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1. Introduction and results. We improve our previous results [4, 5]
on linear forms in two logarithms of complex algebraic numbers by intro-
ducing a new ingredient in the theory. Since the underlying idea has a wider
scope than its present application, let us start with some comments on the
techniques employed in effective diophantine approximation for bounding
from below the absolute value of some non-vanishing quantity, say Λ. When
using the method of auxiliary functions, one needs to require that |Λ|, which
has to be viewed as an error term, should be much smaller than the abso-
lute value of all non-zero values of the auxiliary function which occur in the
proof. More flexibility is permitted when we use the method of interpolation
determinants. Larger values of |Λ| may then be admissible. We introduce an
additional positive parameter µ which takes into account the relative mag-
nitude of |Λ| compared with the various interpolation determinants occur-
ring in the proof. Our previous work [4], as well as the subsequent papers
[5, 6], correspond to the case µ = 1. However, values µ < 1 are possible. The
goal of the paper is to employ this idea in the context of [4], which leads to
a significant reduction of the numerical constants obtained. The same plan
could as well be applied to closely related topics, such as linear forms in one
logarithm [7, 8], or more generally the theory of linear forms in any number
of logarithms [9], and could also be adapted to the p-adic theory [2, 1].

We have kept the framework of the papers [4, 5, 6]. We first give a rather
general statement involving all parameters of the construction (Theorem 1).
Next, we specialize these parameters (Theorem 2) to obtain totally explicit
results. The application of Theorem 2 finally produces lower bounds for |Λ|,
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which are formulated in the usual style of the theory of linear forms in
logarithms. We have preserved the notations of the corresponding statements
in [5, 6], referring mainly to [5] for the points which remain unchanged.

For any algebraic number α of degree d over Q, we define as usual the
absolute logarithmic height of α by the formula

h(α) =
1
d

(
log |a|+

d∑
i=1

log max(1, |α(i)|)
)
,

where a is the leading coefficient of the minimal polynomial of α over Z, and
the α(i)’s are the conjugates of α in the field C of complex numbers.

Let α1, α2 be two non-zero algebraic numbers, viewed as elements of C,
and let logα1 and logα2 be any determinations of their logarithms. We
consider the linear form

Λ = b2 logα2 − b1 logα1,

where b1 and b2 are positive integers. Without loss of generality, we suppose
that |α1|, |α2| ≥ 1. Put

D = [Q(α1, α2) : Q]/[R(α1, α2) : R].

Theorem 1. Let K be an integer ≥ 2, and L, R1, R2, S1, S2 be positive
integers. Let % and µ be real numbers with % > 1 and 1/3 ≤ µ ≤ 1. Put

R = R1 +R2 − 1, S = S1 + S2 − 1, N = KL, g =
1
4
− N

12RS
,

σ =
1 + 2µ− µ2

2
, b =

(R− 1)b2 + (S − 1)b1
2

(K−1∏
k=1

k!
)−2/(K2−K)

.

Let a1, a2 be positive real numbers such that

ai ≥ %|logαi| − log |αi|+ 2Dh(αi)

for i = 1, 2. Suppose that

(1)
Card{αr1αs2; 0 ≤ r < R1, 0 ≤ s < S1} ≥ L,
Card{rb2 + sb1; 0 ≤ r < R2, 0 ≤ s < S2} > (K − 1)L

and

(2) K(σL− 1) log %− (D + 1) logN
−D(K − 1) log b− gL(Ra1 + Sa2) > ε(N),

where
ε(N) = 2 log(N !N−N+1(eN + (e− 1)N ))/N.

Then

|Λ′| > %−µKL with Λ′ = Λmax
{
LSeLS|Λ|/(2b2)

2b2
,
LReLR|Λ|/(2b1)

2b1

}
.
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We now consider specifically the case of multiplicatively independent
algebraic numbers α1, α2. We specialize the values of the above parameters
K,L,R1, R2, S1, S2 to obtain a more concrete result.

Theorem 2. Let a1, a2, h, % and µ be real numbers with % > 1 and 1/3 ≤
µ ≤ 1. Set

σ =
1 + 2µ− µ2

2
, λ = σ log %, H =

h

λ
+

1
σ
,

ω = 2
(

1 +

√
1 +

1
4H2

)
, θ =

√
1 +

1
4H2

+
1

2H
.

Consider the linear form Λ = b2 logα2 − b1 logα1, where b1 and b2 are
positive integers. Suppose that α1 and α2 are multiplicatively independent.
Put D = [Q(α1, α2) : Q]/[R(α1, α2) : R], and assume that

h ≥ max
{
D

(
log
(
b1
a2

+
b2
a1

)
+ log λ+ 1.75

)
+ 0.06, λ,

D log 2
2

}
,(3)

ai ≥ max{1, %|logαi| − log |αi|+ 2Dh(αi)} (i = 1, 2),(4)
a1a2 ≥ λ2.(5)

Then

log |Λ| ≥ −C
(
h+

λ

σ

)2

a1a2 −
√
ωθ

(
h+

λ

σ

)
− log

(
C ′
(
h+

λ

σ

)2

a1a2

)
with

C =
µ

λ3σ

(
ω

6
+

1
2

√
ω2

9
+

8λω5/4θ1/4

3
√
a1a2H1/2

+
4
3

(
1
a1

+
1
a2

)
λω

H

)2

,

C ′ =

√
Cσωθ

λ3µ
.

Remark. The constant 1.75 occurring in (3) may be reduced if we as-
sume that h is large enough. Its asymptotic value is equal to 3/2+log(3/4) =
1.21 . . . , as can be easily seen from the computations in Section 3.2.2 below.
The interested reader is directed to [6], where this remark is expanded.

For fixed values of the parameters µ and %, the leading coefficient C
tends to

16µ
9λ3σ

=
16

9(log %)3
· 16µ

(1 + 2µ− µ2)4

when h tends to infinity. The first factor (16/9)(log %)−3 already occurred
in Théorème 2 of [5], while the second is equal to 1 for µ = 1. When h is
large, the optimal values for µ are thus close to 0.63 . . . where the factor
16µ/(1 + 2µ − µ2)4, viewed as a function of µ, has a local minimum with
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value 0.83 . . . . Tables 2 and 3 in Section 4 illustrate the convergence of µ to
0.63 . . . as h grows.

In order to make the comparison with the results in [5, 6] more apparent,
we give analogues of Corollaires 1 and 2 of [5]. Set

b′ =
b1

D logA2
+

b2
D logA1

,

where A1 and A2 are real numbers > 1 such that

logAi ≥ max{h(αi), |logαi|/D, 1/D} (i = 1, 2).

For m = 10, 12, . . . , 30, define coefficients C1 = C1(m) and C2 = C2(m)
by the following table.

Table 1. Main constants

m 10 12 14 16 18 20 22 24 26 28 30

C1 32.3 29.9 28.2 26.9 26.0 25.2 24.5 24.0 23.5 23.1 22.8

C2 25.2 23.4 22.1 21.1 20.3 19.7 19.2 18.8 18.4 18.1 17.9

Corollary 1. Suppose that α1 and α2 are multiplicatively independent.
Then

log |Λ| ≥ −C1D
4(max{log b′ + 0.21,m/D, 1})2 logA1 logA2

for each pair (m,C1(m)) from Table 1.

Corollary 2. Suppose moreover that the numbers α1, α2, logα1, logα2

are real and positive. Then

log |Λ| ≥ −C2D
4(max{log b′ + 0.38,m/D, 1})2 logA1 logA2

for each pair (m,C2(m)) from Table 1.

A look at the analogous Tableaux 1 and 2 on pages 319–320 of [5] reveals
that, for each m, the corresponding constants C1(m) and C2(m) have actu-
ally been reduced by about twenty percent. Notice, however, that a direct
application of Theorem 2 will usually provide a better result when dealing
with a specific linear form.

To conclude the introduction, let us mention that Theorem 1 can also
be applied to the case of multiplicatively dependent numbers α1 and α2,
leading for instance to a sharpening of Théorème 3 in [5].

Acknowledgements. I am pleased to express my gratitude to Paul
Voutier for his numerous suggestions and comments. Thank you Paul for
your thorough and constructive criticism.
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2. Proof of Theorem 1. We follow the proof of the corresponding
Théorème 1 in [5, Section 4] (1). We need a new analytic estimate, while
the other parts of the proof remain unchanged. All the notations employed
here are consistent with those of [5].

Let M be the KL×RS matrix whose entries are(
rb2 + sb1

k

)
αlr1 α

ls
2 ,

where (k, l) (0 ≤ k < K, 0 ≤ l < L) is the row index and (r, s) (0 ≤ r < R,
0 ≤ s < S) the column index. By [5, Lemme 5], under the assumption (1),
the rank of M is N = KL. Let ∆ be a non-zero N ×N minor of M. After
numbering the rows and columns of ∆, we can write

∆ = det
((

rjb2 + sjb1
ki

)
α
lirj
1 α

lisj
2

)
1≤i, j≤N

for some integer sequences (ki, li)1≤i≤N and (rj , sj)1≤j≤N .

2.1. Arithmetical lower bound. Under the assumptions of Theorem 1,
Lemme 6 of [5] provides us with the following lower bound for |∆|.

Lemma 1. Put

g =
1
4
− N

12RS
, G1 = gLRN/2, G2 = gLSN/2,

M1 = (L− 1)(r1 + · · ·+ rN )/2, M2 = (L− 1)(s1 + · · ·+ sN )/2.

Then

log |∆| ≥ − D − 1
2

N logN + (M1 +G1) log |α1|+ (M2 +G2) log |α2|

− 2DG1h(α1)− 2DG2h(α2)− 1
2

(D − 1)(K − 1)N log b.

2.2. Analytic upper bound. Let us now state our new analytic estimate
which essentially reduces to Lemme 7 of [5] when µ = 1.

Lemma 2. Let % and µ be real numbers. Assume that % > 1, 1/3 ≤ µ ≤ 1
and

(6) |Λ′| ≤ %−µN .
Put σ = (1 + 2µ− µ2)/2. Then

|∆| ≤ %−(σN2−N)/2N(eN + (e− 1)N )(N !)(%b)(K−1)N/2

× |α1|M1 |α2|M2e%(G1|logα1|+G2|logα2|).

(1) Notice that the stronger assumptions K ≥ 3 and L ≥ 2 made in [5, Théorème 1]
are unnecessary in our present proof. They ensure the lower bound N ≥ 6, which is used
in Section 4.5 of [5], but not here. Compare with the earlier Theorem 3 in [4].
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The proof of Lemma 2 rests on a refinement of the analytic argument
introduced in [4, Lemma 6]. The determinant ∆ may be written as an in-
terpolation determinant (also called alternant) of N analytic functions in
two variables, say x and y, evaluated at N points (xj , yj) (1 ≤ j ≤ N).
Condition (6) means that the supremum of the |yj |’s is small. To estimate
such a determinant, we use the device given in the remark on p. 194 of [4].
One has to expand the interpolation determinant into power series of the
2N variables xj , yj (1 ≤ j ≤ N), and next estimate the non-zero summands.
Compared with the previous Lemma 6 of [4], we make use here of the whole
power series expansion of ∆, instead of the truncated series to order one in
the variables y1, . . . , yN .

2.2.1. A combinatorial lemma. To prove Lemma 2, we begin with the
following result.

Lemma 3. Let ` be a positive integer , let ν1, . . . , ν` be a sequence of
positive integers and let µ be a real number with 1/3 ≤ µ ≤ 1. Put σ =
(1 + 2µ− µ2)/2 and N =

∑`
k=1 νk. Then

∑̀
k=1

(
νk
2

)
+ µN

∑̀
k=1

(k − 1)νk ≥
σN2 −N

2
.

Proof. Consider the polynomial

P (x1, . . . , x`) =
1
2

(∑̀
k=1

x2
k

)
+ µ

(∑̀
k=1

(k − 1)xk
)
,

together with the simplex S ⊂ R` consisting of the points x = (x1, . . . , x`)
which satisfy ∑̀

k=1

xk = 1 and xk ≥ 0 (1 ≤ k ≤ `).

Since (ν1/N, . . . , ν`/N) belongs to S, it clearly suffices to show that P (x) ≥
σ/2 for any x = (x1, . . . , x`) in S.

Let ξ = (ξ1, . . . , ξ`) be a point in S where P reaches its minimal value
on S. Observe first that

1 ≥ ξ1 ≥ · · · ≥ ξ` ≥ 0,

since otherwise, permuting coordinates ξi < ξj with i < j would produce
a point ξ′ for which P (ξ′) is smaller. We remark now that for any index k
with 2 ≤ k ≤ ` and any real number y in the interval −ξk ≤ y ≤ ξ1, the
point (ξ1 − y, . . . , ξk + y, . . . ) obtained from ξ by modifying only the first
and kth coordinates lies in S. Since P attains its minimal value on S at ξ,
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the partial derivative

−ξ1 + ξk + (k− 1)µ = − ∂P
∂x1

(ξ) +
∂P

∂xk
(ξ) =

∂

∂y
P (ξ1− y, . . . , ξk + y, . . . )

∣∣∣∣
y=0

is always ≥ 0 since ξ1 > 0, and moreover it vanishes whenever ξk > 0.
Consequently, for any index k with 1 ≤ k ≤ `, either ξk = 0, or ξk =
ξ1− (k− 1)µ > 0. Let m ≤ ` be the greatest integer k for which ξk > 0. The
relation

∑m
k=1 ξk = 1 then implies

ξk =
1
m

+
(
m+ 1

2
− k
)
µ, 1 ≤ k ≤ m.

Writing now ξm > 0, we see that µ < 2/(m(m− 1)). Since we have assumed
that µ ≥ 1/3, it follows that m ≤ 2. For m = 1, we have ξ = (1, 0, . . . ) and
P (ξ) = 1/2 ≥ σ/2. For m = 2, we find

ξ =
(

1 + µ

2
,
1− µ

2
, 0, . . .

)
and P (ξ) =

1 + 2µ− µ2

4
=
σ

2
.

2.2.2. Expanding the interpolation determinant ∆. Permuting possibly
α1 with α2 and b1 with b2, we may assume that

b1|logα1| ≤ b2|logα2|.

We shall then prove the required upper bound for |∆|, assuming that

(7) |Λ′′| ≤ %−µN ,

where Λ′′ := (LSΛ/(2b2))eLS|Λ|/(2b2). Lemma 2 will obviously follow.
As in [4, Lemma 6] and in [5, Lemme 7], we first express ∆ as an in-

terpolation determinant. Put β = b1/b2. For any complex number η, linear
combinations of rows enable us to write

∆ = det
(
bki2
ki!

(rj + sjβ − η)kiα`irj1 α
`isj
2

)
.

We choose η = ((R − 1) + β(S − 1))/2. It is also convenient to center the
exponents `i around their average value (L− 1)/2. We get

∆ = αM1
1 αM2

2 det
(
bki2
ki!

(rj + sjβ − η)kiαλirj1 α
λisj
2

)
,

where λi = `i−(L− 1)/2 (1 ≤ i ≤ N). From the relation logα2 = β logα1 +
Λ/b2, we may write

α
λirj
1 α

λisj
2 = α

λi(rj+sjβ−η)
1 eλisjΛ/b2αλiη1 .
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Noting that
∑N

i=1 λi = 0, we finally obtain the formula

∆ = αM1
1 αM2

2 det
(
bki2
ki!

(rj + sjβ − η)kiαλi(rj+sjβ−η)1 eλisjΛ/b2
)

= αM1
1 αM2

2 det(ϕi(zj)eλisjΛ/b2),

with

ϕi(x) =
bki2
ki!

xkiαλix1 and zj = rj + sjβ − η (1 ≤ i, j ≤ N).

Thus, α−M1
1 α−M2

2 ∆ has just been written as the interpolation determinant
of the N functions ϕi(x)eλiy (1 ≤ i ≤ N), evaluated at the N points
(zj , sjΛ/b2) (1 ≤ j ≤ N).

We now expand each factor

eλisjΛ/b2 =
∑
ni≥0

(λisjΛ/b2)ni

ni!

into a power series in sjΛ/b2. By the multilinearity of the determinant, we
get the formula

∆ = αM1
1 αM2

2

∑
n1≥0

· · ·
∑
nN≥0

∆n ,

where we have set

n = (n1, . . . , nN ) and ∆n = det
(
ϕi(zj)

(λisjΛ/b2)ni

ni!

)
.

Let m1, . . . ,m` be the distinct values taken by the ni’s in the N -tuple n.
These values are numbered in order of increasing magnitude, m1 < · · · < m`.
For each integer k with 1 ≤ k ≤ `, we denote by Ik the subset of indices i
for which ni = mk, and by νk = Card Ik the number of repetitions of the
value mk in the sequence n.

Lemma 4. For any N -tuple n = (n1, . . . , nN ) of non-negative integers
and any real number % > 1, we have the upper bound

|∆n| ≤ Ω%−
P`
k=1 (νk2 )

(
LS|Λ|

2b2

)PN
i=1 ni( N∏

i=1

ni!
)−1

with
Ω = N !(%b)(K−1)N/2e%(G1|logα1|+G2|logα2|).

Proof. We consider the analytic function

∆n(x) = det
(
ϕi(xzj)

(λisjΛ/b2)ni

ni!

)
of the complex variable x. Obviously ∆n = ∆n(1).
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Let us first show that ∆n(x) has a zero at the origin x = 0 with multi-
plicity greater than or equal to

∑`
k=1

(
νk
2

)
. For that purpose, expand each

ϕi(x) =
∑

hi≥0 pi,hix
hi into Taylor’s series about the origin and substitute

ϕi(xzj) =
∑

hi≥0 pi,hi(xzj)
hi in the determinant ∆n(x). As above, we use

the multilinearity of the determinant to find that

∆n(x) =
∑

(h1,...,hN )∈NN

( N∏
i=1

pi,hi

)
det
(
zhij (λisjΛ/b2)ni

ni!

)
x

PN
i=1 hi .

Observe that the summand det(zhij (λisjΛ/b2)ni/ni!) vanishes when hi = hi′

for some pair of indices i 6= i′ belonging to the same subset Ik, since in that
case rows i and i′ in the matrix are proportional. It follows that for any
non-zero term in the above sum,

N∑
i=1

hi ≥
∑̀
k=1

νk−1∑
h=0

h =
∑̀
k=0

(
νk
2

)
.

We now expand the determinant ∆n(x). On bounding |λisj | ≤ LS/2 for
any 1 ≤ i, j ≤ N , we obtain the estimate

|∆n(x)| ≤ N ! max
τ

{ N∏
i=1

|ϕi(xzτ(i))|
}(LS|Λ|

2b2

)PN
i=1 ni( N∏

i=1

ni!
)−1

,

where τ runs over all substitutions of {1, . . . , N}. For any such τ , the upper
bound

N∏
i=1

|ϕi(xzτ(i))| ≤ (|x|b)(K−1)N/2 exp{|x|(G1 + βG2)|logα1|}

has been established in the proofs of Lemma 8 in [4] and of Lemme 7 in
[5] (2). The assumption β|logα1| ≤ |logα2| then implies that

max
|x|≤%

|∆n(x)| ≤ Ω
(
LS|Λ|

2b2

)PN
i=1 ni( N∏

i=1

ni!
)−1

.

The required upper bound finally follows from the usual Schwarz lemma.

2.2.3. Proof of Lemma 2. Recall that we have associated to each N -
tuple n of non-negative integers the two sequences m1, . . . ,m` and ν1, . . . , ν`.
Notice that there are exactly

(
N

ν1,...,ν`

)
N -tuples n giving rise to the same

couple of sequences (ν1, . . . , ν`) and (m1, . . . ,m`) satisfying νk ≥ 1 for 1 ≤
k ≤ `, ν1 + · · · + ν` = N and 0 ≤ m1 < · · · < m`, since the number of
ordered partitions {1, . . . , N} =

∐`
k=1 Ik with Card Ik = νk, 1 ≤ k ≤ `, is

equal to the multinomial coefficient
(

N
ν1,...,ν`

)
.

(2) Beware that the b in [4] corresponds to 2b in [5].
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Let us indicate by
∑′

n a sum over all N -tuples n for which at least one
of the ni vanishes (equivalently m1 = 0), and by

∑′′
n the sum over the

complementary set of N -tuples n for which m1 ≥ 1. Our purpose now is to
bound

∑′
n |∆n| and

∑′′
n |∆n|.

Let n be an N -tuple for which m1 = 0. When ` = 1, we have n =
(0, . . . , 0). When ` ≥ 2, write mk = k − 1 + m′k for 2 ≤ k ≤ `, so that
0 ≤ m′2 ≤ · · · ≤ m′`. Then we have

N∑
i=1

ni =
∑̀
k=2

(k − 1)νk +
∑̀
k=2

m′kνk

and
N∏
i=1

ni! =
∏̀
k=2

(mk!)νk ≥
∏̀
k=2

(k − 1)!νk ·
∏̀
k=2

(m′k!)
νk .

Plugging the above estimates into the upper bound furnished by Lemma 4,
we find∑
n

′
|∆n| ≤ Ω%−(N2 )

+Ω

N∑
`=2

{ ∑
ν1+···+ν`=N
ν1≥1,...,ν`≥1

(( N
ν1,...,ν`

)
%−

P`
k=1 (νk2 )(LS|Λ|/2b2)

P`
k=2(k−1)νk∏`

k=2(k − 1)!νk

×
∑

0≤m′
2≤···≤m′

`

(LS|Λ|/2b2)
P`
k=2m

′
kνk∏`

k=2(m′k!)
νk

)}
.

We roughly bound the last sum as follows:∑
0≤m′

2≤···≤m′
`

(LS|Λ|/2b2)
P`
k=2m

′
kνk∏`

k=2(m′k)
νk

≤ e(LS|Λ|/2b2)
P`
k=2 νk

≤ e(LS|Λ|/2b2)
P`
k=1(k−1)νk .

We finally obtain the estimate (3)∑
n

′
|∆n| ≤ Ω

N∑
`=1

∑
ν1+···+ν`=N

(
N

ν1,...,ν`

)
%−

P`
k=1 (νk2 )|Λ′′|

P`
k=1(k−1)νk∏`

k=2(k − 1)!νk

≤ %−(σN2−N)/2Ω
N∑
`=1

∑
ν1+···+ν`=N

(
N

ν1,...,ν`

)∏`
k=2(k − 1)!νk

(3) When ` = 1, the sums and products taken over k in the empty interval 2 ≤ k ≤ `
have to be replaced by 0 and 1 respectively.
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≤ %−(σN2−N)/2Ω
N∑
`=1

(
1 +

∑̀
k=2

1
(k − 1)!

)N
≤ %−(σN2−N)/2ΩNeN ,

using here the upper bound (7) for |Λ′′| combined with Lemma 3.
As for the second sum

∑′′
n |∆n|, which is a residual term, we use similar

arguments. We now start with the decomposition mk = k+m′′k for 1 ≤ k ≤ `,
where 0 ≤ m′′1 ≤ · · · ≤ m′′` . Replacing in the above display k − 1 by k and
m′k by m′′k, where the index k runs from 1 to `, we obtain in that case the
upper bound ∑

n

′′
|∆n| ≤ %−(σN2−N)/2ΩN(e− 1)N ,

the factor (e− 1)N arising from the estimate
∑`

k=1 1/k! ≤ e− 1 used in the
last step. Since

|∆| ≤ |α1|M1 |α2|M2

(∑
n

′
|∆n|+

∑
n

′′
|∆n|

)
,

the proof of Lemma 2 is now complete.

2.3. Completion of the proof. Suppose finally that the assumptions (1)
and (2) of Theorem 1 are satisfied and that (6) holds. Then Lemmas 1 and 2
provide us with the following estimate for log |∆|:

−(D − 1)N logN
2

+ (M1 +G1) log |α1|+ (M2 +G2) log |α2| − 2DG1h(α1)

− 2DG2h(α2)− 1
2

(D − 1)(K − 1)N log b ≤ log |∆|

≤ log(N(eN + (e− 1)N )(N !)) +
1
2

(K − 1)N log(%b) +M1 log |α1|

+ %G1|logα1|+M2 log |α2|+ %G2|logα2| −
1
2

(σN2 −N) log %.

The terms in M1 and M2 cancel. Replace now G1 and G2 by their values.
After division by N/2, we get the opposite of (2). Therefore (6) cannot hold
under the assumptions (1) and (2), and Theorem 1 is proved.

3. Proof of Theorem 2. For the most part, we follow the proof of
the corresponding Theorem 2 in [5] and in [6]. Notice however that we have
slightly modified the definition of the parameter L. This new choice leads
to smaller constants, even in the setting of [5, 6] where µ = 1. Compared
with [5, 6], we have also split the proof into successive steps, which hopefully
should clarify its structure.
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3.1. The parameters. We define L to be the unique integer belonging to
the interval

(8)
√
ω

θ
H = H +

√
H2 +

1
4
− 1

2
< L ≤ H +

√
H2 +

1
4

+
1
2

=
√
ωθH.

Set now

U = λL− h− λ

σ
= λ(L−H), V =

L

3
, W =

1
3

(
1
a1

+
1
a2

+ 2
√

L

a1a2

)
,

k =
(
V

2U
+

1
2

√
V 2

U2
+ 4

W

U

)2

=
V 2

2U2
+
W

U
+

V

2U

√
V 2

U2
+

4W
U
.

Hence
√
k =

V

2U
+

1
2

√
V 2

U2
+ 4

W

U

is the positive root of the polynomial UX2 − V X −W . Put finally

K = 1+bkLa1a2c, R1 = 1+b
√
La2/a1c, R2 = 1+b

√
(K − 1)La2/a1c,

S1 = 1 + b
√
La1/a2c, S2 = 1 + b

√
(K − 1)La1/a2c.

With the noteworthy exception of L, these parameters were already em-
ployed in [5, 6] (4). The present choice of L is motivated by the estimate
(11) below. We have selected an interval (8) of length 1 along which the
function x 7→ x2/(x − H) is as small as possible, in order to minimize the
value of the coefficient C depending mainly on the quantity L2/(L−H).

For later use, we now estimate various expressions involving these param-
eters in terms of the data a1, a2, h, %, µ. Here, the quantity H = h/λ + 1/σ
plays an important role. Note that our assumptions imply that H ≥ 2, since
h ≥ λ (by (3)) and 0 < σ ≤ 1.

Using the formulas√
ω

θ
= 1 +

√
1 +

1
4H2

− 1
2H

and
√
ωθ = 1 +

√
1 +

1
4H2

+
1

2H
,

we first deduce from the lower bound H ≥ 2 the inequalities

(9)
3 +
√

17
4

≤
√
ω

θ
<
√
ωθ ≤ 5 +

√
17

4
.

We now estimate quantities of the form Lα/(L − H) for exponents α
which are half integers.

Lemma 5. For any half integer α 6= 2, we have

(10) ωα/2θ−|α/2−1|Hα−1 ≤ Lα/(L−H) ≤ ωα/2θ|α/2−1|Hα−1.

(4) More precisely, the parameters K,R1, R2, S1, S2 are defined in [5, 6] by the same
formulas, but with slightly larger values of the parameter k.
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When α = 2, we have

(11) 4H ≤ L2

L−H
≤ 2
(
H +

√
H2 +

1
4

)
= ωH.

Proof. Let us show that the function x 7→ xα/(x −H) decreases in the
interval (8) when α ≤ 3/2 and increases when α ≥ 5/2. Differentiating gives

∂

∂x

xα

x−H
=
xα−1(α(x−H)− x)

(x−H)2
.

For any α ≥ 5/2 and any x in (8), we bound from below

α(x−H)− x ≥ 5
2

(x−H)− x =
3
2
x− 5

2
H ≥ 3

2

√
ω

θ
H − 5

2
H

≥ H(−11 + 3
√

17)
8

> 0,

since
√
ω/θ ≥ (3+

√
17)/4 by (9). The function x 7→ xα/(x−H) is therefore

increasing in (8) when α ≥ 5/2. When α ≤ 3/2, we bound from above

α(x−H)− x ≤ 3
2

(x−H)− x =
1
2
x− 3

2
H ≤ 1

2

√
ωθH − 3

2
H

≤ H(−7 +
√

17)
8

< 0,

since
√
ωθ ≤ (5 +

√
17)/4 by (9), to conclude that the function strictly

decreases in that case.
Therefore we find the estimate

ωα/2θ−(α/2−1)Hα−1 =
(H +

√
H2 + 1/4− 1/2)α√

H2 + 1/4− 1/2
≤ Lα

L−H

≤
(H +

√
H2 + 1/4 + 1/2)α√

H2 + 1/4 + 1/2
= ωα/2θα/2−1Hα−1

for any α ≥ 5/2, while the reverse inequalities, obtained by exchanging the
upper and lower bounds, hold true when α ≤ 3/2. The estimate (10) is thus
verified for any half integer α 6= 2.

When α = 2, the function x 7→ x2/(x − H) attains its minimal value
in (8) at x = 2H, and reaches its maximal value at the extremities H +√
H2 + 1/4± 1/2 of the interval. The estimate (11) is thus verified.

We now proceed to show that L ≥ 4 and K ≥ 8, hence N ≥ 32. The
lower bound L ≥ 4 immediately follows from (8), since H ≥ 2. As for K,
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using the definitions of k, V and W , we can write√
kLa1a2 =

L3/2√a1a2

6U

+
1
2

√(
L3/2

3U

)2

a1a2 +
4
3
L

U
(a1 + a2) +

8
3
L3/2

U

√
a1a2.

On combining (10) (for α = 3/2 and α = 1) with the lower bounds a1 +a2 ≥
2
√
a1a2 ≥ 2λ deduced from (5), we find that

√
kLa1a2 ≥

ω3/4H1/2

6θ1/4
+

1
2

√
ω3/2H

9θ1/2
+

8ω3/4H1/2

3θ1/4
+

8ω1/2

3θ1/2
.

Observe that the right hand side of the above inequality, when viewed as a
function of H, may be written as a composed function

1
6

√
Hω

√
ω

θ
+

1
2

√√√√1
9
Hω

√
ω

θ
+

8
3

√
Hω

√
ω

θ
+

8
3

√
ω

θ
,

where the two functions

Hω = 2H +
√

4H2 + 1 and
√
ω

θ
= 1 +

√
1 +

1
4H2

− 1
2H

increase in the range H ≥ 2. It follows that
√
kLa1a2 is greater than or equal

to the value of the above expression at H = 2. We find that
√
kLa1a2 ≥ 2.66.

Hence K = 1 + bkLa1a2c ≥ 8.

3.2. An intermediate lower bound. Our goal is to establish the estimate

(12) log |Λ′| ≥ −C
(
h+

λ

σ

)2

a1a2 −
√
ωθ

(
h+

λ

σ

)
,

assuming that

(13) b′′ :=
(
b1
a2

+
b2
a1

)
> 2µλσ−1kL2 · gcd(b1, b2).

The lower bound (12) will be furnished by Theorem 1, and thus we have to
verify conditions (1) and (2).

3.2.1. Condition (1). Let us first record the lower bound

(14)
√
k L ≥ V L

U
=

L2

3λ(L−H)
≥ 4H

3λ
,

deduced from the obvious estimate
√
k ≥ V/U and (11). Put

b∗1 =
b1

gcd(b1, b2)
and b∗2 =

b2
gcd(b1, b2)

.
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Our assumption (13) implies that

b∗1 > µλσ−1
√
k L ·

√
(K − 1)La2/a1

or
b∗2 > µλσ−1

√
k L ·

√
(K − 1)La1/a2,

since K− 1 ≤ kLa1a2. Note that µ/σ ≥ 3/7. Then (14) gives µλσ−1
√
k L ≥

4H/7 > 1, since H ≥ 2. We then deduce from the estimates R2 − 1 ≤√
(K − 1)La2/a1 and S2 − 1 ≤

√
(K − 1)La1/a2 that

b∗1 > R2 − 1 or b∗2 > S2 − 1.

We infer that there is no linear relation rb2+sb1 = 0 with integer coefficients
(r, s) satisfying 0 < |r| ≤ R2 − 1 and 0 < |s| ≤ S2 − 1. Otherwise, b∗1 would
divide r and b∗2 would divide s, in contradiction with the above lower bounds.
It follows that

Card{rb2 + sb1; 0 ≤ r < R2, 0 ≤ s < S2} = R2S2

and, by the choice of R2 and S2, we have R2S2 > (K−1)L. Moreover, since
α1 and α2 are multiplicatively independent,

Card{αr1αs2; 0 ≤ r < R1, 0 ≤ s < S1} = R1S1 ≥ L.

This ends the verification of condition (1).

3.2.2. Condition (2). We follow the arguments of [5, Section 5.3] which
remain mostly valid, since we deal here with the same parameters K,R1, R2,
S1, S2. However, due to our new choice of L, some slight modifications are
needed.

Let us quote the estimate

b ≤ (1 +
√
K − 1)

√
K

2(K − 1)
√
k

(
b1
a2

+
b2
a1

)
× exp

{
3
2
− log(2π(K − 1)/

√
e)

K − 1
+

logK
6K(K − 1)

}
from [5, p. 307, line 16]. The inequality

√
k ≥ V/U , together with (9), (10),

implies the lower bound

√
k ≥ V

U
=

L

3λ(L−H)
≥ 1

3λ

√
ω

θ
≥ 3 +

√
17

12λ
.

Combining the preceding two estimates gives

log b ≤ log(λb′′)− log(2πK/
√
e)

K − 1
+ f(K)
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with

f(x) = log
(

(1 +
√
x− 1)

√
x

x− 1

)
+

log x
6x(x− 1)

+
3
2

+ log
(

6
3 +
√

17

)
+

log(x/(x− 1))
x− 1

.

Observe that f(x) is a decreasing function for x > 1 (see [5, p. 308] for
details). Since K ≥ 8, it follows that f(K) ≤ f(8) ≤ 1.75. Then we deduce
from (3) the upper bound

(15) log b ≤ h− 0.06
D

− log(2πK/
√
e)

K − 1
.

Next, we quote the upper bound

gL(Ra1 + Sa2) ≤ 1
3
L3/2

√
(K − 1)a1a2 +

2
3
L3/2√a1a2(16)

+
1
3
L(a1 + a2)−

L3/2√a1a2

6(1 +
√
K − 1)

provided by Lemme 9 of [5], noting that its proof is valid for any integer
L ≥ 1. The estimates (15) and (16) imply that the left hand side of (2) is
bounded from below by Φ+Θ, where

Φ = λKL−K
(
h+

λ

σ

)
−
L3/2

√
(K − 1)a1a2

3

−
2L3/2√a1a2

3
− L(a1 + a2)

3
,

Θ = 0.06(K − 1) + h+
L3/2√a1a2

6(1 +
√
K − 1)

+D log
(

2πK√
e

)
− (D + 1) log(KL).

We proceed to show that Φ ≥ 0 and Θ > ε(N). Then condition (2) will
obviously follow. The inequality Φ ≥ 0 is the main constraint, which justifies
our definition of k. On combining (8) and (9), we first notice that

λL ≥ λ
(

3 +
√

17
4

)
H ≥ h+

λ

σ
.

Then the estimate kLa1a2 ≤ K ≤ 1 + kLa1a2 shows that

Φ ≥ kLa1a2

(
λL− h− λ

σ

)
−
√
k L2a1a2

3
−

2L3/2√a1a2

3
− L(a1 + a2)

3

= La1a2(kU −
√
k V −W ) = 0,

as required.
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As for Θ > ε(N), we use again the estimate h ≥ D(log(λb′′)+1.75)+0.06
to bound from below Θ ≥ Θ0(D − 1) +Θ1, where

Θ0 = log(λb′′) + 1.75− logL+ log
(

2π√
e

)
,

Θ1 = 0.06K − logK − 2 logL+
L3/2√a1a2

6(1 +
√
K − 1)

+ log(λb′′) + 1.75 + log
(

2π√
e

)
.

It is therefore sufficient to prove that Θ0 ≥ 0 and Θ1 > ε(N), since D ≥ 1.
Combining (13) and (14) gives

(17) λb′′ ≥ 2
µ

σ
λ2kL2 ≥ 6

7
λ2kL2 ≥ 32

21
H2.

Bounding L ≤ (5 +
√

17)H/4, by (8) and (9), and plugging the lower bound
(17) into Θ0, we find

Θ0 ≥ logH + log
(

32
21

)
+ 1.75 + log

(
2π√
e

)
− log

(
5 +
√

17
4

)
> 3,

since H ≥ 2.
We now prove the inequality Θ1 > ε(N). First, combining (17) and (3)

gives

h ≥ D
(

log
(

32H2

21

)
+ 1.75

)
+ 0.06 ≥ 3.6,

since H ≥ 2 and D ≥ 1. Recalling that L ≥ 4 and using (5), (8) and (9), we
obtain the lower bound

L3/2√a1a2 ≥ 2Lλ ≥ 2
√
ω

θ
Hλ ≥ 2

√
ω

θ
h ≥ 2

(
3 +
√

17
4

)
· 3.6 ≥ 12.

Then we insert the lower bound (17) and the preceding one into Θ1. On
bounding L ≤ (5 +

√
17)H/4, we find

Θ1 ≥ 0.06K − logK − 2 log
(

5 +
√

17
4

)
+ log

(
2π√
e

)
+ log

(
32
21

)
+ 1.75 +

2
1 +
√
K − 1

.

An elementary numerical verification shows that the right hand side is ≥ 0.4
for any K ≥ 8. Thus, it suffices to prove ε(N) < 0.4. For that purpose, we
use Feller’s version [3, Chapter 2] of Stirling’s formula

N ! ≤
√

2πNN+1/2e−N+1/(12N),
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which is valid for any integer N ≥ 1. It implies the upper bound

ε(N) ≤ 2
N

(
3
2

logN +
1
2

log(2π) +
1

12N
+ log

(
1 +

(
e− 1
e

)N))
.

Observe that the right hand side is a decreasing function of N for N > e,
whose value at N = 32 is < 0.4. Since N ≥ 32, it follows that ε(N) < 0.4
and condition (2) is verified.

3.2.3. The coefficient C. Conditions (1) and (2) having been verified,
Theorem 1 provides us with the lower bound

log |Λ′| ≥ −µ(log %)KL = −µλσ−1KL.

From the definition of K, we obviously obtain KL ≤ L + kL2a1a2, and we
now proceed to estimate the two terms of the sum.

Using the definitions of
√
k, V and W , we can write

(18)
√
k L =

L2

6U
+

1
2

√(
L2

3U

)2

+
8
3

1
√
a1a2

L5/2

U
+

4
3

(
1
a1

+
1
a2

)
L2

U
.

Then, putting U = λ(L−H) and using the upper bounds provided by (10)
and (11), we find

kL2 = (
√
k L)2

≤
(
ωH

6λ
+

1
2

√(
ωH

3λ

)2

+
8ω5/4θ1/4H3/2

3
√
a1a2 λ

+
4
3

(
1
a1

+
1
a2

)
ωH

λ

)2

= µ−1λσCH2 = µ−1λ−1σC(h+ λ/σ)2.

We thus obtain the main estimate

(19) µλσ−1kL2a1a2 ≤ C(h+ λ/σ)2a1a2.

It follows that
log |Λ′| ≥ −µλσ−1L− µλσ−1kL2a1a2

≥ −
√
ωθ (h+ λ/σ)− C(h+ λ/σ)2a1a2,

since, by (8),

µλσ−1L ≤ λL ≤ λ
√
ωθH =

√
ωθ (h+ λ/σ).

The proof of the intermediate lower bound (12) is now complete.

3.3. The coefficient C ′. In this section we record various estimates in-
volving the coefficient C ′. Their proofs being all related, we have collected
them here regardless of their forthcoming applications.

First, notice that C ′ may be expressed in the form

(20) C ′ =
1
λ3

(
ω3/2θ1/2

6
+

1
2

√
ω3θ

9
+

8λω9/4θ5/4

3
√
a1a2H1/2

+
4
3

(
1
a1

+
1
a2

)
λω2θ

H

)
.
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Multiplying (18) by L, we can write

√
k L2 =

1
6
L3

U
+

1
2

√(
L3

3U

)2

+
8

3
√
a1a2

L9/2

U
+

4
3

(
1
a1

+
1
a2

)
L4

U
.

Now, putting U = λ(L−H) and applying (10) with α = 3, 4, 9/2, we deduce
from (20) the estimates

(21)
ω3/2θ−1/2H2

3λ
≤ L3

3λ(L−H)
<
√
k L2

≤ ω3/2θ1/2H2

6λ

+
1
2

√
ω3θH4

9λ2
+

8
3
√
a1a2

ω9/4θ5/4H7/2

λ
+

4
3

(
1
a1

+
1
a2

)
ω2θH3

λ

= λ2C ′H2 = C ′(h+ λ/σ)2.

Using (4), (5) and the upper bound for L in (8), it follows that
√
k L2a1a2 ≥

ω3/2θ−1/2H2 max{1, λ2}
3λ

≥ ω3/2θ−1/2H2

3
≥ ωHL

3θ
≥ 2ωL

3θ
,

since H ≥ 2. We shall use the above lower bound in the form

(22) L ≤ 3θ
2ω

√
k L2a1a2 ≤

3
2

(
4

3 +
√

17

)2√
k L2a1a2,

the last inequality following from (9). Using again (21), (4) and (5), we
bound from below

(23) C ′(h+ λ/σ)2a1a2 ≥
ω3/2θ−1/2H2

3λ
max{1, λ2} ≥ ω3/2θ−1/2H2

3
> e2,

since ω ≥ 4, H ≥ 2 and
√
ω/θ ≥ (3 +

√
17)/4 by (9).

We shall need an upper bound for the ratio C ′/C. For that purpose,
write

C ′

C
=

√
σωθ

λ3µC

=
σ

µ

√
ωθ

(
ω

6
+

1
2

√
ω2

9
+

8λω5/4θ1/4

3
√
a1a2H1/2

+
4
3

(
1
a1

+
1
a2

)
λω

H

)−1

.

Ignoring the second and third terms under the radical, we obtain the bound

(24)
C ′

C
≤ 3

σ

µ

√
θ

ω
< 4 ,

since σ/µ ≤ 7/3 and
√
θ/ω ≤ 4/(3 +

√
17) by (9).
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3.4. From Λ′ to Λ. Observe that
√
ωθ (h+λ/σ) ≥ D log 2, since

√
ωθ ≥ 2

and h ≥ D(log 2)/2 by (3). Recalling (23), we may therefore assume without
loss of generality that

(25) log |Λ| ≤ −C(h+ λ/σ)2a1a2 −D log 2− 2 ≤ −C(h+ λ/σ)2a1a2 − 2.6.

Then we show that

(26) |Λ′| ≤ |Λ|C ′(h+ λ/σ)2a1a2.

To do that, we bound

R = R1 +R2 − 1 ≤ 1 +
√
La2/a1 +

√
(K − 1)La2/a1

≤ 1 + (1/
√

7 + 1)
√
k La2,

since K ≥ 8. Recall that a1 ≥ 1 by (4). It follows from (22) and (21) that

LR ≤ L+
(

1√
7

+ 1
)√

k L2a2 ≤
(

3
2

(
4

3 +
√

17

)2

+
1√
7

+ 1
)√

k L2a1a2

≤ 1.86
√
k L2a1a2 ≤ 1.86C ′(h+ λ/σ)2a1a2.

The same upper bound holds for LS. We thus obtain the estimate

(27) max{LS,LR} ≤ 1.86C ′(h+ λ/σ)2a1a2.

Notice the lower bound

C(h+ λ/σ)2a1a2 ≥
µ

σ
λkL2a1a2 ≥

3
7
λ

(
4H
3λ

)2

max{1, λ2}

≥ 16
21

max{1, λ2}
λ

H2 ≥ 3,

deduced from the inequalities (19), (14), (4), (5) and H ≥ 2. Now, using
(24), (25) and the above lower bound, we first deduce from (27) that

max
{
LS|Λ|

2b2
,
LR|Λ|

2b1

}
≤ 1.86 · 4

2
C(h+ λ/σ)2a1a2e

−C(h+λ/σ)2a1a2−2.6

≤ 12e−5.6,

since the function x 7→ xe−x is decreasing for x > 1. Applying again (27), it
follows that

max
{
LSeLS|Λ|/(2b2)

2b2
,
LReLR|Λ|/(2b1)

2b1

}
≤ 0.53 max{LS,LR}

≤ C ′(h+ λ/σ)2a1a2,

so that (26) is established.
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Combination of (12) and (26) then gives the required lower bound

log |Λ| ≥ −C(h+ λ/σ)2a1a2 −
√
ωθ (h+ λ/σ)

− log(C ′(h+ λ/σ)2a1a2),

if we assume that (13) is satisfied.

3.5. Liouville inequality. It remains to deal with the case b′′ ≤
2µλσ−1kL2 · gcd(b1, b2). Alternatively, we can write this inequality in the
form

b∗1
a2

+
b∗2
a1
≤ 2µλσ−1kL2.

Recall the lower bound
√
ωθ (h + λ/σ) ≥ D log 2 and the estimate (19).

Applying the Liouville inequality in the form of [9, Exercise 3.7.b, p. 109]
gives

log |Λ| ≥ log |b∗2 logα2 − b∗1 logα1| ≥ −b∗1Dh(α1)− b∗2Dh(α2)−D log 2

≥ −1
2

(
b∗1
a2

+
b∗2
a1

)
a1a2 −D log 2 ≥ −µλσ−1kL2a1a2 −D log 2

≥ −C(h+ λ/σ)2a1a2 −
√
ωθ (h+ λ/σ).

Then the required lower bound

log |Λ| ≥ −C(h+ λ/σ)2a1a2 −
√
ωθ (h+ λ/σ)− log(C ′(h+ λ/σ)2a1a2)

obviously follows from (23). This ends the proof of Theorem 2.

4. The corollaries. The recipe for applying Theorem 2 is simple. Ob-
serve that for fixed % and µ, the coefficients C and C ′ are decreasing func-
tions of the parameters h, a1, a2, since ω and θ are decreasing functions of H,
hence of h. Consequently, if h, a1 and a2 are bounded from below, then C
and C ′ will be bounded from above.

We may extend the preceding observation in the following way. Rewrite
the lower bound provided by Theorem 2 in the form

log |Λ| ≥ −C ′′h2a1a2,

where

(28) C ′′ =
(

1 +
λ

hσ

)2(
C +

√
ωθ

(h+ λ/σ)a1a2
+

log(C ′(h+ λ/σ)2a1a2)
(h+ λ/σ)2a1a2

)
.

We now show that C ′′ is a decreasing function of h, a1, a2, for any values of
µ and %. It suffices to verify that the term

T :=
log(C ′(h+ λ/σ)2a1a2)

(h+ λ/σ)2a1a2

is itself decreasing, since the other two terms C and
√
ωθ (h+λ/σ)−1(a1a2)−1

are clearly decreasing, as is the factor (1 + λ/(hσ))2. For that purpose, we
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use (21) to write

C ′(h+ λ/σ)2a1a2 =
ω3/2θ1/2H2a1a2

6λ

+
1
2

√
ω3θH4a2

1a
2
2

9λ2
+

8ω9/4θ5/4H7/2a
3/2
1 a

3/2
2

3λ
+

4
3
a1a2(a1 + a2)

ω2θH3

λ
.

This formula shows that C ′(h + λ/σ)2a1a2 is an increasing function of
h, a1, a2, since ωH and θH are increasing functions of H. Note that the
function x 7→ x/log x decreases for x > e and that C ′(h + λ/σ)2a1a2 > e2,
by (23). It follows that the composed function

log(C ′(h+ λ/σ)2a1a2)
C ′(h+ λ/σ)2a1a2

is a decreasing function of h, a1, a2 and that it takes positive values. Multi-
plying the above ratio by the decreasing function C ′, we obtain T , which is
therefore a decreasing function as announced.

We are now ready to prove Corollaries 1 and 2. Recall the notations used
in those corollaries. For each m ∈ {10, . . . , 30}, choose µ and % according to
the following table:

Table 2. Parameters for Corollary 1

m 10 12 14 16 18 20 22 24 26 28 30

µ 0.54 0.54 0.55 0.56 0.56 0.56 0.57 0.57 0.57 0.57 0.58

% 5.9 6.0 6.1 6.2 6.3 6.3 6.4 6.4 6.4 6.5 6.5

Fix m ∈ {10, . . . , 30}. To deduce Corollary 1 from Theorem 2, we make
use of the parameters µ and % given by Table 2, together with

h = max{D(log b′ + 0.21),m,D},
a1 = (%+ 2)D logA1, a2 = (%+ 2)D logA2.

It follows that

(29) h ≥ m, a1 ≥ %+ 2, a2 ≥ %+ 2.

A numerical computation shows that

D(log(λb′′) + 1.75) + 0.06 ≤ D(log b′ − log(%+ 2) + log λ+ 1.81)
≤ D(log b′ + 0.21)

for any pair (µ, %) provided by Table 2. Condition (3) is therefore satisfied.
Recall that |α1|, |α2| ≥ 1. Then the trivial upper bounds

%|logαi| − log |αi|+ 2Dh(αi) ≤ %|logαi|+ 2Dh(αi)(30)
≤ (%+ 2)D logAi (i = 1, 2)
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show that the parameters a1 and a2 satisfy condition (4). Finally, condition
(5) follows from the obvious inequalities

a1a2 ≥ (%+ 2)2 ≥ (log %)2 ≥ (log %)2σ2 = λ2,

since 0 < σ ≤ 1. Thus, Theorem 2 gives the lower bound

log |Λ| ≥ −C ′′h2a1a2

= −C ′′(%+ 2)2D4(max{log b′ + 0.21,m/D, 1})2 logA1 logA2.

Now recall the lower bounds (29). Since C ′′ is a decreasing function of
h, a1, a2, it follows that C ′′(% + 2)2 ≤ C1, where C1/(% + 2)2 is the con-
stant obtained on substituting the values h = m, a1 = %+ 2, a2 = %+ 2 into
the expression (28) giving C ′′. A numerical computation then gives rise to
the constants C1(m) listed in Table 1. We thus obtain the desired estimate

log |Λ| ≥ −C1D
4(max{log b′ + 0.21,m/D, 1})2 logA1 logA2.

Of course, the values (µ, %) given by Table 2 have been determined in
order that the constants C1(m) should be minimal. The computations were
performed using Mathematica.

As for the real case, the proof is similar. We apply Theorem 2 with

h = max{D(log b′ + 0.38),m,D},
a1 = (%+ 1)D logA1, a2 = (%+ 1)D logA2,

and with µ and % given by the following table:

Table 3. Parameters for Corollary 2

m 10 12 14 16 18 20 22 24 26 28 30

µ 0.52 0.53 0.54 0.55 0.55 0.56 0.56 0.56 0.57 0.57 0.57

% 5.0 5.1 5.2 5.2 5.3 5.3 5.4 5.4 5.4 5.4 5.5

Since logα1 and logα2 are positive real numbers, we can replace (30) by
the sharper estimate

%|logαi|−log |αi|+2Dh(αi) = (%−1) logαi+2Dh(αi) ≤ (%+1)D logAi = ai

for i = 1, 2. We now use the lower bounds

h ≥ m, a1 ≥ %+ 1, a2 ≥ %+ 1.

Then the preceding arguments give rise to the constants C2(m) listed in
Table 1.
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