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1. Introduction. By Roth’s famous theorem [12] for irrational alge-
braic numbers α and any δ > 0 the inequality

|x2 − αx1| < |x1|−1−δ

has only finitely many integral solutions. Wolfgang Schmidt [16] extended
this result to a simultaneous version which states that the inequality

|x1 − α1x0| · · · |xn − αnx0| < |x0|−1−δ (δ > 0)

has only finitely many solutions, where 1, α1, . . . , αn are linearly independent
algebraic numbers over Q. These investigations cumulated in the celebrated
subspace theorem of Schmidt [17]: Let Li be linearly independent linear
forms in n variables with algebraic coefficients; then all integral solutions of
the inequality

n∏
i=1

|Li(x1, . . . , xn)| ≤ max{|x1|, . . . , |xn|}−δ (δ > 0)

lie in finitely many proper subspaces of Qn.
As an application of the subspace theorem Schmidt [18] described all

norm form equations that have finitely many solutions for any non-zero con-
stant term. The subspace theorem has been further developed by Schlickewei
[13, 14] and is proved in its most general form by Evertse and Schlickewei
[4] (see also [15]). These investigations led to many applications, e.g. to the
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finiteness of the number of solutions to S-unit equations (see e.g. [5]) or to es-
timates for the number of zeros of linear recurrence sequences (see e.g. [20]).
In this paper we use these techniques to obtain results on a quantitative
version of the so-called unit sum number problem. In particular, we solve a
problem related to a recent paper of M. Jarden and W. Narkiewicz [11].

The investigation of the unit sum number of rings goes back to the 1950’s,
when Zelinsky [22] proved that every element of the endomorphism ring E
of a vector space V over a division ring D can be written as the sum of two
automorphisms (units in E) unless D is the field with two elements and the
dimension of V is one. Following Goldsmith, Pabst and Scott [7] the unit
sum number of a ring (with identity) is defined as the smallest number k
such that every r ∈ R can be represented as a sum of k units. If no such
k exists and R is additively generated by its units, we say that R has unit
sum number ω. Otherwise the unit sum number is ∞.

In 2005 Ashrafi and Vámos [1] showed that the rings of integers of
quadratic fields, cubic fields and cyclotomic fields of the form Q(ζ2N ), with
ζ2N a 2N th primitive root of unity, do not have finite unit sum number.
Moreover, they characterized all integers d for which the ring of integers
of Q(

√
d) is generated by its units. This has been shown by Belcher 30

years before by a similar method (see [2]). The result of Ashrafi and Vámos
was completed by Jarden and Narkiewicz [11]. They proved that no ring
of algebraic integers has finite unit sum number. However, the question re-
mains which number fields have rings of integers that are generated by their
units. This has been solved for quadratic fields by Belcher [2] and Ashrafi
and Vámos [1], for pure cubic fields by Tichy and Ziegler [21], for complex
biquadratic fields by Ziegler [23], and for complex pure quartic fields by
Filipin, Tichy and Ziegler [6].

In this context the question arises how many integers can be represented
as the sum of exactly m units. This question is one of the problems stated in
the paper of Jarden and Narkiewicz [11, Problem C]. In order to be precise
we use the following definition.

Definition 1. Let K be a number field. As usual, two integers α and
β of K are said to be associated if there exists a unit ε such that α = βε;
we then write α ∼ β.

We define the counting function uK(m;x) as the number of equivalence
classes [α]∼ such that

|NK/Q(α)| ≤ x, α =
m∑
i=1

εi, εi ∈ O∗K ,

and no subsum vanishes. By OK we denote the ring of integers of K.

Note that the function uK(m;x) is well defined, since |NK/Q(α)| =
|NK/Q(β)| if α ∼ β.
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In the case of imaginary quadratic integers this problem is equivalent to
the circle problem (see [24, Section 2]). Filipin et al. [6] investigated the case
K = Q( 4

√
−d2) and found asymptotic expansions for uK(m;x), where m is

small with respect to the fundamental unit of K. In this paper we inves-
tigate the function uK(m;x) for K a real quadratic field and m arbitrary.
In particular, we prove an asymptotic expansion, where the remainder term
will be specified later.

Theorem 1. Let K = Q(
√
d) with 1 < d ∈ Z squarefree. Then the

asymptotic formula

uK(m;x) =
1

(m− 1)!

(
2 log x
log ε

)m−1

(1 + o(1))

holds, where ε > 1 is the fundamental unit of K.

More accurate results can be found in the sections below. We shall treat
the cases m = 2, m ≤ ε/2, and m arbitrary separately.

Note that this result is closely related to a result due to Everest [3]
who counts the number of weighted sums c0x0 + · · · + cmxm of S-units
x0, . . . , xm of a number field K with fixed c0, . . . , cm ∈ K that have norm
less than x. Everest uses a combination of analytic and Diophantine methods
to obtain precise error terms. Unfortunately, these precise error terms cannot
be obtained for |S| = 1. Moreover Everest’s theorem does not explicitly give
the coefficient for the main term, in particular this coefficient is quoted as
a combinatorial constant depending only on m. However, in a subsequent
paper we plan to use Everest’s method in order to obtain more general
results on the quantitative unit sum number problem. In this context we
also mention a result due to Győry, Mignotte and Shorey [8] who counted
the number of weighted sums of S-units with the additional property that
the greatest prime divisor of the norm is less than P .

2. Plan of the paper. In this section we introduce the main ideas of
the proofs. First, we note that by Dirichlet’s unit theorem the unit rank of
K is one. Therefore any unit of OK is of the form ±εk, where ε > 1 is the
fundamental unit. Assume α = (−1)l1εk1 +· · ·+(−1)lmεkm can be written as
a sum of m units; then we may assume α = 1 + (−1)l2εk2 + · · ·+ (−1)lmεkm
with 0 = k1 ≤ · · · ≤ km, since we are interested only in equivalence classes
of associated integers. Now let us compute the norm of α:

|NK/Q(α)| = |(1 + (−1)l2εk2 + · · ·+ (−1)lmεkm)

× (1 + (−1)l
′
2ε−k2 + · · ·+ (−1)l

′
mε−km)|

= εkm +O(mεkm−1).
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Using this estimate we will solve the following two problems:

• Find N1 such that for any km ≤ N1 we have NK/Q(α) ≤ x.
• Find N2 such that for any km > N2 we have NK/Q(α) > x.

Counting all α such that km ≤ N1 we deduce a lower bound for uK(m;x)
and similarly an upper bound. These bounds yield asymptotic expansions
for uK(m;x). It is easy to find N1 and N2 if m is small with respect to ε, but
if m is large the O-term might absorb the dominant term εkm . To overcome
this problem we use the subspace theorem to prove that this absorption
occurs only in very few cases, i.e. we are able to compute N1 and N2.

We divide our investigations into three parts. First, we investigate the
cases m = 2, where we obtain very sharp estimates. For m = 2 we use only
elementary methods (see Section 3). Next, we consider the case m ≤ ε/2. In
this case our estimations are less sharp. But m is still small with respect to
ε and no absorption occurs (see Section 4). In the last section we consider m
arbitrary. In this case absorption may occur. As mentioned above, we utilize
the subspace theorem in order to obtain results for this case. In particular,
we apply the following variant of the subspace theorem (cf. [19]).

Theorem 2 (Subspace Theorem). Let K be an algebraic number field
and let S ⊂ M(K) = {canonical absolute values of K} be a finite set of
absolute values which contains all the Archimedian ones. For each ν ∈ S
let Lν,1, . . . , Lν,n be n linearly independent linear forms in n variables with
coefficients in K. Then for given δ > 0, the solutions of the inequality∏

ν∈S

n∏
i=1

|Lν,i(x)|nνν < x −δ

with x ∈ On
K and x 6= 0, where

x = max
1≤i≤n

1≤j≤degK

|x(j)
i |,

| · |ν denotes the valuation corresponding to ν, nν is the local degree and OK

is the maximal order of K, lie in finitely many proper subspaces of Kn.

In order to get precise error terms we sometimes use the so-called Λ-
notation instead of the O-notation. Let c be a real number, and assume
f(x), g(x) and h(x) are real functions and h(x) > 0 for x > c. We will write

f(x) = g(x) + Λc(h(x))

for
g(x)− h(x) ≤ f(x) ≤ g(x) + h(x).

This notation turned out to be useful in several papers, e.g. [9] or [10].
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3. The case m = 2. We prove the following theorem:

Theorem 3. Let K = Q(
√
d) with 1 < d ∈ Z squarefree. Then

uK(2;x) =
2 log x
log ε

− 3
2x log ε

+ Λ12

(
1 +

11
2x log ε

)
.

Proof. First we note that two sums 1 + η1 and 1 + η2 do not represent
the same integer unless η1 = η2. As described in Section 2, we compute N1

and N2. Therefore we write α = 1± εk and compute

|NK/Q(1± εk)| ≤ |1 + εk| |1 + ε−k| ≤ εk + 2 + ε−k ≤ εk + 3.

This yields N1 = log(x− 3)/log ε. Similarly we obtain

|NK/Q(1± εk)| ≥ |εk − 1| |1− ε−k| ≥ εk − 2 + ε−k ≥ εk − 2,

henceN2 = log(x+ 2)/log ε. Since there are exactly 2bNc+1 representations
with k ≤ N we find

2bN1c+ 1 ≤ uK(2;x) ≤ 2bN2c+ 1.

In order to estimate the logarithms we use the following lemma:

Lemma 1. Let 0 ≤ a < x. Then

log x− a(2x− a)
2x(x− a)

≤ log(x− a) ≤ log x ≤ log(x+ a) ≤ log x+
a

x
,

where equality holds if and only if a = 0.

Proof of Lemma 1. The estimates follow immediately from the Taylor
expansions of log(x + a) = log(x) + log(1 + x/a) and log(x − a) = log x +
log(1− x/a) respectively.

If we assume x ≥ 12, we obtain, by Lemma 1,

(1) uK(2;x) ≤ 2
⌊

log(x+ 2)
log ε

⌋
+ 1 =

2 log x
log ε

+ θ+
1

4
x log ε

− 2θ+
2 + 1

and

(2) uK(2;x) ≥ 2
⌊

log(x− 3)
log ε

⌋
+ 1 =

2 log x
log ε

− θ−1
7

x log ε
− 2θ−2 + 1,

with 0 ≤ θ+
1 , θ

−
1 , θ

+
2 , θ

−
2 < 1. This yields

uK(2;x) =
2 log x
log ε

− 3
2x log ε

+ θ

(
1 +

11
2x log ε

)
with |θ| < 1.

Remark.

• The estimates (1) and (2) will yield in most cases an exact value for
uK(2;x), since in most cases blog(x+ 2)/log εc = blog(x− 3)/log εc.
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• In the case m = 3 we are not able to compute an exact value for
uK(3;x) from the bounds N1 and N2, since there are 2bNc2+2bNc+1
= 2N2 +O(N) representations with k3 ≤ N and the order of the error
term cannot be improved.

4. Medium sized m. In this section we investigate the case m ≤ ε/2.
The main theorem of this section is

Theorem 4. Let K = Q(
√
d) with 1 < d ∈ Z squarefree. Then for

m ≤ ε/2,

uK(m;x) =
1

(m− 1)!

(
2 log x
log ε

)m−1

+ Λε6/4

(17
(14 log x

5 log ε

)m−2

(m− 2)!

)
.

Remark. The condition m ≤ ε/2 yields m ≤ 1 only in the cases d = 2,
d = 3, d = 5 and d = 13.

First, note that every representation of an integer as a sum of m units
is unique if m ≤ ε/2. This is easy to see if we interpret the representation
as a digit expansion with basis ε and digit set {−m,−m+ 1, . . . ,m}.

Now let us compute N1. We assume km−r+1 = · · · = km, 0 = k1 = · · · =
ks and km ≥ 1. Then we obtain

|NK/Q(α)| = |(1 + · · ·+ (−1)lmεkm)(1 + · · ·+ (−1)l
′
mε−km)|

≤ (rεkm + (m− r − s)εkm−1 + s)(s+ (m− r − s)ε−1 + rε−km)

≤ (rεkm + (m− r)εkm−1)(s+ (m− s)ε−1)

≤ εkm
(
rs+

m(r + s)− 2rs
ε

+
(m− r)(m− s)

ε2

)
≤ εkm

(
m2

4
+
m

2
+

1
4

)
= εkm

(
m+ 1

2

)2

≤ εkm+2

4
.

If km = 0 then NK/Q(α) = m2 ≤ εkm+2/4. Therefore

N1 =
log x+ log 4

log ε
− 2.

Now we compute N2:

|NK/Q(α)| = |(1 + · · ·+ (−1)lmεkm)(1 + · · ·+ (−1)l
′
mε−km)|

≥ (rεkm − (m− r − s)εkm−1 − s)(s− (m− r − s)ε−1 − rε−km)

≥ (rεkm − (m− r)εkm−1)(s− (m− s)ε−1)

≥ εkm
(
rs− m(r + s)− 2rs

ε
+

(m− r)(m− s)
ε2

)
≥ εkm

(
rs− r + s

2
+

2rs
ε

)
≥ εkm 2

ε
≥ 2εkm−1,
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and thus

N2 =
log x− log 2

log ε
+ 1.

Next, we want to find an asymptotic expansion for the number Am(N)
of non-associated integers with km ≤ N . In particular, we prove

Proposition 1.

Am(N) =
(2N)m−1

(m− 1)!
+ Λ6(54).

Proof. To prove this proposition we establish a formula for Am(N). Thus
we count the possibilities to choose admissible pairs of exponents (li, ki) for
i = 2, . . . ,m− 1:

(1) First, we have the possibility that all exponents are zero, i.e. each
unit is 1.

(2) Assume that there are j units with exponents km−j+1, . . . , km > 0,
which are distributed on n fixed pairs of exponents (k, l). Then there
are

(
m−j−1
n−1

)
possibilities to choose a distribution such that each unit

corresponds to at least one pair of exponents.
(3) Now we determine how many possibilities we have to choose n pairs

of exponents (k, l). Note that there are
(
N
n

)
possibilities to choose k,

and for each choice of k we have 2 choices for l.

Altogether we obtain

Am(N) = 1 +
m−1∑
j=1

m−j∑
n=1

(
m− j − 1
n− 1

)(
N

n

)
2n

= 1 +
m−1∑
n=1

(
N

n

)
2n

m−j∑
j=1

(
m− j − 1
n− 1

)

= 1 +
m−1∑
n=1

(
m− 1
n

)(
N

n

)
2n =

m−1∑
n=0

(
m− 1
n

)(
N

n

)
2n.

Since we are looking for an asymptotic expansion in N we have to compute
the coefficients of Na. The coefficient of Na in the expression N(N − 1)
· · · (N − n+ 1) can be estimated by

(
n−1

n−1−a
) (n−1)!

a! , and therefore the coeffi-
cient ca of Na in Am(N) can be estimated by

m−1∑
n=a

(
m− 1
n

)(
n

a

)
2n(n− 1)!

a!n!
≤

m−1∑
n=a

(
m− 1
n

)(
n

a

)
2n

a!
=

2a3m−a−1
(
m−1
a

)
a!

.
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Thus we have

Am(N) =
2Nm−1

(m− 1)!
+ θ

(
Nm−2

m−1∑
a=0

2a3m−a−1
(
m−1
a

)
a!Nm−2−a

)
=

2Nm−1

(m− 1)!
+ θN

(
3m−1Lm−1(−2x/3)

Nm−1
− 2m−1

(m− 1)!

)
for some |θ| ≤ 1, where Ln(x) is the nth Laguerre polynomial. Note that
the second summand decreases while N increases. If we assume N ≥ 6, we
obtain

Am(N) =
2Nm−1

(m− 1)!
+ Λ6

(
6

3m−1Lm−1(−4)
6m−1

− 6
2m−1

(m− 1)!

)
=

2Nm−1

(m− 1)!
+ Λ6

(
6
Lm−1(−4)

2m−1

)
.

It remains to show 6Lm−1(−4)/2m−1 ≤ 54 for all m ≥ 2. This is easy to
verify for, say, m ≤ 10. For the other m’s we use the upper bound

Ln(−4) ≤ 16.51
(

7 +
√

17
6

)n
(n ≥ 7),

which follows immediately by induction from the recurrence

(n+ 1)Ln+1(x) = (2n+ 1− x)Ln(x)− nLn−1(x).

The proposition now follows immediately from

6
Lm−1(−4)

2m−1
≤ 99.06

(
7 +
√

17
12

)m−1

≤ 54

for m ≥ 9.

Proposition 1 implies(
2 log x+log 4

log ε − 4
)m−1

(m− 1)!
− 54 ≤ u(m;x) ≤

(
2 log x−log 2

log ε + 2
)m−1

(m− 1)!
+ 54

for x ≥ ε6/4. We use the following estimate:

(x+ r)n = xn + (x+ r)n − xn

= xn + rxn−1((1 + r/x)n−1 + · · ·+ 1)

= xn + Λ0(rnxn−1(1 + r/x)n−1).
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This yields

u(m;x) =

(
2 log x

log ε + θ4
)m−1

(m− 1)!
+ Λε6/4(54)

=

(2 log x
log ε

)m−1

(m− 1)!
+ Λε6/4

(
54 +

4(m− 1)
(2 log x

log ε

)m−2(7/5)m−2

(m− 1)!

)
=

1
(m− 1)!

(
2 log x
log ε

)m−1

+ Λε6/4

(17
(14 log x

5 log ε

)m−2

(m− 2)!

)
with |θ| ≤ 1.

5. Large m. In this section we treat the general case, in particular we
are interested in the casem > ε/2 which has not been treated yet. The aim of
this section is to complete the proof of Theorem 1. In the case m > ε/2 new
phenomena occur. First, an integer α may have two different representations
as a sum of units. Furthermore, we may have

|NK/Q(α)| < εkm(1−δ)

for some δ > 0, where α = 1 + · · ·+ εkm . However, we will show that these
phenomena occur only finitely many times and so they do not affect the
asymptotic behavior of uK(m;x).

Lemma 2. There are only finitely many algebraic integers α ∈ K that
admit two different representations as a sum of units.

Proof. Without loss of generality we may assume

α = a0 + a1ε
k1 + · · ·+ akε

kk = b0ε
l0 + b1ε

l1 + · · ·+ blε
ll ,

with a0, a1, . . . , ak, b0, . . . , bl ∈ Z and 0 = k0 ≤ k1 ≤ · · · ≤ kk respectively
0 ≤ l0 ≤ · · · ≤ ll. Furthermore, we may assume that the a’s and b’s have
absolute value less than m. Since we assume that the representations are
not identical we obtain an S-unit equation of the form

1 = c1ε
j1 + · · ·+ cjε

jj

with j ≥ 1 and the c’s are rational numbers with numerator and denominator
at most 2m. Therefore (see [5]) there are only finitely many solutions to this
equation. Note that the number of solutions depends on m.

Lemma 3. Let α = a0 + a1ε
k1 + · · · + anε

kn with
∑
|an| = m, am 6= 0,

0 < k1 < · · · < kn, a0, . . . , an, k1, . . . , kn ∈ Z and m a fixed integer. Let
δ > 0 be a fixed real number. Then the inequality

(3) |NK/Q(α)| < εkn(1−δ)

has finitely many solutions. The number of solutions depends on m and δ.
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Proof. Let σ be the non-identical automorphism of K. Then we write
σα = a0 + a′1ε

−k1 + · · · + a′nε
−kn with a′j = ±aj for j = 1, . . . , n. If (3) is

fulfilled, then either

(4) |a0 + a1ε
k1 + · · ·+ anε

kn | < εkn(1−δ/2)

or

(5) |a0 + a′1ε
−k1 + · · ·+ a′nε

−kn | < ε−knδ/2.

Let us consider the first case. We want to apply Theorem 2 for S =
{∞1,∞2}, where ∞1 = | · | and ∞2 = |σ(·)| denote the two places of K at
infinity and L∞1,n = a0x0+a1x1+ · · ·+anxn, L∞1,j = xj for j = 0, . . . , n−1
and L∞2,j = xj for j = 0, . . . , n. This yields the inequality

(6) |a0 + · · ·+ anε
kn | |1| |εk1 | · · · |εkn−1 | |1| |ε−k1 | · · · |ε−kn | < ε−knδ/2.

By the subspace theorem the solutions (1, εk1 , . . . , εkn) lie in finitely many
subspaces of Kn. Let T be such a subspace. It is defined by an equation of
the form

t0x0 + t1x1 + · · ·+ tnxn = 0.

Since εki 6= 0, there exist i 6= j such that ti, tj 6= 0. Therefore we find an
expression for εki with ki 6= kn. Inserting this expression into inequality (6)
and omitting the linear forms L∞1,i and L∞2,i yields an inequality of the
form (6) with new coefficients b0, . . . , bn−1. In order to apply the subspace
theorem to this new inequality we have to prove that the new n − 1 linear
forms in n−1 variables are still linearly independent. In particular, we have
to prove that bn−1 6= 0. But 0 = bn−1 = an−aitn/ti yields anti−aitn = 0. If
there is no index i such that anti−aitn 6= 0, then the vectors (a0, . . . , an) and
(t0, . . . , tn) are dependent, i.e. (a0, . . . , an) = λ(t0, . . . , tn) for some λ 6= 0.
Furthermore, we obtain a0+· · ·+anεkn = 0, which contradicts the condition
that no subsum vanishes.

Continuing this process of variable elimination we arrive at the inequality

|cεkn | < ε−knδ/2,

which yields only finitely many solutions.
The second case runs analogously. Here our linear forms are L∞1,0 =

a0x0 + a′1x1 + · · · + a′nxn, L∞1,j = xj for j = 1, . . . , n and L∞2,j = xj for
j = 0, . . . , n. In this case we get the inequality

|a0 + · · ·+ a′nε
−kn | |ε−k1 | · · · |ε−kn−1 | |1| |εk1 | · · · |εkn | < ε−knδ/2.

From the finitely many subspaces we find expressions for ε−ki with ki 6= 0.
Inserting these expressions into the inequality above we find new linear
forms, which are by the same arguments linearly independent. This process
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of variable elimination terminates in the inequality

|cε−kn | |εkn | = c ≤ ε−knδ.
Again we find only finitely many solutions.

Next, we compute the bounds N1 and N2. The inequality

|NK/Q(α)| = |(1 + · · ·+ (−1)lmεkm)(1 + · · ·+ (−1)l
′
mε−km)| ≤ m2εkm

yields N1 = (log x− 2 logm)/log ε. On the other hand, by Lemma 3 we have

|NK/Q(α)| ≥ εkn(1−δ)

except for finitely many α. Thus N (∞)
2 = (log x)/(1− δ) log ε with km >

N
(∞)
2 implies |NK/Q(α)| > x except for finitely many integers α. Note that

the number of exceptions depends on m and δ, but not on x.
By the discussion in Section 2, Proposition 1 and Lemma 2, we find

(2N1)m−1

(m− 1)!
− c(1)

m ≤ uK(m;x) ≤ (2N (∞)
2 )m−1

(m− 1)!
+ c

(1)
m,δ,

where the constants c(1)
m , c

(2)
m , . . . respectively c(1)

m,δ, c
(2)
m,δ, . . . depend only onm,

respectively m and δ. This yields

1− c
(2)
m

log x
≤ uK(m;x)(log ε)m−1(m− 1)!

(2 log x)m−1
≤ 1 + c(3)

m δ +
c
(2)
m,δ

log x
for every δ > 0. Thus Theorem 1 is proved.

Remark. The same method works also for biquadratic fields of the form
K = Q( 4

√
−d2). Note that in this case NK/Q(α) = |ασ(α)|2, where σ is the

automorphism induced by
√

2d 7→ −
√

2d and
√
−1 7→

√
−1. Hence

uK(m;x) =
1

(m− 1)!

(
2Q log x

log η

)m−1

(1 + o(1)),

with η the fundamental unit of Q(
√

2d) and Q = [U : WU+], where U is the
unit group of K, U+ the unit group of the maximal real subfield of K and
W the group of roots of unity of K. For more details concerning the unit
sum number problem in biquadratic fields we refer to our recent paper [6].
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