{a_{j}} & \text { for } j \neq i \\
-\sqrt{a_{i}} & \text { for } j=i
\end{array} \quad(1 \leq i, j \leq r)\right.
$$

Any element $\sigma \in G$ has a presentation

$$
\sigma=\prod_{i=1}^{r} \sigma_{i}^{n_{i}} \quad \text { with } n_{i} \in\{0,1\}
$$

If σ is not the identity then it generates a subgroup of order 2 in G. We choose a suitable system of residue class representatives for $G /\langle\sigma\rangle$ in the following way. There is a minimal index $k \in\{1, \ldots, r\}$ with $n_{k}=1$. As a set of residue class representatives we take

$$
\mathcal{R}:=\left\{\prod_{\substack{i=1 \\ i \neq k}}^{r} \sigma_{i}^{n_{i}} \mid n_{i} \in\{0,1\}, 1 \leq i \leq r\right\}
$$

We note that \mathcal{R} is a subgroup of G of order $n / 2$. We write $\mathcal{R}=\left\{\mu_{1}=\right.$ id, $\left.\mu_{2}, \ldots, \mu_{n / 2}\right\}$ for abbreviation.

Lemma 2.3. For $\mathrm{id} \neq \sigma \in G$ the polynomial

$$
F_{\sigma}\left(x_{2}, \ldots, x_{r}\right):=\prod_{i=1}^{n / 2} \mu_{i}\left(L_{1}-\sigma\left(L_{1}\right)\right)
$$

is in $\mathbb{Z}\left[x_{2}, \ldots, x_{r}\right]$. The index form I of K satisfies

$$
\sqrt{d_{K}} I=\prod_{\substack{\sigma \in G \\ \sigma \neq \mathrm{id}}} F_{\sigma}
$$

Proof. For fixed id $\neq \sigma \in G$ we show that F_{σ} is G-invariant. Clearly, $\sigma\left(F_{\sigma}\right)=F_{\sigma}$ since each of an even number of factors of F_{σ} is turned into its negative. It remains to prove that $\tau\left(F_{\sigma}\right)=F_{\sigma}$ also for all $\tau \in \mathcal{R}$. But this is obvious because \mathcal{R} is a group.

We thus obtain $n-1$ polynomials F_{σ}, each being a homogeneous polynomial of degree $n / 2$. Hence, their product is of degree $n(n-1) / 2$, which coincides with the degree of I. The lemma will be proved when we show that any factor $L_{i}-L_{j}$ of I is also a factor of an F_{σ} for σ chosen appropriately. Let $\tau_{i}, \tau_{j} \in G, \tau_{i} \neq \tau_{j}$, subject to $L_{i}=\tau_{i}\left(L_{1}\right), L_{j}=\tau_{j}\left(L_{1}\right)$. We put $\sigma=\tau_{i}^{-1} \tau_{j}$ and get $L_{i}-L_{j}=\tau_{i}\left(L_{1}-\sigma\left(L_{1}\right)\right)$. For $\tau_{i} \in \mathcal{R}$ this is clearly a factor of F_{σ}. If τ_{i} does not belong to \mathcal{R}, however, we have $\sigma \tau_{i} \in \mathcal{R}$ and $L_{i}-L_{j}$ becomes a factor of $\sigma\left(F_{\sigma}\right)$ which was shown to coincide with F_{σ}.
3. Indices in K_{3}. The Galois group G of K_{3} is generated by $\sigma_{1}, \sigma_{2}, \sigma_{3}$. We recall that σ_{i} maps $\sqrt{a_{i}}$ onto $-\sqrt{a_{i}}$ and leaves $\sqrt{a_{j}}$ invariant for $i, j \in$ $\{1,2,3\}$ with $j \neq i$. The eight automorphisms of G are ordered as follows: $\tau_{1}:=\mathrm{id}, \tau_{2}:=\sigma_{1}, \tau_{3}:=\sigma_{2}, \tau_{4}:=\sigma_{1} \sigma_{2}$ and $\tau_{j}:=\tau_{j-4} \sigma_{3}$ for $5 \leq j \leq 8$. Consequently, we put $K_{3}^{(j)}=\tau_{j}\left(K_{3}\right)(1 \leq j \leq 8)$.

We recall that the index form I of K_{3} was introduced in (4) and (5). It will turn out useful to rewrite the linear forms $L_{j}(\mathbf{x})$ involved in the form

$$
\begin{equation*}
L_{j}(\mathbf{x})=\sum_{k=1}^{8} x_{k} \omega_{k}^{(j)}=\left(\omega_{1}^{(j)}, \ldots, \omega_{8}^{(j)}\right) \mathbf{x}=\left(\gamma_{1}^{(j)}, \ldots, \gamma_{8}^{(j)}\right) T \mathbf{x}=: M_{j}(\mathbf{y}) \tag{6}
\end{equation*}
$$

for $\mathbf{y}:=T \mathbf{x}$. We remark that the transfer from \mathbf{x} to \mathbf{y} (and vice versa) is easy since T is an upper triangular matrix. But whereas the coordinates of \mathbf{x} are integers, those of \mathbf{y} are rationals with well-known bounded denominators.

In this section we will often choose the generators $a=a_{1}, b=a_{2}, c=a_{3}$ of K_{3} in a different way which is less suitable for presenting integral bases but more appropriate for studying primes (and their powers) dividing the field index of K_{3}. The latter was defined to be the greatest common divisor of the module indices $\left(o_{3}: \mathbb{Z}[\rho]\right)$ for arbitrary $\rho \in o_{3}$ satisfying $K_{3}=\mathbb{Q}(\rho)$. (We recall that o_{3} denotes the maximal order of K_{3}.) It is a well known result of Żyliński [15] (see also [4, 8, for example) that any prime dividing the field index must be smaller than the degree of that field. Hence, for K_{3} we just need to discuss the primes $2,3,5,7$.
p odd. For a fixed odd prime p we shall consider the index form as a product of differences of $M_{j}(\mathbf{y})$ (see (5) and (6)). In order to transfer the results back to the $L_{j}(\mathbf{x})$, the entries of the transformation matrix T of (3) must be coprime to p. This can be achieved in the following way. From the beginning of the previous section we know that the generating elements a, b, c can be chosen so that at most one of them is divisible by p. That
choice obviously guarantees that the numerators and denominators of nonzero entries of T are not divisible by p. We emphasize that the determinant of T is not divisible by p, i.e. p does not divide the index of $\mathbb{Z}[\sqrt{a}, \sqrt{b}, \sqrt{c}]$ in o_{K}.

According to our considerations at the beginning of the previous section, we can choose a, b, c such that

- a, b, c are quadratic residues modulo p (CASE (i));
- a, b are quadratic residues modulo p, but c is not (including the case $p \mid c$) (CASE (ii));
- a is a quadratic residue modulo $p, b \not \equiv x^{2} \bmod p$, and $p \mid c($ CASE (iii)).

As outlined above, this choice guarantees that a fixed odd prime number p neither divides the numerators nor the denominators of the non-zero entries of T.

We briefly describe our strategy for the different cases. The index form $I=I(\mathbf{y})$ of K satisfies

$$
\begin{equation*}
\sqrt{d_{K}} I\left(y_{1}, \ldots, y_{n}\right)=\prod_{1 \leq \nu<\mu \leq n}\left(M_{\mu}(\mathbf{y})-M_{\nu}(\mathbf{y})\right) . \tag{7}
\end{equation*}
$$

If a, b, c are all squares modulo p then each linear form $M_{j}(\mathbf{y})$ can be mapped into \mathbb{F}_{p}^{8} by reducing coefficients modulo p and choosing $y_{j} \in \mathbb{F}_{p}(1 \leq j \leq 8)$. If c, say, is a quadratic non-residue modulo p we need to combine suitable factors of the right-hand side of (7) in order to remove all terms of I in which \sqrt{c} occurs before we can carry out reduction modulo p. This can be easily achieved by the action of the Galois group. Since

$$
\left(M_{1}(\mathbf{y}), \ldots, M_{8}(\mathbf{y})\right)^{\operatorname{tr}}=\left(\tau_{i}\left(\gamma_{j}\right)\right)_{1 \leq i, j \leq 8}\left(y_{1}, \ldots, y_{8}\right)^{\operatorname{tr}}
$$

the matrix $\Gamma=\left(\tau_{i}\left(\gamma_{j}\right)\right)$ is invertible modulo p if p does not divide its determinant. The latter differs from the square root of the discriminant of K_{3} by a factor $\operatorname{det}(T)$. Hence, if p^{2} does not divide $a b c$ the matrix T is invertible modulo p and for each tuple $\mathbf{m}=\left(m_{1}, \ldots, m_{8}\right)^{\operatorname{tr}} \in \mathbb{F}_{p}^{8}$ we get unique corresponding values $M_{j}(\mathbf{m})$ and also $L_{j}(\mathbf{x})$. Choosing the \mathbf{m} appropriately we can deduce divisibility conditions for I by powers of p.

CASE (i): a, b, c are quadratic residues modulo p. For $p=7$ we choose $m_{1} \equiv m_{2} \bmod p$ with $m_{1} \not \equiv m_{2} \bmod p^{2}$ and $m_{i} \not \equiv m_{j} \bmod p(2 \leq i<j \leq 8)$, for example. (At least two values m_{i} must belong to the same residue class modulo 7.) This immediately implies that the field index is divisible by 7. Choosing $m_{1} \not \equiv m_{2} \bmod 49$ we see that the field index is exactly divisible by 7 .

Now let $p=5$. Then we distribute the eight values $L_{i}(\mathbf{x})$ into five residue classes modulo 5. First we assume that each residue class contains at most
two values. Reordering the linear forms if necessary we get

$$
L_{1}(\mathbf{x}) \equiv L_{2}(\mathbf{x}) \bmod 5, \quad L_{3}(\mathbf{x}) \equiv L_{4}(\mathbf{x}) \bmod 5, \quad L_{5}(\mathbf{x}) \equiv L_{6}(\mathbf{x}) \bmod 5
$$ implying that the field index is divisible by 5^{3}. (We can choose the $L_{i}(\mathbf{x})$ so that they are pairwise incongruent modulo 5 for $i \in\{1,3,5,7,8\}$ and the differences $L_{i}(\mathbf{x})-L_{i+1}(\mathbf{x})$ are not divisible by 25 for $i \in\{1,3,5\}$.) If there is a residue class containing three values $L_{i}(\mathbf{x})$, however, it is straightforward that the field index is divisible by 5^{3}, too. As we remarked for $p=7$ already, this also shows that the field index is exactly divisible by 5^{3}.

Finally, we consider $p=3$. If each residue class modulo 3 contains at most three values $L_{i}(\mathbf{x})$, a suitable ordering yields

$$
\begin{aligned}
& L_{1}(\mathbf{x}) \equiv L_{2}(\mathbf{x}) \equiv L_{3}(\mathbf{x}) \bmod 3 \\
& L_{4}(\mathbf{x}) \equiv L_{5}(\mathbf{x}) \equiv L_{6}(\mathbf{x}) \bmod 3 \\
& L_{7}(\mathbf{x}) \equiv L_{8}(\mathbf{x}) \bmod 3
\end{aligned}
$$

with L_{1}, L_{4}, L_{7} pairwise incongruent modulo 3 . For this choice we clearly obtain the divisibility of the field index by 3^{7}. We can choose the values so that the differences $L_{i}(\mathbf{x})-L_{j}(\mathbf{x})$ are not divisible by 9 for the indices $1 \leq i<j \leq 3,1 \leq i<j \leq 6$, and $(i, j)=(7,8)$. It is easily seen that this divisibility is also satisfied if there exist residue classes containing four or more values. As before, we conclude that the field index is exactly divisible by 3^{7}.

CASE (ii): a, b are quadratic residues modulo p.
Subcase (ii)(a): c is a quadratic non-residue modulo p. We order the linear factors of I in a suitable way. We have

$$
M_{j}=M_{1 j}+\sqrt{c} M_{2 j} \quad(1 \leq j \leq 4)
$$

with

$$
M_{1 j}=\sum_{i=1}^{4} y_{i} \gamma_{i}^{(j)} \quad \text { and } \quad M_{2 j}=\sum_{i=1}^{4} y_{i+4} \gamma_{i}^{(j)}
$$

implying

$$
M_{4+j}=M_{1 j}-\sqrt{c} M_{2 j} \quad(1 \leq j \leq 4)
$$

We remark that $M_{1 j}(1 \leq j \leq 4)$ depends only on y_{1}, \ldots, y_{4}, whereas $M_{2 j}$ $(1 \leq j \leq 4)$ depends only on y_{5}, \ldots, y_{8}. We combine suitable factors of the index form $I=I(\mathbf{y})$, namely,

$$
\begin{aligned}
&\left(M_{i}-M_{j}\right)\left(M_{i+4}-M_{j+4}\right)=\left(M_{1 i}-M_{1 j}\right)^{2}-c\left(M_{2 i}-M_{2 j}\right)^{2} \\
& \text { for } 1 \leq i<j \leq 4 \\
&\left(M_{i}-M_{j+4}\right)\left(M_{i+4}-M_{j}\right)=\left(M_{1 i}-M_{1 j}\right)^{2}-c\left(M_{2 i}+M_{2 j}\right)^{2} \\
& \text { for } 1 \leq i \leq 4, j+4 \geq 5, i \neq j, \\
& M_{i}-M_{i+4}=2 \sqrt{c} M_{2 i} \text { for } 1 \leq i \leq 4 .
\end{aligned}
$$

For abbreviation we set

$$
\tilde{M}_{i j}=\left(\left(M_{1 i}-M_{1 j}\right)^{2}-c\left(M_{2 i}-M_{2 j}\right)^{2}\right)\left(\left(M_{1 i}-M_{1 j}\right)^{2}-c\left(M_{2 i}+M_{2 j}\right)^{2}\right)
$$

for $1 \leq i<j \leq 4$ and obtain

$$
\begin{equation*}
\sqrt{d_{K_{3}}} I(\mathbf{y})=2^{4} c^{2} \prod_{i=1}^{4} M_{2 i} \prod_{1 \leq i<j \leq 4} \tilde{M}_{i j} \tag{8}
\end{equation*}
$$

The determinants of the coefficient matrices of M_{11}, \ldots, M_{14} and of M_{21}, \ldots, M_{24}, respectively, are not divisible by p, hence they correspond to invertible endomorphisms of \mathbb{F}_{p}^{4}.

For $p \geq 5$ we choose non-zero $m_{2 j} \in \mathbb{F}_{p}(1 \leq j \leq 4)$ pairwise incongruent modulo p. We also choose $m_{1 j} \in \mathbb{F}_{p}(1 \leq j \leq 4)$ pairwise incongruent modulo p. For this choice there exist $y_{1}, \ldots, y_{8} \in \mathbb{F}_{p}$ with

$$
M_{1 j} \equiv m_{1 j} \bmod p \quad \text { and } \quad M_{2 j} \equiv m_{2 j} \bmod p \quad(1 \leq j \leq 4)
$$

Then the product $M_{21} \cdots M_{24}$ is not divisible by p. Now we assume that p divides $\tilde{M}_{i j}$ for some indices $1 \leq i<j \leq 4$. This implies

$$
\left(m_{1 i}-m_{1 j}\right)^{2}-c\left(m_{2 i}-\varepsilon m_{2 j}\right)^{2} \equiv 0 \bmod p
$$

for $\varepsilon \in\{ \pm 1\}$. Since c is a quadratic non-residue in this case, the latter would be possible only for $m_{1 i} \equiv m_{1 j} \bmod p$, which we excluded. We conclude that the field index is divisible neither by 5 nor by 7 .

It remains to consider $p=3$. For $\mathbf{y} \in \mathbb{F}_{p}^{4}$ with $M_{2 j}(\mathbf{y}) \equiv 0 \bmod 3$ the field index is clearly divisible by 3 . If we choose $\mathbf{y}_{i} \in \mathbb{F}_{p}^{4}$ for $i=1,2$ subject to

$$
\begin{aligned}
& \left(M_{11}\left(\mathbf{y}_{1}\right),\left(M_{12}\left(\mathbf{y}_{1}\right),\left(M_{13}\left(\mathbf{y}_{1}\right),\left(M_{14}\left(\mathbf{y}_{1}\right)\right) \equiv(1,1,3,2) \bmod 9\right.\right.\right. \\
& \left(M_{21}\left(\mathbf{y}_{2}\right),\left(M_{22}\left(\mathbf{y}_{2}\right),\left(M_{23}\left(\mathbf{y}_{2}\right),\left(M_{24}\left(\mathbf{y}_{2}\right)\right) \equiv(3,1,2,2) \bmod 9\right.\right.\right.
\end{aligned}
$$

we obtain elements whose index is exactly divisible by 3 . Finally, if none of the $M_{2 j}(\mathbf{y})(1 \leq j \leq 4)$ is divisible by 3 , their values are congruent to 1 or 2 modulo 3 . For any $\mathbf{y} \in \mathbb{F}_{3}^{8}$ there exists a pair (i, j) with $M_{1 i}(\mathbf{y}) \equiv$ $M_{1 j}(\mathbf{y}) \bmod 3$. For these indices we obtain either $M_{2 i} \equiv M_{2 j} \bmod 3$ or $M_{2 i}+$ $M_{2 j} \equiv 0 \bmod 3$. In both cases the index $I(\mathbf{y})$ is divisible by 9 (compare (8)). Hence, we have proven that the field index is exactly divisible by 3.

Subcase (ii)(b): p divides c. For prime numbers $p \geq 5$ the arguments of the previous subcase remain valid. We only need to consider $p=3$. For any $\mathbf{y} \in \mathbb{F}_{p}^{8}$ there exists a pair (i, j) with $M_{1 i}(\mathbf{y}) \equiv M_{1 j}(\mathbf{y}) \bmod 3(1 \leq j \leq 4)$. But then $\tilde{M}_{i j}(\mathbf{y})$ is divisible by 9 . If additionally one of the $M_{2 j}$ is divisible by 3 then the field index is divisible by 3^{3}. If no $M_{2 j}$ is divisible by 3 , they belong to only two residue classes modulo 3 and-as in the previous subcase either $M_{2 i}(\mathbf{y})-M_{2 j}(\mathbf{y})$ or $M_{2 i}(\mathbf{y})+M_{2 j}(\mathbf{y})$ is divisible by 3 for suitable (i, j). Hence, the field index is divisible by 3^{3} in any case. Finally,
if we choose $\mathbf{y} \in \mathbb{F}_{3}^{8}$ subject to

$$
\begin{aligned}
& \left(M_{11}(\mathbf{y}),\left(M_{12}(\mathbf{y}),\left(M_{13}(\mathbf{y}),\left(M_{14}(\mathbf{y})\right) \equiv(1,4,3,2) \bmod 9\right.\right.\right. \\
& \left(M_{21}(\mathbf{y}),\left(M_{22}(\mathbf{y}),\left(M_{23}(\mathbf{y}),\left(M_{24}(\mathbf{y})\right) \equiv(1,2,2,2) \bmod 9\right.\right.\right.
\end{aligned}
$$

an easy calculation shows that the field index is exactly divisible by the third power of 3 .

CASE (iii): a is a quadratic residue modulo p, b is a quadratic non-residue modulo p, and p divides c. With the notation of the previous case we further split the $M_{1 j}, M_{2 j}$ into

$$
\begin{array}{ll}
M_{11}=M_{111}+\sqrt{b} M_{211}, & M_{21}=M_{121}+\sqrt{b} M_{221} \\
M_{12}=M_{112}+\sqrt{b} M_{212}, & M_{22}=M_{122}+\sqrt{b} M_{222} \\
M_{13}=M_{111}-\sqrt{b} M_{211}, & M_{23}=M_{121}-\sqrt{b} M_{221} \\
M_{14}=M_{112}-\sqrt{b} M_{212}, & M_{24}=M_{122}-\sqrt{b} M_{222} .
\end{array}
$$

If we set

$$
\begin{aligned}
M= & 4 b M_{211} M_{212}\left(\left(M_{111}-M_{112}\right)^{2}-b\left(M_{211}-M_{212}\right)^{2}\right) \\
& \times\left(\left(M_{111}-M_{112}\right)^{2}-b\left(M_{211}+M_{212}\right)^{2}\right)
\end{aligned}
$$

for abbreviation, then the index form satisfies

$$
\begin{equation*}
I(\mathbf{y}) \equiv\left(M_{121}^{2}-b M_{221}^{2}\right)\left(M_{122}^{2}-b M_{222}^{2}\right) M^{4} \bmod p \tag{9}
\end{equation*}
$$

Because $p \geq 3$ we can choose $M_{111} \not \equiv M_{112} \bmod p$ so that the last two factors of M are not divisible by p. If additionally p does not divide $M_{211} M_{212} M_{121} M_{112}$ we even obtain $M \not \equiv 0 \bmod p, \quad\left(M_{121}^{2}-b M_{221}^{2}\right) \not \equiv 0 \bmod p, \quad\left(M_{122}^{2}-b M_{222}^{2}\right) \not \equiv 0 \bmod p$.

Putting things together, we have proved the following theorem.
Theorem 3.1. Let p be one of the primes $3,5,7$ and denote by $\alpha(p)$ the ν_{p}-value of the field index of K_{3}.

1. If a, b, c are quadratic residues modulo p, then

$$
\alpha(p)= \begin{cases}7 & \text { if } p=3 \\ 3 & \text { if } p=5 \\ 1 & \text { if } p=7\end{cases}
$$

2. If a, b are quadratic residues modulo p, and c is a quadratic nonresidue modulo p, then

$$
\alpha(p)= \begin{cases}1 & \text { if } p=3 \\ 0 & \text { if } p=5 \\ 0 & \text { if } p=7\end{cases}
$$

3. If a, b are quadratic residues modulo p and $p \mid c$, then

$$
\alpha(p)= \begin{cases}3 & \text { if } p=3 \\ 0 & \text { if } p=5 \\ 0 & \text { if } p=7\end{cases}
$$

4. If a is a quadratic residue modulo p, b is a quadratic-non-residue modulo p, and $p \mid c$, then $\alpha(p)=0$.

This finishes the consideration of the odd part of the field index.
p even. Since 2 is certainly not coprime to the non-zero entries of the transformation matrix T, we must now work with the integral bases $\omega_{1}, \ldots, \omega_{8}$ introduced in the previous section (see Lemma 2.2 and the subsequent example).

This motivates us to distinguish the following main cases:

- b, c are quadratic residues modulo 8 and $a \equiv 1,5 \bmod 8($ CASE (i));
- $a \equiv 3 \bmod 4, b \equiv 1,5 \bmod 8, c \equiv 1 \bmod 8($ CASE $(i i))$;
- $a \equiv 2 \bmod 4(\mathrm{CASE}(\mathrm{iii}))$.

Each of them must still be split into subcases below.
We note that 1 is the only quadratic residue modulo $2,4,8$. Hence, it will be helpful if we can map (parts of) the linear forms considered into $\mathbb{Z} / 8 \mathbb{Z}$. The next lemma is useful in this context.

Let b, c be congruent to 1 modulo 8 . According to Lemma 2.2 the ring of integers o_{E} of the extension $E=\mathbb{Q}(\sqrt{b}, \sqrt{c})$ has an integral basis

$$
\omega_{1}=1, \quad \omega_{2}=\frac{\sqrt{b}+b}{2}, \quad \omega_{3}=\frac{\sqrt{c}+c}{2}, \quad \omega_{4}=\frac{1}{k} \omega_{2} \omega_{3}
$$

where k denotes the greatest common divisor of b and c.
Lemma 3.2. For b, c congruent to 1 modulo 8 there exists a surjective \mathbb{Z}-module homomorphism ψ from o_{E} to $\mathbb{Z} / 8 \mathbb{Z}$. For $L_{1 j}(\mathbf{x}):=\sum_{i=1}^{4} x_{i} \omega_{i}^{(j)}$ and arbitrary $\left(z_{1}, \ldots, z_{4}\right) \in \mathbb{Z} / 8 \mathbb{Z}$ there exist $x_{1}, \ldots, x_{4} \in \mathbb{Z}$ satisfying

$$
\psi\left(L_{1 j}\left(x_{1}, \ldots, x_{4}\right)\right)=z_{j} \quad(1 \leq j \leq 4)
$$

Proof. We consider the system of congruences

$$
u+v \equiv 1 \bmod 8 \quad \text { and } \quad u v \equiv 2 d \bmod 8
$$

for given $d \in \mathbb{Z}$. Clearly, exactly one of u, v must be even; assume that $u \in 2 \mathbb{Z}$. Then necessarily $\nu_{2}(u)=\nu_{2}(2 d)$. An easy calculation shows that there is a unique solution (u, v) for each d. To define a \mathbb{Z}-homomorphism $\psi: o_{E} \rightarrow \mathbb{Z} / 8 \mathbb{Z}$ we just need to prescribe the images of the basis elements.

Considering traces and norms of ω_{2}, ω_{3} we get

$$
\begin{aligned}
& b \equiv 1 \bmod 8, \quad\left(b^{2}-b\right) / 4 \equiv 2 d_{b} \bmod 8 \\
& c \equiv 1 \bmod 8,
\end{aligned} \quad\left(c^{2}-c\right) / 4 \equiv 2 d_{c} \bmod 8 .
$$

Let the solutions of these two systems of congruences be $\left(b_{1}, b_{2}\right)$ and $\left(c_{1}, c_{2}\right)$ with odd integers b_{2}, c_{2}. We set

$$
\begin{array}{ll}
\psi\left(\omega_{2}\right)=\psi\left(\frac{b+\sqrt{b}}{2}\right)=b_{1}, & \psi\left(\frac{b-\sqrt{b}}{2}\right)=b_{2} \\
\psi\left(\omega_{3}\right)=\psi\left(\frac{c+\sqrt{c}}{2}\right)=c_{1}, & \psi\left(\frac{c-\sqrt{c}}{2}\right)=c_{2}
\end{array}
$$

The remaining images are straightforward:

$$
\psi(1)=1, \quad \psi\left(\omega_{4}\right) \equiv b_{1} c_{1} / k \bmod 8
$$

We remark that ψ is surjective (according to its definition) and compatible with the action of the Galois group. The matrix $M_{1}:=\left(\psi\left(\omega_{i}^{(j)}\right)\right)_{1 \leq i, j \leq 4}$ has a non-zero determinant in $\mathbb{Z} / 8 \mathbb{Z}$. Hence, for any $\left(z_{1}, \ldots, z_{4}\right) \in(\mathbb{Z} / 8 \mathbb{Z})^{4}$ there exist $x_{1}, \ldots, x_{4} \in \mathbb{Z}$ such that $\psi\left(L_{1 j}\left(x_{1}, \ldots, x_{4}\right)\right)=z_{j}$ for $1 \leq j \leq 4$.

CASE (i): b, c are quadratic residues modulo 8.
SUBCASE (i)(a): a is a quadratic residue modulo 8. Here the linear forms $L_{j}(\mathbf{x})(1 \leq j \leq 8)$ can be directly mapped onto $(\mathbb{Z} / 8 \mathbb{Z})^{8}$ since the discriminant of K_{3} is not divisible by 2 according to Lemma 2.2 . We choose $j-1$ as the value of the linear form $L_{j}(\mathbf{x})(1 \leq j \leq 8)$. Then it is easily seen that the product on the right-hand side of 7) becomes divisible by 2^{16}. (For example, the differences of $L_{1}(\mathbf{x})$ with the other $L_{j}(\mathbf{x})$ for odd j yield a factor of 2^{1+2+1}.) If we put more than one $L_{j}(\mathbf{x})$ into the same residue class the power of 2 in that product obviously increases.

Subcase (i)(b): $a \equiv 5 \bmod 8$. We take up the ideas of Subcase (ii)(a) for odd p (see (8)) to split the linear forms $L_{j}(\mathbf{x})$ of the index form I as follows. According to Lemma 2.2 we put $\eta_{1}=(a+\sqrt{a}) / 2, \eta_{2}=(b+\sqrt{b}) / 2$, $\eta_{3}=(c+\sqrt{c}) / 2$ to get

$$
\omega_{j}:=\frac{1}{g_{j}} \prod_{i=1}^{r} \eta_{i}^{\alpha_{j i}} \quad(i \leq j \leq 8)
$$

where the $\alpha_{j i}$ were defined in (1) and the g_{j} in (2).
Reordering the conjugates appropriately we can write the linear forms

$$
L_{j}=L_{1 j}+\frac{a+\sqrt{a}}{2} L_{2 j} \quad \text { and } \quad L_{4+j}=L_{1 j}+\frac{a-\sqrt{a}}{2} L_{2 j} \quad(1 \leq j \leq 4)
$$

We note that the $L_{1 j}, L_{2 j}$ are linear forms in $1, \eta_{2}, \eta_{3}, \eta_{2} \eta_{3}$ and their conjugates, with the coefficients being fractions with odd denominators. Also, the $L_{1 j}(1 \leq j \leq 4)$ only depend on x_{1}, \ldots, x_{4}, whereas the $L_{2 j}(1 \leq j \leq 4)$ only
depend on x_{5}, \ldots, x_{8}. Combining suitable factors of the index form $I=I(\mathbf{x})$ we obtain

$$
\begin{equation*}
\sqrt{d_{K_{3}}} I(\mathbf{x})=a^{2} \prod_{i=1}^{4} L_{2 i} \prod_{1 \leq i<j \leq 4}\left(\tilde{L}_{i j 1} \tilde{L}_{i j 2}\right) \tag{10}
\end{equation*}
$$

with

$$
\begin{aligned}
& \tilde{L}_{i j 1}=\left(\left(L_{1 i}-L_{1 j}\right)+\frac{1}{2}\left(L_{2 i}-L_{2 j}\right)\right)^{2}-\frac{a}{4}\left(L_{2 i}-L_{2 j}\right)^{2} \\
& \tilde{L}_{i j 2}=\left(\left(L_{1 i}-L_{1 j}\right)+\frac{1}{2}\left(L_{2 i}-L_{2 j}\right)\right)^{2}-\frac{a}{4}\left(L_{2 i}+L_{2 j}\right)^{2}
\end{aligned}
$$

A simple calculation yields

$$
\tilde{L}_{i j 2}-\tilde{L}_{i j 1}=\frac{a}{4}\left(\left(L_{2 i}-L_{2 j}\right)^{2}-\left(L_{2 i}+L_{2 j}\right)^{2}\right)=-a L_{2 i} L_{2 j}
$$

Hence, $\tilde{L}_{i j 1}$ and $\tilde{L}_{i j 2}$ have different parity if and only if $L_{2 i}$ and $L_{2 j}$ are both odd.

Now we substitute $a=8 \alpha+5$ into $\tilde{L}_{i j 1}$ to get

$$
\begin{aligned}
\tilde{L}_{i j 1} & =\left(L_{1 i}-L_{1 j}\right)^{2}+\left(L_{1 i}-L_{1 j}\right)\left(L_{2 i}-L_{2 j}\right)-\frac{a-1}{4}\left(L_{2 i}-L_{2 j}\right)^{2} \\
& =\left(L_{1 i}-L_{1 j}\right)^{2}+\left(L_{1 i}-L_{1 j}\right)\left(L_{2 i}-L_{2 j}\right)-(2 \alpha+1)\left(L_{2 i}-L_{2 j}\right)^{2}
\end{aligned}
$$

We observe that $\tilde{L}_{i j 1}(\mathbf{x})$ is even exactly if

$$
L_{1 i}(\mathbf{x}) \equiv L_{1 j}(\mathbf{x}) \bmod 2 \quad \text { and } \quad L_{2 i}(\mathbf{x}) \equiv L_{2 j}(\mathbf{x}) \bmod 2
$$

and in this case $\tilde{L}_{i j 1}(\mathbf{x})$ is at least divisible by 4.
Now we apply the map ψ of Lemma 3.2 to the linear forms $L_{1 j}, L_{2 j}$. We can choose $\mathbf{x} \in \mathbb{Z}^{8}$ such that

$$
\begin{aligned}
\left(L_{21}(\mathbf{x}), \ldots, L_{24}(\mathbf{x})\right) & \equiv(2,1,5,6) \bmod 8 \\
\left(L_{11}(\mathbf{x}), \ldots, L_{14}(\mathbf{x})\right) & \equiv(1,2,3,6) \bmod 8
\end{aligned}
$$

Then $\prod_{i=1}^{4} L_{2 i}(\mathbf{x})$ is exactly divisible by 4 . Also, according to the discussion above, $\tilde{L}_{i j 1}$ is odd for $(i, j) \neq(2,3)$. For $(i, j)=(2,3)$ the values $\tilde{L}_{i j 1}$ and $\tilde{L}_{i j 2}$ have different parities. While \tilde{L}_{231} is still odd we obtain

$$
\begin{aligned}
\tilde{L}_{232} \equiv & \left(L_{12}-L_{13}\right)^{2}+\left(L_{12}-L_{13}\right)\left(L_{22}-L_{23}\right) \\
& \quad-(2 \alpha+1)\left(L_{22}-L_{23}\right)^{2}-(8 \alpha+5) L_{22} L_{33} \bmod 8 \\
\equiv & 1+4-(2 \alpha+1) 4^{2}-5^{2} \bmod 8 \\
\equiv & -20 \bmod 8
\end{aligned}
$$

Hence, \tilde{L}_{232} is exactly divisible by 4 , and $I(\mathbf{x})$ is exactly divisible by 2^{4}.
It remains to show that $I(\mathbf{x})$ is at least divisible by 2^{4} in all other cases. If all $L_{2 i}$-values are odd then there are at least two pairs (i, j) for which
$L_{1 i}$ and $L_{1 j}$ have the same parity. This implies $16 \mid I(\mathbf{x})$. If exactly one value $L_{2 i}$ is even we can assume that this is L_{21}. Among the pairs (i, j) for $2 \leq i<j \leq 4$ there is at least one for which $L_{1 i}$ and $L_{1 j}$ have the same parity. (If two such pairs exist we necessarily have $2^{5} \mid I(\mathbf{x})$.) Again, we can assume that $L_{12}(\mathbf{x}) \equiv L_{13}(\mathbf{x}) \bmod 2$. Then $\tilde{L}_{231}(\mathbf{x})$ is divisible at least by 4 . Now, $L_{22}, L_{24}, \tilde{L}_{241}$ are all odd and the parity of \tilde{L}_{241} is different from that of \tilde{L}_{242}. Since \tilde{L}_{242} is even we see that 2^{4} divides $I(\mathbf{x})$. If more than two values $L_{2 i}$ are even it is obvious that 2^{4} divides $I(\mathbf{x})$.

CASE (ii): a is a quadratic non-residue modulo 4 . We observe that the elements $\omega_{2}, \omega_{4}, \omega_{6}, \omega_{8}$ of the integral basis are of the form $\omega_{2 j}=\sqrt{a} \tilde{\omega}_{2 j}$ $(1 \leq j \leq 4)$, where the $\tilde{\omega}_{2 j}$ are not necessarily integral. Any occurring denominators are odd, however. We reorder the L_{j} into $L_{1}, L_{3}, L_{5}, L_{7}, L_{2}$, L_{4}, L_{6}, L_{8}. Thus we get

$$
L_{j}(\mathbf{x})=L_{1 j}+\sqrt{a} L_{2 j} \quad(1 \leq j \leq 4)
$$

with

$$
L_{1 j}=\sum_{i=1}^{4} x_{i} \omega_{i}^{(j)} \quad \text { and } \quad L_{2 j}=\sum_{i=1}^{4} x_{i+4} \tilde{\omega}_{i}^{(j)}
$$

implying

$$
L_{4+j}=L_{1 j}-\sqrt{a} L_{2 j} \quad(1 \leq j \leq 4)
$$

We remark that $L_{1 j}(1 \leq j \leq 4)$ depends only on x_{1}, \ldots, x_{4}, whereas $L_{2 j}$ $(1 \leq j \leq 4)$ depends only on x_{5}, \ldots, x_{8}. We combine suitable factors of the index form $I=I(\mathbf{x})$. For abbreviation we set

$$
\tilde{L}_{i j}=\left(\left(L_{1 i}-L_{1 j}\right)^{2}-a\left(L_{2 i}-L_{2 j}\right)^{2}\right)\left(\left(L_{1 i}-L_{1 j}\right)^{2}-a\left(L_{2 i}+L_{2 j}\right)^{2}\right)
$$

for $1 \leq i<j \leq 4$ to obtain

$$
\begin{equation*}
\sqrt{d_{K_{3}}} I(\mathbf{x})=2^{4} a^{2} \prod_{i=1}^{4} L_{2 i} \prod_{1 \leq i<j \leq 4} \tilde{L}_{i j} \tag{11}
\end{equation*}
$$

SUBCASE (ii)(a): b, c are quadratic residues modulo 8. The determinants of the coefficient matrices of L_{11}, \ldots, L_{14} and of L_{21}, \ldots, L_{24}, respectively, are not divisible by 2 , hence these matrices correspond to invertible endomorphisms from \mathbb{Z}^{4} onto $(\mathbb{Z} / 8 \mathbb{Z})^{4}$ (cf. Lemma 3.2).

If we choose

$$
\begin{aligned}
\left(L_{21}(\mathbf{x}), \ldots, L_{24}(\mathbf{x})\right) & \equiv(2,1,3,6) \bmod 8 \\
\left(L_{11}(\mathbf{x}), \ldots, L_{14}(\mathbf{x})\right) & \equiv(1,2,3,6) \bmod 8
\end{aligned}
$$

the products on the right-hand side of (11) contain a factor of 2^{10}. We note that even values of $\tilde{L}_{i j}$ are necessarily divisible by 2^{4}. Hence, for any other choice of the $L_{i j}(\mathbf{x})(i=1,2,1 \leq j \leq 4)$ the products on the right-hand side of (11) are at least divisible by 2^{10}.

We conclude that the field index is exactly divisible by 2^{6}. This is because we have an additional factor of 2^{4} in the square root of the discriminant of K_{3}.

SUBCASE (ii)(b): c is a quadratic residue modulo 8 and $b \equiv 5 \bmod 8$. In this case the terms of $\tilde{L}_{i j}$ can be viewed as elements in $F:=\mathbb{Q}(\sqrt{b})$, more precisely we study them in $o_{F} / 2 o_{F}$, where o_{F} denotes the maximal order of F. Since $b \equiv 5 \bmod 8$, the prime 2 stays inert in F. The factor ring (finite field) $o_{F} / 2 o_{F}$ consists of four residue classes represented by $2,1, \zeta:=$ $(1+\sqrt{b}) / 2, \zeta^{2}$. If we distribute the values $L_{1 j}(\mathbf{x})$ into all four residue classes in the given order then only the difference $L_{13}-L_{14}$ is divisible by 2 . If we also choose all $L_{2 j}$ odd so that their differences are at least divisible by 2 then exactly one $\tilde{L}_{i j}$ becomes divisible by exactly 4 and the others stay odd. Hence, the products on the right-hand side of (11) are exactly divisible by 2^{2}. All other choices of the $L_{i j}$-values lead at least to that divisibility condition.

CASE (iii): a is exactly divisible by 2. Again, the index form can be written as in 11.

SUBCASE (iii)(a): b, c are quadratic residues modulo 8. If we choose

$$
\begin{aligned}
\left(L_{21}(\mathbf{x}), \ldots, L_{24}(\mathbf{x})\right) & \equiv(1,5,2,6) \bmod 8 \\
\left(L_{11}(\mathbf{x}), \ldots, L_{14}(\mathbf{x})\right) & \equiv(1,2,3,4) \bmod 8
\end{aligned}
$$

the products on the right-hand side of 11 are exactly divisible by 2^{10}. Any other choice of the $L_{i j}(\mathbf{x})(i=1,2,1 \leq j \leq 4)$ yields divisibility by at least 2^{10}. Since an additional factor 2^{4} is contained in the square root of the discriminant in this case, the even part of the field index is 2^{6}.

SUBCASE (iii)(b): c is a quadratic residue modulo 8 and $b \equiv 5 \bmod 8$. We take up our considerations of Subcase (ii)(b). There are only two new aspects: the square root of the discriminant of K_{3} gets an additional factor 2^{2} and the generating element a is now exactly divisible by 2 . Then the same analysis as in the previous case shows that the field index is always divisible by 2^{2}, and there are elements in K_{3} for which this index is not divisible by 2^{3}, for example $\omega_{4}+\omega_{7}$.

SUBCASE (iii)(c): c is a quadratic residue modulo 4 and b is a quadratic non-residue modulo 4. As we know from the introduction, the field $\mathbb{Q}\left(\zeta_{24}\right)$ has a power integral basis. Hence, we need to show that the field index is odd and therefore 1.

We conclude as in Subcases (ii)(b) and (iii)(b). But we need to point out that the second and fourth summands of $L_{2 j}$ are not necessarily algebraic integers anymore, only their product with \sqrt{a} is.

We show that the element $\eta:=\omega_{4}+\omega_{5}$ (notation as in the example in the previous section) has index not divisible by 2 . We have $L_{11}=(1+\sqrt{c}) / 2$ and $L_{21}=(\sqrt{b} / g+1) / 2$. Accordingly, the differences $L_{1 i j}:=L_{1 i}-L_{1 j}$ become 0 for $(i, j)=(1,2),(3,4)$ and \sqrt{c} in the remaining four cases. We also calculate $L_{2 i j}:=L_{2 i}-L_{2 j}$. The values are 0 for $(i, j)=(1,3),(2,4)$ and \sqrt{b} / g otherwise. From this we obtain, for the factors on the right-hand side of (11),

$$
2^{4} a^{2} \prod_{i=1}^{4} L_{2 i}=2^{4} a^{2}\left(1-\frac{b}{g^{2}}\right)^{2} \frac{1}{16},
$$

which is exactly divisible by 2^{4}, and

$$
\tilde{L}_{i j} \begin{cases}\text { odd } & \text { for }(i, j) \in\{(1,3),(1,4),(2,3),(2,4)\} \\ \text { exactly divisible by } 4 & \text { for }(i, j) \in\{(1,2),(3,4)\}\end{cases}
$$

Since the square root of the discriminant of K_{3} is exactly divisible by 2^{8}, the index of η is odd.

Putting these results together we obtain:
Theorem 3.3. The 2-part of the field index of K_{3} is

- 2^{16} for $(a, b, c) \equiv(1,1,1) \bmod 8$;
- 2^{4} for $a \equiv 5 \bmod 8$ and $(b, c) \equiv(1,1) \bmod 8$;
- 2^{6} for $a \equiv 3 \bmod 4$ and $(b, c) \equiv(1,1) \bmod 8$;
- 2^{2} for $a \equiv 3 \bmod 4$ and $(b, c) \equiv(5,1) \bmod 8$;
- 2^{6} for $a \equiv 2 \bmod 4$ and $(b, c) \equiv(1,1) \bmod 8$;
- 2^{2} for $a \equiv 2 \bmod 4$ and $(b, c) \equiv(5,1) \bmod 8$;
- 2^{0} for $a \equiv 2 \bmod 4$ and $(b, c) \equiv(3,1) \bmod 4$.

REmark. We note that our results include those of [10] without any restrictions on the generating elements a, b, c.
4. Field indices of K_{r} for higher r. Let r be a positive integer and a_{1}, \ldots, a_{r} be integers such that the field $K:=K_{r}=\mathbb{Q}\left(\sqrt{a_{1}}, \ldots, \sqrt{a_{r}}\right)$ has degree 2^{r}. Let o_{K} denote the maximal order of K as before. The aim of this section is to prove the following theorem.

Theorem 4.1. Let p be a prime number and n be a positive integer. Then there exists $N_{0}=N_{0}(p, n)$ such that $N \geq N_{0}$ implies that the field index of K_{N} is divisible by p^{n}.

Proof. Case of p odd. Let p be an odd prime. We denote by $(\dot{\bar{p}})$ the Legendre symbol. As we showed in Section 3, Subsection " p odd", we need to discuss three cases for K_{r} :

1. $\left(\frac{a_{i}}{p}\right)=1$ for all $i=1, \ldots, r$;
2. $\left(\frac{a_{1}}{p}\right)=-1$ or p divides a_{1} and $\left(\frac{a_{i}}{p}\right)=1$ for all $i=2, \ldots, r$;
3. a_{1} is divisible by $p,\left(\frac{a_{2}}{p}\right)=-1$ and $\left(\frac{a_{i}}{p}\right)=1$ for all $i=3, \ldots, r$.

In case $\left(\frac{a_{i}}{p}\right)=1(1 \leq i \leq r)$ we fix $b_{i} \in \mathbb{F}_{p}$ such that $b_{i}^{2}=a_{i}$. Then we define $\psi\left(\varepsilon \sqrt{a_{i}}\right)=\varepsilon b_{i}$ for all allowed indices, where $\varepsilon= \pm 1$. One can extend ψ in a straightforward way to a homomorphism $\psi: o_{K} \rightarrow \mathbb{F}_{p}$. See the discussion about the correspondence between the linear forms $L_{i}(\mathbf{x})$ and $M_{j}(\mathbf{y})$ in Section 3.

CASE 1. We choose r so large that $2^{r}>p^{n+1}$. Let $\mathbf{y} \in \mathbb{Z}^{2^{r}}$. Because $\psi\left(M_{j}(\mathbf{y})\right) \in \mathbb{F}_{p}$ for all $j=1, \ldots, 2^{r}$, there exists $u \in \mathbb{F}_{p}$ which appears as the value of at least $2^{r} / p>p^{n}$ linear forms. Let $J=\left\{j \mid \psi\left(M_{j}(\mathbf{y})\right)=u\right\}$. Then $M_{j_{1}}(\mathbf{y})-M_{j_{2}}(\mathbf{y})$ is divisible by p for all $j_{1}, j_{2} \in J$, with $j_{1}<j_{2}$. The number of such pairs of indices is $|J|(|J|-1) / 2>|J|>p^{n}$. Thus p^{n} divides $I_{K_{r}}(M(\mathbf{y}))$ for all $\mathbf{y} \in \mathbb{Z}^{2^{r}}$, i.e. p^{n} divides the index of all integral elements of K_{r}.

Case 2. Now we write

$$
\begin{aligned}
M_{j}(\mathbf{y}) & =M_{1 j}(\mathbf{y})+\sqrt{a_{1}} M_{2 j}(\mathbf{y}) & & \left(j=1, \ldots, 2^{r-1}\right), \\
M_{j+2^{r-1}}(\mathbf{y}) & =M_{1 j}(\mathbf{y})-\sqrt{a_{1}} M_{2 j}(\mathbf{y}) & & \left(j=1, \ldots, 2^{r-1}\right) .
\end{aligned}
$$

We put

$$
\begin{equation*}
\tilde{M}_{i j}=\left(\left(M_{1 i}-M_{1 j}\right)^{2}-a_{1}\left(M_{2 i}-M_{2 j}\right)^{2}\right)\left(\left(M_{1 i}-M_{1 j}\right)^{2}-a_{1}\left(M_{2 i}+M_{2 j}\right)^{2}\right) \tag{12}
\end{equation*}
$$

for $1 \leq i<j \leq 2^{r-1}$. Then we get as before

$$
\sqrt{D_{K_{r}}} I_{K_{r}}(\mathbf{y})=\left(2 a_{1}\right)^{2^{r-1}} \prod_{j=1}^{2^{r-1}} M_{2 j} \prod_{1 \leq i<j \leq 2^{r-1}} \tilde{M}_{i j}
$$

We choose r so large that $2^{r-1}>p^{n+2}$. Because $\psi\left(M_{1 j}(\mathbf{y})\right) \in \mathbb{F}_{p}$ for all $j=1, \ldots, 2^{r-1}$, there exists $u \in \mathbb{F}_{p}$ which appears as the value of at least $2^{r-1} / p$ linear forms. Let $J_{1}=\left\{j \mid \psi\left(M_{1 j}(\mathbf{y})\right)=u\right\}$. As $\psi\left(M_{2 j}(\mathbf{y})\right) \in \mathbb{F}_{p}$ for all $j \in J_{1}$ (actually for all $j=1, \ldots, 2^{r-1}$) there exists $v \in \mathbb{F}_{p}$ which appears as the value of at least $\left|J_{1}\right| / p \geq 2^{r-1} / p^{2}$ linear forms. Let $J_{2}=\{j \mid$ $\left.\psi\left(M_{2 j}(\mathbf{y})\right)=v\right\}$. Then $\psi\left(M_{1 i}-M_{1 j}\right)=\psi\left(M_{2 i}-M_{2 j}\right)=0$ for all $i, j \in J_{2}$, $i<j$. This means that the exponent of p in $I_{K_{r}}(\mathbf{y})$ is at least

$$
2\left|J_{2}\right|\left(\left|J_{2}\right|-1\right) / 2>2^{r-1} / p^{2}>p^{n}
$$

Case 3. Now we have to split the linear forms $M_{1 j}, M_{2 j}$ further. We write

$$
\begin{array}{rlr}
M_{1 j}(\mathbf{y}) & =M_{11 j}(\mathbf{y})+\sqrt{a_{2}} M_{12 j}(\mathbf{y}) & \left(j=1, \ldots, 2^{r-2}\right), \\
M_{2 j}(\mathbf{y}) & =M_{21 j}(\mathbf{y})+\sqrt{a_{2}} M_{22 j}(\mathbf{y}) & \left(j=1, \ldots, 2^{r-2}\right), \\
M_{1, j+2^{r-2}}(\mathbf{y}) & =M_{11 j}(\mathbf{y})-\sqrt{a_{2}} M_{12 j}(\mathbf{y}) & \left(j=1, \ldots, 2^{r-2}\right), \\
M_{2, j+2^{r-2}}(\mathbf{y}) & =M_{21 j}(\mathbf{y})-\sqrt{a_{2}} M_{22 j}(\mathbf{y}) & \left(j=1, \ldots, 2^{r-2}\right) .
\end{array}
$$

Then we obtain

$$
\begin{aligned}
\tilde{M}_{i j} \tilde{M}_{i, j+2^{r-2}}= & \left(\left(\left(M_{11 i}-M_{11 j}\right)-\sqrt{a_{2}}\left(M_{21 i}-M_{21 j}\right)\right)^{4}-a_{1} A_{1}\right) \\
& \times\left(\left(\left(M_{11 i}-M_{11 j}\right)+\sqrt{a_{2}}\left(M_{21 i}-M_{21 j}\right)\right)^{4}-a_{1} A_{2}\right) \\
= & \left(\left(M_{11 i}-M_{11 j}\right)^{2}-a_{2}\left(M_{21 i}-M_{21 j}\right)^{2}\right)^{4}-a_{1} A_{3},
\end{aligned}
$$

with integers A_{1}, A_{2}, A_{3} of K_{r}.
Now we repeat the argument of the previous cases. Firstly, there is a $J_{1} \subseteq\left\{1, \ldots, 2^{r-2}\right\}$ such that $\left|J_{1}\right| \geq 2^{r-2} / p$ and the values $\psi\left(M_{11 i}\right)(\mathbf{y})$ are the same for all $i \in J_{1}$. Then there exists $J_{2} \subseteq J_{1}$ such that $\left|J_{2}\right| \geq\left|J_{1}\right| / p$ and the values $\psi\left(M_{21 i}\right)(\mathbf{y})$ are the same for all $i \in J_{2}$. Consequently, $\tilde{M}_{i j} \tilde{M}_{i, j+2^{r-2}}$ is divisible by p. Thus the exponent of p in $I_{K_{r}}(\mathbf{y})$ is at least

$$
2\left|J_{2}\right|\left(\left|J_{2}\right|-1\right) / 2>2^{r-2} / p^{2}>p^{n} .
$$

Hence, for $2^{r-2}>p^{n+2}$ the field index is divisible by p^{n}.
Case of p even. The case $p=2$ is dealt with similarly. The generalization from $r=3$ to higher exponents r follows an analogous pattern to that for odd p. Since the number of subcases to be considered is 7 (as for $r=3$) the proof requires arguments as in the previous section. We therefore omit the details.

However, we still give an explicit proof in the most interesting case $a_{1} \equiv 2$ $\bmod 4, a_{2} \equiv 3 \bmod 4, a_{i} \equiv 1 \bmod 4(i=3, \ldots, r)$ and $p=2$. We consider it most interesting since the result below also shows that the field index is even for $r>3$. For the proof we will introduce some new ideas particularly for this case. We shall use the linear forms L_{i} from (4) and the integral basis $\omega_{1}, \ldots, \omega_{2^{r}}$ of Lemma 2.2,

Lemma 4.2. Let $r \geq 4$. For $a_{1} \equiv 2 \bmod 4, a_{2} \equiv 3 \bmod 4, a_{3} \equiv 1 \bmod 4$ and $a_{i} \equiv 1 \bmod 8(4 \leq i \leq r)$ the field index of K_{r} is divisible by 2^{r-2}.

We remark that the lemma implies that the field index of K_{r} is even for $r>3$ and tends to infinity for large values of r.

Proof. By Lemma 2.2 the ν_{2}-value of the square root of the discriminant is 2^{r} in this case. Similar to our considerations at the beginning of Section 2 we can further normalize the generators when we consider $p=2$. It is easy to see that we can additionally choose a_{1}, \ldots, a_{r} subject to $a_{i} \equiv 1 \bmod 8$ for $r \geq 4$.

We shall show the result by induction on r.
Although the result of the lemma is not true for $r=3$ we need that case for our induction hypothesis. We recall part of the results from the previous section, but we need a more precise premise for the induction step. We make
use of the basis given in Lemma 2.2, but in a different ordering:

$$
\begin{aligned}
\omega_{1} & =1, & \omega_{2} & =\sqrt{a_{2}}-a_{2} \\
\omega_{3} & =\frac{\sqrt{a_{3}}-a_{3}}{2}, & \omega_{4} & =\frac{1}{2 g_{4}}\left(\sqrt{a_{2}}-a_{2}\right)\left(\sqrt{a_{3}}-a_{3}\right), \\
\omega_{5} & =\sqrt{a_{1}}-a_{1}, & \omega_{6} & =\frac{1}{2}\left(\sqrt{a_{1}}-a_{1}\right)\left(\sqrt{a_{2}}-a_{2}\right), \\
\omega_{7} & =\frac{1}{2 g_{7}}\left(\sqrt{a_{1}}-a_{1}\right)\left(\sqrt{a_{3}}-a_{3}\right), & \omega_{8} & =\frac{1}{4 g_{8}} \prod_{i=1}^{3}\left(\sqrt{a_{i}}-a_{i}\right)
\end{aligned}
$$

We note that the elements g_{i} are odd natural numbers. The conjugates are chosen in the order

$$
\mathrm{id}, \sigma_{2}, \sigma_{3}, \sigma_{2} \sigma_{3}, \sigma_{1}, \sigma_{1} \sigma_{2}, \sigma_{1} \sigma_{3}, \sigma_{1} \sigma_{2} \sigma_{3}
$$

We decompose the linear forms $L_{j}(\mathbf{x})$ of (4) into

$$
L_{j}(\mathbf{x})=L_{1 j}+L_{2 j} \quad(1 \leq j \leq 4)
$$

with

$$
L_{1 j}=\sum_{i=1}^{4} x_{i} \omega_{i}^{(j)} \quad \text { and } \quad L_{2 j}=\sum_{i=1}^{4} x_{4+i} \omega_{4+i}^{(j)} .
$$

We note that $L_{2 j}=\tilde{L}_{2 j}\left(\sqrt{a_{1}}-a_{1}\right) / 2$, implying

$$
L_{4+j}=L_{1 j}+\frac{-\sqrt{a_{1}}-a_{1}}{2} \tilde{L}_{2 j} \quad(1 \leq j \leq 4) .
$$

A straightforward calculation shows that for $(i, j)=(1,2),(3,4)$ the differences $L_{1 i}-L_{1 j}$ are multiples of 2 , and those of $L_{2 i}-L_{2 j}$ are multiples of $\sqrt{2}$ by algebraic integers. That property remains valid for all pairs (i, j) in

$$
J_{3}:=\{(1,2),(1,6),(5,2),(5,6),(3,4),(3,8),(7,4),(7,8)\} .
$$

Also, we put

$$
\hat{J}_{3}:=\{(i, 4+i) \mid 1 \leq i \leq 4\}
$$

and observe that the values $L_{j}-L_{4+j}$ for $(j, 4+j) \in \hat{J}_{3}$ are multiples of 2 by algebraic integers. Hence, the index form multiplied by the square root of the discriminant of K_{3} is divisible at least by $2^{4+4}=2^{8}$.

Now we carry out the induction step. We put $\kappa:=2^{r-2}$ and we assume that on level $r-1$ we have an integral basis $\omega_{1}, \ldots, \omega_{2 \kappa}$. These basis elements are ordered in such a way that the index form decomposes into two linear forms, say

$$
\begin{equation*}
L_{j}^{(r-1)}=L_{1 j}^{(r-1)}+L_{2 j}^{(r-1)} \tag{13}
\end{equation*}
$$

such that

$$
\begin{equation*}
L_{1 i}^{(r-1)}-L_{1 j}^{(r-1)} \in 2 \overline{\mathbb{Z}}, L_{2 i}^{(r-1)}-L_{2 j}^{(r-1)} \in \sqrt{2} \overline{\mathbb{Z}} \tag{14}
\end{equation*}
$$

for each of the 2^{r-1} pairs of indices $(i, j) \in J_{r-1}$. According to Lemma 2.2 there exists an integral basis on level r in the form

$$
\begin{aligned}
& \omega_{1}, \ldots, \omega_{2 \kappa} \\
& \omega_{2 \kappa+\mu}=\frac{\sqrt{a_{r}}-a_{r}}{2} \frac{1}{g_{\kappa, \mu}} \omega_{\mu} \quad(1 \leq \mu \leq 2 \kappa)
\end{aligned}
$$

with odd integers $g_{\kappa, \mu}$. (We consider $r \geq 4$, which implies $a_{r} \equiv 1 \bmod 8$.)
On level r the index form $L_{j}^{(r)}$ decomposes as

$$
\begin{equation*}
L_{j}^{(r)}=L_{j}^{(r-1)}+\frac{\sqrt{a_{r}}-a_{r}}{2} \tilde{L}_{j}^{(r-1)} \quad\left(1 \leq j \leq 2^{r}\right) \tag{15}
\end{equation*}
$$

where the coefficients of the basis elements in $L_{j}^{(r-1)}$ and in $\tilde{L}_{j}^{(r-1)}$ just differ by the rational factors $1 / g_{\kappa, \mu}$. The conjugates are ordered so the first 2κ correspond to $\left\langle\sigma_{1}, \ldots, \sigma_{r-1}\right\rangle=G_{r-1}$ and the last 2κ correspond to $\sigma_{r} G_{r-1}$. This means that

$$
\begin{equation*}
L_{2 \kappa+j}^{(r)}=L_{j}^{(r-1)}+\frac{-\sqrt{a_{r}}-a_{r}}{2} \tilde{L}_{j}^{(r-1)} \quad\left(1 \leq j \leq 2^{r-1}\right) \tag{16}
\end{equation*}
$$

Now we let $(i, j) \in J_{r-1}$, i.e. $L_{i}^{(r-1)}-L_{j}^{(r-1)} \in \sqrt{2} \overline{\mathbb{Z}}$. Then also $L_{i}^{(r)}-L_{j}^{(r)}$ and $L_{2 \kappa+i}^{(r)}-L_{2 \kappa+j}^{(r)}$ have this property. Therefore we get 2^{r} pairs of indices for which the corresponding differences of linear forms are divisible by $\sqrt{2}$.

By induction hypothesis, on level $r-1$ we have the 2^{r-2} differences $L_{i}^{(r-1)}-L_{j}^{(r-1)}\left((i, j) \in \hat{J}_{r-1}\right)$ which are multiples of 2 . On level r we therefore obtain twice as many such differences, namely $L_{i}^{(r)}-L_{j}^{(r)}$ and $L_{2 \kappa+i}^{(r)}-L_{2 \kappa+j}^{(r)}$.

It is now straightforward how to update the information from level $r-1$ to level r. We have explicitly constructed J_{r} from J_{r-1} containing twice as many, i.e. 2^{r}, pairs (i, j) for which (13) and (14) are satisfied on level r. Each of the corresponding differences of linear forms is divisible by $\sqrt{2}$. Also from the pairs $(i, j) \in \hat{J}_{r-1}$ on level $r-1$ we have obtained twice as many, i.e. 2^{r-1}, pairs (i, j) and $(2 \kappa+i, 2 \kappa+j)$ forming \hat{J}_{r} for which the corresponding differences of linear forms are divisible by 2 . We still remark that $J_{r-1} \cap \hat{J}_{r-1}=\emptyset$ implies $J_{r} \cap \hat{J}_{r}=\emptyset$.

Hence, the ν_{2}-value of the product of all these differences is $2^{r-1}+2^{r-1}=$ 2^{r} which equals the ν_{2}-value of the square root of the discriminant of K_{r}. To prove the lemma we still need to exhibit additional factors of 2 in the product of differences of linear forms. They come from the fact that $a_{r} \equiv 1 \bmod 8$, i.e. the norm of $\left(\sqrt{a_{r}}-a_{r}\right) / 2$ is even.

We consider the products $P_{i j}:=\left(L_{i}^{(r)}-L_{j}^{(r)}\right)\left(L_{2 \kappa+i}^{(r)}-L_{2 \kappa+j}^{(r)}\right)$ for (i, j) $\in J_{r-1}$. We already know that $P_{i j}$ is an integral multiple of 2 . We shall prove that it is even an integral multiple of $2 \sqrt{2}$. Obviously, we have 2^{r-1}
factors $P_{i j}$. By 13 -16) we conclude that

$$
\begin{aligned}
P_{i j}= & 2 \sqrt{2} \lambda_{1}+\left(L_{2 i}^{(r-1)}-L_{2 j}^{(r-1)}\right)^{2} \\
& +\frac{-\sqrt{a_{r}}-a_{r}}{2}\left(L_{2 i}^{(r-1)}-L_{2 j}^{(r-1)}\right)\left(\tilde{L}_{2 i}^{(r-1)}-\tilde{L}_{2 j}^{(r-1)}\right) \\
& +\frac{\sqrt{a_{r}}-a_{r}}{2}\left(L_{2 i}^{(r-1)}-L_{2 j}^{(r-1)}\right)\left(\tilde{L}_{2 i}^{(r-1)}-\tilde{L}_{2 j}^{(r-1)}\right) \\
& +\frac{a_{r}^{2}-a_{r}}{2}\left(\tilde{L}_{2 i}^{(r-1)}-\tilde{L}_{2 j}^{(r-1)}\right)^{2},
\end{aligned}
$$

hence

$$
\begin{equation*}
P_{i j}=2 \sqrt{2} \lambda_{2}+\left(L_{2 i}^{(r-1)}-L_{2 j}^{(r-1)}\right)\left(L_{2 i}^{(r-1)}-L_{2 j}^{(r-1)}-a_{r}\left(\tilde{L}_{2 i}^{(r-1)}-\tilde{L}_{2 i}^{(r-1)}\right)\right) \tag{17}
\end{equation*}
$$

with algebraic integers λ_{1}, λ_{2}. Since a_{r} is odd and the coefficients of the basis elements in L, \tilde{L} differ only by odd fractions, the last factor on the right-hand side of 17 is divisible by 2 . Therefore $P_{i j}$ is an integral multiple of $2 \sqrt{2}$. Since we have 2^{r-1} such pairs $(i, j),(2 \kappa+i, 2 \kappa+j)$ in J_{r}, the ν_{2}-value of those products is $2^{r-1}+2^{r-2}$. Together with the contribution of the 2^{r-1} factors $L_{i}^{(r)}-L_{j}^{(r)}\left((i, j) \in \hat{J}_{r}\right)$ this proves the lemma.

Acknowledgments. We thank the referee for his careful reading of our manuscript and important references to previous literature. His remarks helped to improve the quality of our paper considerably.

The first author was supported by the Hungarian National Foundation for Scientific Research Grant No. T67580.

Both authors were supported by the TÁMOP 4.2.1/B-09/1/KONV-2010-0007 project, which is implemented through the New Hungary Development Plan co-financed by the European Social Fund, and the European Regional Development Fund.

References

[1] M. Daberkow, C. Fieker, J. Klüners, M. Pohst, K. Roegner and K. Wildanger, KANT V4, J. Symbolic Comput. 24 (1997), 267-283.
[2] H. T. Engstrom, On the common index divisor of an algebraic field, Trans. Amer. Math. Soc. 32 (1930), 223-237.
[3] I. Gaál, A. Pethő and M. Pohst, On the indices of biquadratic number fields having Galois group V_{4}, Arch. Math. (Basel) 57 (1991), 357-361.
[4] H. Hasse, Number Theory, Springer, 1980.
[5] Y. Motoda and T. Nakahara, Power integral bases in algebraic number fields whose Galois groups are 2-elementary abelian, Arch. Math. (Basel) 83 (2004), 309-316.
[6] Y. Motoda, T. Nakahara and K. H. Park, On power integral bases of the 2-elementary abelian extension fields, Trends in Math., Information Center for Mathematical Sciences 8 (2006), 55-63.
[7] T. Nakahara, On the indices and integral bases of non-cyclic but abelian biquadratic number fields, Arch. Math. (Basel) 41 (1983), 504-508.
[8] W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers, 3rd ed., Springer, 2004.
[9] E. Nart, On the index of a number field, Trans. Amer. Math. Soc. 289 (1985), 171-183.
[10] G. Nyul, Non-monogeneity of multiquadratic number fields, Acta Math. Inform. Univ. Ostraviensis 10 (2002), 85-93.
[11] B. Schmal, Diskriminanten, \mathbb{Z}-Ganzheitsbasen und relative Ganzheitsbasen bei multiquadratischen Zahlkörpern, Arch. Math. (Basel) 52 (1989), 245-257.
[12] S. Schmitt and H. G. Zimmer, Elliptic Curves: A Computational Approach, de Gruyter, 2003.
[13] J. Śliwa, On the nonessential discriminant divisor of an algebraic number field, Acta Arith. 42 (1982), 57-72.
[14] K. S. Williams, Integers of biquadratic fields, Canad. Math. Bull. 13 (1970), 519-526.
[15] E. Żyliński, Zur Theorie der ausserwesentlichen Diskriminantenteiler algebraischer Körper, Math. Ann. 73 (1913), 273-274.

Attila Pethő
Department of Computer Science University of Debrecen
Number Theory Research Group
Hungarian Academy of Sciences and University of Debrecen

Michael E. Pohst
Technische Universtät Berlin
P.O. Box 12

H-4010 Debrecen, Hungary
E-mail: petho.attila@inf.unideb.hu

Received on 13.5.2011
and in revised form on 2.10.2011

