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1. Introduction. Let K be a local field, that is, a complete discrete
valuation field with finite residue class field kg of ¢ = p/ elements. For tech-
nical reasons, throughout the paper we shall assume that the multiplicative
group p,(K5P) of all pth roots of unity in K satisfies p,(K*P) C K. Fix
a Lubin—Tate splitting ¢ over K. That is, we fix an extension ¢ of the Frobe-
nius automorphism of K™ to K*P (for details, cf. [Ko-dS]). In a sequence
of papers [Ik-Se-1l Tk-Se-2l Tk-Se-3]|, following the idea of Fesenko developed

in [Fes-1l, [Fes-2, [Fes-3|, we have constructed the non-abelian local reciprocity
()

map @;>" for K, which is an isomorphism from the absolute Galois group

G of K onto a certain topological group ng) which depends on the choice

of the Lubin—Tate splitting (.

The aim of the present paper is to study the ramification-theoretic prop-
erties of the map ng). We prove (in Theorems and that ng) is
compatible with the refined higher ramification “filtration” of the absolute
Galois group G of K (cf. and the refined “filtration” of ng) (ct. .

The organization of the paper is as follows. In Section [2| we collect the
necessary results from the theory of local fields. In Section [3] we briefly
review the main results of [Ik-Se-2] on the generalized Fesenko reciprocity
map, and then sketch the construction of the non-abelian local reciprocity

map ng) following [Tk-Se-3]. In the last section, we first introduce the refined

filtrations on G and on ng) and then prove the main results of the paper,
which are stated as Theorems .15 and [£.16]
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2. Preliminaries on local fields. In this section, we shall briefly re-
view the necessary background material from the theory of local fields.

2.1. Local fields. Throughout this work, K will denote a local field,
that is, a complete discrete valuation field with finite residue class field
Ox/px =: ki of qx = q = p/ elements with p a prime number, where
Op denotes the ring of integers in K with the unique maximal ideal pg.
Let v denote the corresponding normalized valuation on K (normalized
by v (K*) = 7). As usual, the unit group of K is denoted by Ug and the
ith higher unit group of K by U}, where 0 < i € Z.

Let K denote a fixed separable closure of K, and K™ the maximal
unramified extension of K inside K®P. The unique extension of vi to K°P
will be denoted by v, and for any sub-extension L/K of K*P /K the normal-
ized form of the valuation v|;, on L will be denoted by vy. The completion
of K™ with respect to the valuation vxn will be denoted by K. For any
separable extension L/K, we put L := LK.

Let Gk denote the absolute Galois group Gal(K*P/K). The topological
generator of Gal(K™/K), which is the Frobenius automorphism of K, is
denoted by ¢x = ¢ (if there is no risk of confusion). Any extension of
the automorphism ¢ : K™ — K" to K®°%P is called a Lubin-Tate splitting
over K and is again denoted by ¢.

We further assume that the multiplicative group p,(/K°P) of pth roots
of unity in K5 satisfies

(2.1) pp (F°P) € K.

2.2. Local Artin reciprocity map. Let Gi}%’ denote the maximal
abelian Hausdorff quotient group Gg /G’ of the topological group G,
where G’ denotes the closure of the first commutator subgroup [Gk,Gk]
of G K-

Recall that abelian local class field theory for the local field K establishes
a unique natural algebraic and topological isomorphism

Artg : G32 =5 KX,

called the local Artin reciprocity map of K, where the topological group KX
denotes the pro-finite completion of the multiplicative group K>, satisfying
certain properties. In particular, for an abelian extension L/ K, and for every
integer 0 < i € Z and real number v € (i — 1,1],

v € UkNp & Artp ), () € Gal(L/K)",

where z € K. Here, N}, denotes the closed subgroup of K* defined to be

the intersection Nz, = Nz Ng /B, where F runs over all finite extensions
of K inside L.
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In what follows, we shall briefly review the higher ramification subgroups
in the upper numbering of the absolute Galois group G of K.

2.3. A brief review of ramification theory. The main reference that
we follow closely here is [Ik-Se-1].

For a finite separable extension L/K, and for any o € Homg (L, K5°P),
introduce

i1/ae(0) 1= min {i(o(x) - o)}

put
Ve 1= #{0 € Hom (L, K°P) iy i (o) > t + 1}

for —1 <t € R, and define the function ¢ /x : R>_1 — R>_;, the Hasse-
Herbrand transition function of the extension L/K, by

u

_J{at, o<ueRr
o/ (u) = 270

U, -1 <u<O.
It is well-known that ¢r/x : R>—1 — R>_; is a continuous, increasing,
piecewise linear function, and it establishes a homeomorphism R>_; =,
R>_1. Let ¢ /i : R>—1 — R>_; be its inverse.
Assume that L is a finite Galois extension over K with Galois group
Gal(L/K) =: G. The normal subgroup G,, of G defined by

Gu={0€G:igk(o) >u+1}

for —1 < u € R is called the uth ramification group of G in the lower
numbering, and has order ~,. Note the inclusion G, C G, for every pair
—1 < wu,u € Rsatisfying v < «'. The family {Gy, }yer. _, induces a filtration
on G, called the lower ramification filtration of G. A break in this filtration
is defined to be any number v € R>_; satisfying G\, # Gy for every
0 < e € R. The function ¢/ = @Z}K : R>_1 — R>_; induces the upper
ramification filtration {G"},cr._, on G by setting

G’ = GwL/K(U)’
or equivalently, by setting
GSOL/K(U) =G

us
for —1 < wv,u € R; here G is called the vth upper ramification group of G.
A break in the upper filtration {G”}UGR?1 of GG is defined to be any number
v € R>_; satisfying GV # GV*¢ for every 0 < ¢ € R.

REMARK 2.1. We list the basic properties of lower and upper ramifica-

tion filtrations on G. In what follows, F'/K denotes a sub-extension of L/K
and H denotes the Galois group Gal(L/F).
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(i) The lower numbering on G passes to the subgroup H of G in the
sense that
H,=HnNnG, for—-1<wue€clR.
(ii) If H < G, then the upper numbering on G passes to the quotient
G/H:
(G/H)"=G"H/H for -1 <wveR.
(iii) The Hasse-Herbrand function and its inverse satisfy the transitive
law
YLk =¢r/koprp and Y g =vrpovp/k.
If L/K is an infinite Galois extension with Galois group Gal(L/K) = G,

which is a topological group under the respective Krull topology, define the
upper ramification filtration {G"},er,_, on G by the projective limit

(2.2) G":= lim Gal(F/K)"

KCFCL
over the transition morphisms t5 (v) : Gal(F'/K)" — Gal(F/K)?, which
are essentially the restriction morphisms from F” to F', defined naturally by
the diagram

tE (v)

Gal(F/K) Gal(F'/K)®

(2.3)
isomorphism

introduced in (ii)
Gal(F'/K ) Gal(F'/F)/Gal(F'/F)

induced from (ii), as K C F C F’ C L runs over all finite Galois extensions
F and F’ over K inside L. The topological subgroup GV of G is called the vth
ramification group of G in the upper numbering. Note the inclusion G C GV
for every pair —1 < v,v’ € R satisfying v < v’ via the commutativity of the
square

F (o
Gal(F/K)® " Gal(r' /Ky

<24) inc.T Tinc.
B (v

Gal(F/K)" +————— Gal(F'/K)"
for every chain K C F C F’' C L of finite Galois extensions F' and F”’ over
K inside L. Observe that:

(iv) G~ = G and G is the inertia subgroup of G.
) Mot @ = {16).
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(vi) GV is a closed subgroup of G, with respect to the Krull topology,
for -1 <wv e R.

In this setting, a number —1 < v € R is said to be a break in the upper
ramification filtration {G"}yer._, of G, if v is a break in the upper filtration
of some finite quotient G/H for some H < G. Let By, /i denote the set of all
numbers v € R>_; which occur as breaks in the upper ramification filtration
of G. Then:

(vii) (Hasse-Arf theorem) Byan g CZNR>_1.
(Vlll) BKsep/K g Q N Rz_l.

2.4. APF-extensions. As in the previous section, let {GY% },er._, de-
note the upper ramification filtration of the absolute Galois group G of K,
and let R’ denote the fixed field (K*P)%k of the vth upper ramification
subgroup G of G in K*P for —1 <wv € R.

DEFINITION 2.2. An extension L/K is called an APF-eztension (APF is
a shortening for “arithmétiquement profinie”) if one of the following equiv-
alent conditions is satisfied:

(i) G%Gy is open in Gk for every —1 <wv € R,
(ii) (Gk : G%GL) < oo for every —1 <wv € R,
(iii) LN RY is a finite extension over K for every —1 <wv € R.

Note that if L/K is an APF-extension, then [kf, : kx| < o0.
Now, let L/K be an APF-extension. Set G = G N GY, and define

0 .0
(2.5) bryx(o) = { V(Cr:GLGR) dw, 0<veR,

S Ot

) _1§’U§0

Then the map v — ¢/ (v) for v € R>_1, which is well-defined for the
APF-extension L/K, defines a continuous, strictly increasing and piecewise
linear bijection ¢ /x : R>—1 — R>_1.

We denote the inverse of ¢y /i by ¢k Thus, if L/K is a (not necessar-
ily finite) Galois APF-extension, then we can define the higher ramification
subgroups in the lower numbering Gal(L/K),, of Gal(L/K), for —1 < u € R,
by setting

Gal(L/K), := Gal(L/K)#r/x®),

REMARK 2.3. Note that:

(i) In case L/K is a finite separable extension, which is clearly an APF-
extension by Definition @ the function ¥ /x : R>—1 — R>_

coincides with the inverse of the Hasse—Herbrand transition function
of L/K introduced in the previous section.
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(ii) If L/K is a finite separable extension and L'/ L is an APF-extension,
then L'/K is an APF-extension, and the transitivity rules for the
functions 1/}[///[(7 QOL//K : RZ—I — Rz_l hold:

¢L’/K = 1/)L//L o ¢L/K7 P /K = PL/K °PL'/L-

3. Non-abelian local reciprocity map. In this section, we shall re-
view the theory developed in [Ik-Se-2| [Tk-Se-3]. Fix a Lubin—Tate splitting
p over K.

3.1. Generalized Fesenko reciprocity map. For an infinite APF-
Galois extension L/K with residue class degree [k, : kx| = d and with K C
L C K4, denote the field of norms corresponding to L/K by X(L/K) and
the completion of the maximal unramified extension X(L/K)" of X(L/K)
by X(L/K) (for details, [Fe-Vo], [Fo-Wi-1, [Fo-Wi-2] and [Win]), and set
Ly = LN K™. There exists a bijective 1-cocycle

(3.1) &) Gal(L/K) — K* [Ny, i L Us oy ey Yo

called the generalized Fesenko reciprocity map for the extension L/K, de-
fined by the composition

¢(<P)
Gal(L/K) = K NpoieLg x Ug o /Ui

(3.2) g (id
o

KX/NLQ/KLg 7CL/L0)

77 A
KX/NL(J/KLE)( X U%(L/K)/YL/LO

Here,

is an injective 1l-cocycle called, following [Ik-Se-2], the genemlzzed arrow
defined for the extension L/K, and defined by

(3.4) ) (0) = (MENLy L5 65 (970)),

for every o € Gal(L/K), where 0 < m € Z is the integer satisfying o|r, =
"L, € Gal(Lg/K) and ¢ "o € Gal(L/Ly), and for any 7 € Gal(L/Ly),

the value gZ) L/Lo (7') of the arrow defined for the extension L/Lg at 7 is de-
fined by [Fes-1l, Fes-2, [Fes-3] and [Ik-Se-1]. Namely, d)L/L (1) = Ur-Ux(L/1L0)
provided that U, € U<> (LK)

: 1—p¢ _ pp7—1
equation U =1 oL,/ Lo

, which is unique modulo Ux(/r,), solves the

where I a.7,/1,, is the canonical prime element
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of the local field X(L/Lg) defined in Lemmas 1.2 and 1.3 of [Ik-Se-2]. For the
definition of the group U°( L/K) and its subgroups Ux(r,/1,,) and Y7, 1, satisfy-

ing the inclusion Ux (/) € Y1,1, we refer the reader to [Fes-1, [Fes-2, [Fes-3]
and [Ik-Se-1]. In the commutative triangle (3.2)), the arrow

(3.5) cL/ro  Ug a0/ UxL/i) = U300/ Yo/ Lo
is the canonical map defined by the inclusion Uy r,) € Y7,r,- Recall
d

that (cf. [Fes-1|, [Fes-2| [Fes-3| and [Tk-Se-1]) the composition ¢, o ¢L/Lo =

o) . : Gal(L/Lg) — U<> /Y11, is the Fesenko reciprocity map for the

L/Lo X(L/K)
extension L/Lg. Thus, for ¢ € Gal(L/K), the value Q(LS‘})K( ) is defined by
(3.6) &) (0) = (TR NL, i L3 B (9770)),

where 0 < m € Z satisfies o|r, = ¢™|r, € Gal(Lo/K) and ¢ "0 €
Gal(L/Ly).

Define a composition law * on 1m(¢ L/ K) by
— - — o () =1 TT
(37) (ﬁ, U) * (b7 V) — (a’ U)(b, V)(¢L¢/K) H((a,U))

for every @ = a.Npy /gLy, b = b.Npy kL 6 K*/Np,kLg with a,b €
K* and U = U~UX(L/K)7 V = VUX(L/K) /UX(L/K with U,V €

X(L/K
UO(L/K) where the action of Gal(L/K) on 1m(¢L/K) is defined by (b, V)7 =
(b, i ma) Then KX/NLO/KLX x Ug /Ux(L/K) 1s a topological group

X(L/K)
under *, and ¢ LK induces an isomorphism of topological groups

(3.8) 8+ Gal(L/K) = im(¢7,),

where the topological group structure on 1m(¢ L K) is defined with respect

to the binary operation * defined by . Likewise, define a composition
law, again denoted by *, on K* /Ny /Ly X U%(L/K)/YL/LO by

(3.9) @0) « (5, V) = (@ )., V) @0 (@)

for every @ = a. NLO/KLO , b= bNLO/KL € K~ /NLO/KL() with a,b € K*
and U = UYpr,, V = V.Y, € US L/K)/YL/LO with U,V € U<>
where the action of Gal(L/K) on K* /Ny xLy x U2

X(L/K)’

L/K)/YL/LO is defined
by (b, V)7 = (5, V¥ 7). Then K* /Ny, kL % U 15/ Yi/1o 18 & topolog-
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45(90)

LK induces an isomorphism of topological groups

ical group under *, and

(3.10) o)

where the topological group structure on K* /NLO/KLO X U§~g L/K)/YL/LO is
defined with respect to the binary operation * defined by ([3.9).

The mappings ¢ LK and Q(L‘P/)K have the following basic properties.

(i) For an infinite Galois sub-extension M /K of L/K such that [kys : ki]
=d and K C M C K(pd/ for some d’ | d, the square

¢(‘P)
Gal(L/K) —5 K* /Ny g L % U;i (L/K) /UX(L/K)

(3.11) Ml N l(eLO/MO Fgglgmen)
Gal(M/K) %KX/NMO/KMOX x Ug X(M/K) /Us (/5

is commutative, where the right vertical arrow is defined by

(312) (L NERT™) 2 @T) = (e, (@ NI (@)

for every (@,U) € K* /Ny, kL ¥ U?%(L/K)/UX(L/K)' Here,

Coleman
N UF%(L/K)/UX(L/K) - U}%(M/K)/UX(M/K)

is the Coleman norm map from L to M defined by equations (2.22) and
(2.23) of [Ik-Se-2|. Likewise, the square

&%)
Gal(L/K) L/K KX/NLO/KLE)( XUF%L/K /YL/LO

(3:13) reSMJ/ o J(EL()/JWU NEAT™)
@
M/K
Gal(M/K) —= K*/Nagy g My x U2 (M/K)/YM/MO

is commutative, where the right vertical arrow is defined by
(B10) (R N - @, 0) — (e, (@), VL @)

for (E,U) < KX/NLO/KLE; X(L/K /YL/LO Here NCOleman []<> (LK) /YL/LO
— U}%(M/K)/YM/MO is the Coleman norm map from L to M defined by
Lemma 2.21 together with equations (2.47) and (2.48) of [Ik-Se-2]. Moreover,
the arrow egg/TMO : K*/NpykLy — K*/Npy, kMg appearing in both
commutative diagrams is the natural inclusion defined via the existence
theorem of local class field theory.
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(ii) For each 0 < i € R, introduce the subgroups (U;;(L/K)) of the field

X o _ 770 i < ;
X(L/K) by (UX(L/K)) Uz /K nUz $(L/K) For each 0 < n € Z, as in
equation (5.42) of [Ik-Se-1], let

(3.15) Q= CL/LO((U;%(L/K)) Us(/x)/Us(L/r) N 1m(¢L/LO))
which is a subgroup of (U;; (L/K )Y/ Y11, Here, the canonical homo-
morphism ¢y, 7, introduced in (3.5)) is defined by equation (5.35) of [Tk-Se-1].

Now, the ramification theorem for the generalized arrow ¢(L<P/)K yields, for
0 < n € Z, the inclusion

(3.16) ¢ /K(Gal(L/K)¢L sxovnsngm) — GAL/K)y, oo ) (nt1))
< <1KX/NLO/KLOX> X ((U;%(L/K))nUX(L/K)/UX(L/K)

B (U§(L/K))n+1UX(L/K)/UX(L/K))a
and the ramification theorem for the generalized Fesenko reciprocity map

Q(Li)K gives, for 0 < n € Z, the inclusion

(317) &) (Gal(L/K) — Gal(L/K)

YL/ KoPL/Ly (M) ¢L/KO<PL/L0(”+1))

g <1KX/NL0/KL5<> X ((Ug(L/K))nYL/Lo/YL/LO - Q27£0)7
where, for 0 < u € R, Gal(L/K), denotes the uth ramification subgroup

in the lower numbering of the Galois group Gal(L/K) corresponding to the
infinite APF-Galois extension L/K.

REMARK 3.1. In fact, ramification theorems for ¢ LK and 45(L /)K stated
in (3.16)) and (3.17)) can be simplified as follows. For 0 < n € Z, as ¢,/ (n) =

PLo/K © (pL/LO(TL) and Lo = L N K™, it follows that ¢/ (n) = ¢r/1,(n).
Therefore, (3.16) can be reformulated as

(3.18) ¢} (Gal(L/K), — Gal(L/K)ni1) C (U vy, i)

X (Ug 1,y 10y) " Uxnri)/ Uk = (U;%(L/K))nHUX(L/K)/UX(L/K)),
and (3.17) can be reformulated as

()
(3.19) &),

(Gal(L/K)n — Gal(L/K)n+1)
n n+1
C <1KX/NL0/KL(>)<> X (<U§(L/K)) YL/LO/YL/LO - QL—/FLO)'
Finally, the following remark is in order.

REMARK 3.2. We do not need assumption (2.1]) on the local field K to
define the generalized arrow ¢%D/)K by (3.4). For details, cf. [Tk-Se-2].
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3.2. Construction of the non-abelian local reciprocity map. For
each 1 < d € Z, let K 4 denote the fixed field of ©? € Gk. Observe that
K*P = K"K,i and Ky" = K™ N Ka, where Kj" denotes the unique
unramified extension over K of degree d. Now, for each 1 < n,d € Z,
let F( R F( )(K ,¢) be a Galois extension over K, which is the unique
maxnnal n- abehan extenswn . )| of K} in K a. Note that

(3.20) U = (e,
1<deZ

where (K™)"2 denotes the “n-abelian closure” of K™ in K®P. Thus, it
also follows that

(3.21) U U W=k

1<n€Z 1<der

Moreover, for each pair (n,d) of positive integers, Fén)

over K.
Now, the absolute Galois group G of the local field K is the projective
limit

is an APF-extension

Gx = lim Gal(I\" /K)
(n.d)

over the restriction morphisms

P Gal(I /1) — Gal(T§") 1K)
for (n,d), (n',d") € Z>1 x Z>; satisfying n’ < n and d’'|d (which is equiv-
alent to I’Cg,n) - chn)). Note that, for each 1 < n,d € Z, the APF-Galois

extension Fén) over K has the residue class degree d. Therefore, the general-
ized Fesenko theory developed in [Ik-Se-2] can be applied to the extensions
of the form F / K, which would enable us to construct the generalized

®) (%)

arrow ¢( k¢ and the generalized Fesenko reciprocity map @'% e , for ev-

ery palr (n d) € Z>1 X Z>1. Then using property (i) for the collections
{¢ }(nd EZ>1><Z>1 and {Q )

F(n>/K}(n’d)eZ21XZZ:l’ and passing to the pro-
jective limits, we get the generalized arrow ¢g}0) for the local field K and the

F(n)/K

non-abelian local reciprocity map 45(;{0) for the local field K respectively.

To be more precise, we first introduce the following notation to sim-
plify the discussion. In what follows, L/K denotes an infinite APF-Galois
extension such that [k, : kx| =d and K C L C K

(*) Recall that by an n-abelian extension over a field F, we mean a Galois extension
E/F whose Galois group Gal(E/F) has a trivial nth commutator subgroup Gal(E/F){™.
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NoTATION 3.3. For an infinite Galois sub-extension M/K of L/K such
that [k : k] =d and K C M C K o provided that d'|d, we let

(icy /ar denote the map (egF/TMO N E/c’]%/e[man) defined by (3.11]) and (3.12)),
(ii) Cp/n denote the map (eF Lo / vy V] E;’ﬁman) defined by (3.13]) and (3.14)).
Recall that

v i K7 Nyl < Ug e [Ux(u/x)

— KX/NMO/KMOX X UX(M/K /UX(M/K)

and
CL/M : KX/NLQ/KLE)(XU%(L/K)/YL/LQ s KX/NMO/KMOX XU}%(M/K)/YM/MO

are homomorphisms of the underlying abelian groups. Moreover, for the
valued fields L and M as above, let F'//K be an infinite Galois sub-extension
of M/K satisfying K C I C K o with [kp : k] = d” where d"[d’. If we
set Fyp = FN K™, the following equalities hold:

(i) CE/M =id and Cp/y =1id, if L = M.
(11) CZ/F = CX4/F OC([)//M and CL/F = CM/F OCL/M.
It follows that the systems

(322) {KX/NKEI"/KK&HX X U<~>

x(r /K)/ U

() /5023 Conmy s !y Y
XA /K Ty g T
and
3.23 K Npenr Kan US n Y n ,C n n! ’
(3:28) K7/ Niyx zarg 0 Y ey Crgoy J”ﬁ?
are projective. Let

(p)o _ _ nr
(324) VK = V hm K* /NKnr/KK X X U (F(n)/K / (F(n)/K)

(n d)
= Z X (1;1;1) U~(F(")/K)/UX(F(§”)/K)
and
(325) V%) = VK = (lll’;l)K /NKHT/KKIHX X U (F(n)/K)/ (n)/[(glr
- }i_r?) Usr i Yrio ey

be the projective limits of the systems (3.22)) and (3.23]) respectively. The

limits ng)’o and ng), or V% and Vi respectively if there is no risk of
confusion, depend on the choice of a Lubin—Tate splitting ¢ over K.
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Note that V¢ and V have natural topological G g-module structures,
where the G g-action on V¢ and on V is defined by

7l p(m)

(326) ((ad,naﬁd,n))gm = ((ad,naﬁd,n) d )d,n
for every coherent sequence ((Gdyn,ﬁd,n))dm from V9 or from Vg, and for
every 0 € G = lim Gal(FCEn)/K).
(n,d)
For any two pairs (n,d) and (n/, d’) satisfying n’ < n and d’ | d, the square

¢ (n) Knr
U U, (n fa /K4 pe Y (n
<<"’/K>/ XV /K) X<F5">/K>/ Ly /Ky
NColemdn f\?Coleman
(3.27) F(n)ﬁn)l l P /)
¢ ("I)/Knr
S o U pnty gy & 5 US Y, )
X(§ /K XTI, /K) F(")/K /K5

is commutative. Therefore, the topological G g-modules V% and Vg are
related to each other by a topological Gx-module homomorphism

(3.28) CK = (hIIdl)(lde/NKm/KKnrx ) cF<n)/Km) V% — Vi

defined by the commutativity of the diagram (3.27]).
Therefore, there exists an injective map

(3.29) ¢ = lim ¢%) et G = Vi
(nd)
defined by
(3.30) 2 (@anan) = @0 (@an)an
for every coherent sequence (04,n)dn € lim Gal( / K) = Gk, and a bi-
jective map (n d)
(3.31) @9 = (p_r?) ¢§§1>/K Gr — Vi
defined by
(3.32) 0 (0an)an) = @) (Gan))an

for every coherent sequence (04,5)a,n € lim Gal(Z| n)/ K) = Gk. Moreover,
()
the injective mapping ¢If : G — V% is a l-cocycle, that is, for 0,7 € Gk
with respective coherent sequences (04n)d.n, (Tdn)dn € @Gal([‘ an) /K),
(n,d)
(3.33) 10 (07) =8 ()83 (7).
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(¥).

Also the bijective mapping @}.": Gk — Vi is a 1-cocycle, i.e., for J, TeGg

with respective coherent sequences (04 )dn, (Tdn)dn € lim Gal( / K),
(n d)
(3.34) ') (o7) = ') (0)8\?) (7).

DEFINITION 3.4. The injective 1-cocycle ¢§f) : Gg — V9 is called the
(¥)

generalized arrow for K, and the bijective 1-cocycle @I?
called the non-abelian local reciprocity map of K.

:GK—>VKiS

The 1-cocycles ¢gf) and @gf) are related to each other by
(3.35) @9 = i 00

4. Ramification theory. Now, by Theorems 2.7 and 2.20 of [Tk-Se-2]

(cf. also Remark[3.1]in Section [3)), the ramification theorems for the general-
(%)

and for the generalized Fesenko reciprocity map @7 ™ i

ized arrow ¢F<”>/K
d

give, for 0 < w € Z, the inclusions

(A1) 0 (Gal(Ty” /K ) = Gal(Ty" /K )ui1)
d

< w
< <1KX/NK3r/KK3”> % ((UX(F;"UK)) UX(I’;")/K)/UX(FOW/K)

w—+1
B (Us%(r;m/m) UX(Fg")/K)/UX(F(Em/K))’

and
(42) @, (GallIy"/K)y — Gal(Iy"/K)ui)
d
o w+1
where Gal(I’ C(ln) /K), denotes the wth higher ramification subgroup in the
lower numbering of the Galois group Gal(I" én) /K) corresponding to the

infinite APF-Galois extension F / K.
The aim of this section is to state and prove ramification theorems for the
generalized arrow ¢([f) : Gg — V% and for the non-abelian local reciprocity

map 45( #) . :Gg — Vk.

4.1. Higher ramification subgroups of G in the upper number-
ing. To simplify the discussion, we introduce the following notation.

NOTATION 4.1. For every 1 < d,n € Z, the Galois group Gal(F[En)/K)
is denoted by G(d,n). Moreover, for any —1 < w € R, G(d,n)" denotes the
wth ramification subgroup of G(d,n) in the upper numbering.
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PROPOSITION 4.2. For (n',d'), (n,d) € Z>1 X Z>1 satisfying n’ < n and
d'|d, and for 0 <w € Z,

Proof. As F(,n ) and Fé") are APF-extensions over the field K, for every
—1 < x € R, setting G(;;,"I) =GY mGFé,"’) and G%;n) =GY OGFd(n), we have
(GY - G%G(I)y/)) < oo and (GY : G%G%;n)) < oo (cf. [Fo-Wi-1| [Fo-Wi-2|
Win|). Now, if n’ < n and d'|d, then " c chn). Therefore,

(G% : %G%<n/)) < (G% : ?{G?ﬂ(n)) < 00,
d’ d

as G

i - prf). Hence, for 0 < w € Z,
wpy,)/K(w) = (S)(G?( : %Gf}y,)) dx < é(G‘}{ L GG, 5")) dz = ().

Now, the desired inequality follows, because
and likewise
wFé”)/K(w) = wpo(l")/K:ilr © ngr/K(w) = 1’[}F£n)/K3r ('LU) u

REMARK 4.3. Note that Proposition is more generally true in the
following setting. Let L be an infinite APF-Galois extension over K satis-
fying K C L C Ka with [k, : k] = d, and M/K be an infinite Galois
sub-extension of L/K satisfying K C M C K o With [ky : k] = d, where
d'|d. Then, for 0 < w € Z,

Ui/, (W) < Py, (w),
where Lo = LN K™ and My = M N K™. The proof follows the same lines.
It is well-known that, for a fired —1 < w € R, the projective limit
(4.4) Gy = lim G(d,n)"”
(n,d)

over the restriction morphisms

r&,’dcg,) :G(d,n)Y — G(d',n")*

for (n,d), (n',d") € Z>1 x Z>; satisfying n’ < n and d’|d defines a subgroup
G of the absolute Galois group Gk, and we have the following definition.

DEFINITION 4.4. For —1 < w € R, the group GY is called the wth higher
ramification subgroup of Gy in the upper numbering.
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However, it turns out that we need a finer upper ramification “filtration”
of Gk. Let w := (w,q)) be a net in R>_; always assumed to be indexed
over the directed set Z>1 x Z>1, where (n/,d') < (n,d) if " <n and d’'|d
for (n,d), (n',d") € Z>1 x Z>1. Furthermore, assume that the net w in R>_4
is increasing, that is, Wiy gy < Wi q) if (n',d") 2 (n,d). In case w = (W, q))
in R>_1 is constant, that is, w(, q) = c for every (n,d) € Z>1 X Z>1, the net
w will be simply denoted by c.

Note that, for an increasing net w in R>_1, the projective limit
(4.5) Gy = lim G(d, n)"

(n,d)
over the restriction morphisms
7d i
P G(d,n) o — G(d ) et < G(d )" o)
for (n,d), (n',d") € Z>1 x Z>; satisfying n’ < n and d’|d defines a subgroup
Gl% of the absolute Galois group G, and we have the following definition.

DEFINITION 4.5. For an increasing net w in R>_j, the group G}% is
called the wth higher ramification subgroup of Gx in the upper numbering.

DEFINITION 4.6. Let w = (w(,,q)) be an increasing net in R>_;. The
net w' in R>_; defined by

4. / - n n n 1 )
(4.6) Wnd) = Ppom e (Vpim s pene (Wena)) +1)

for every pair (n,d), which is clearly an increasing net in R>_1, is called the
successor of w.

Note that, for any increasing net w in R>_1, we have the inclusion
(4.7) Gk C Gy,

because G(d, n)wpén)/xgr(w("vd))ﬂ C G(d, n)wF(g")/K{;r for every pair

(n,d). The proof of the following lemma is clear.

(Win,ay)

LEMMA 4.7. For any increasing net w in R>_1 and for o = (04n)dn €
@ G(d,n)*md = GI%, the following two conditions are equivalent.
(n,d)

(i) 0 € G —GY.

i) o4, € G(d,

(11) ad, S ( n)wFén)/Kgr
(n, d) S ZZI X ZZI-

(w<”ﬂ,d)) - G(d7 n)¢F(n)/Knr(w(n,d))+]‘ for some
d d

4.2. The groups V?}M and V%{ for an increasing net w in R>_;.
The following proposition is central to what follows.

PROPOSITION 4.8. Let L be an infinite APF-Galois extension over K
satisfying K C L C K a with [k, : kK] = d, and M /K be an infinite Galois
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sub-extension of L/ K satisfying K C M C K o with [ky s k] = d, where
d' |d. Then

A/ © <> w
for every 0 < w € Z.
Proof. For 0 < w € Z, let a = (ag )o<icz € (U§(L/K))w. That is, the
norm coherent sequence o = (v Jo<iez € Ug R(L/K) satisfies
Vi) (g osier — 1z k) = vilag —1) 2w
where the equality follows from the definition of addition on X(L/K) and
the valuation vg ;.\ on X(L/K). Thus, by the definition of the mapping

Nijaro (@) X(L/K)* — X(M/K)*, it follows that

YR(m/k) (/\7L/M o (p >L/M<(04§ Jo<iez) — 1~(M/K))

14 + + d' (f(L/M)—1) L/M)2
= Z/K(a% o v ? —-1)= I/f((af?( /M _ 1),
as a = (« Qg )o<icz € U (LK) and the K-coordinate of o satisfies ap € UL,

where Lo = L N K. Thus,
Vg (/K (Np/ar o @ ((@p Josiez) — Lgou/x))

— K(ak—l)—i—yf(( Z a%) > w,
0<L<F(L/M)?

which shows that K/’L/M o <<,0>L/M((O£Ei)0§iez) S UX(M/K) Combining this

with the property (ii) of equation (2.21) in [Ik-Se-2] yields the assertion. =

NOTATION 4.9. Let L be an infinite APF-Galois extension over K sat-
isfying K C L C K4 with [kL : ki| =d. For 0 <w € R, let

(4.9) (V(LSK;)’KO) =V7k =K"/NiyxLy x (UQ(L/K)) Us/x)/Ux(L/K0)s

(410) (V)" = Vi = K NioycLg % (U2 10) " Yiyne/Yisio-
Therefore, by Remark [£.3] for the local fields L and M as in Proposition
and for 0 < wy i, wy/x € R satisfying wy/ g < wp /i, the map CE/M
introduced in Notation [3.3)i) restricts to

oYL Ly (WL K) 0¥ nr /g (War/ k)
Clm VK ’ = VK ’ )

and the map Cy,ps introduced in Notation (ii) restricts to

Yr/Ly(Wr/K) ¥ (w )
o Viia ) s el

Thus, the following corollary follows directly.



Ramification theory 389

COROLLARY 4.10. For an increasing net w = (w(, q)) in R>o, the sys-
tems

071/) nr (w 5 )
(4 11) Fén)/Kd () ‘CO
' ™ /k e i<
d d 4 >
d'|d
and
d’ (n) nr (w(n,d))
(4.12) o 5 C iy ()
Fc(ln)/K Fd /Fd/ ’I"L/Sn
d'|d

are projective.

Proof. Follows from the projectivity of the systems (3.22)) and (3.23)),
and from Proposition [4.8] combined with Proposition .

For any increasing net w in Rxg, let

,ON W o, W . ’ /K1r
(413) (V)= Vi =lim v @ /"
() 10/
5 V() e (W)
=1 x (%)(UX(FG@ /K)) @ UX(FOE”)/K)/ UX(I‘;")/K)
and
¥ (n) nr(w(n,d))
414) (Ve .— g2 — Jim v (e /N
( ) ( K ) K ((ﬁ) Fén)/K
o~ Y (), ene (W(n,a))
_ : o '\ Kk
=17 X lin (UX(F(YL)/K)) d d YFC(l”)/Kgr/YF;”)/KEr

(n,d)
be the projective limits of the systems and respectively. These
limits (V%)’O)ﬂ and (ng))ﬂ, or V3 and Vi if there is no risk of confusion,
depend on the choice of a Lubin—Tate splitting ¢ over K.

LEMMA 4.11. For (n,d), (n',d’) satisfying n’ < n, d'|d, and for 0 <
Wind), Wnray € R satisfying wiy gy < wipq and 0 < ¢F5")/K(w(”’d))’
wr(gr’)/K(w(n’:d’)) € Z, the squares

(v() )
" /K U
W(n,d d_) ( )
G(dv n) (md) A(n,d)
(4.15) (n.) °
T(n!,d) Fd(lm/Fé?/)

()

S
~ Q

F(TL/)/K

G(d ) ) —— A )
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and
Q(“P)
G(d,n)?md 4> A
(n,d)
(4.16) (n,d) C /
"(n! ) ) g g
F(" )/K (Y)

G(d,n)"ot ) ——— D)

are commutative, where for (n,d) € Z>1 x Z>1 and 0 < Wn,a) € R satisfying
0<vpom ) (Wing) € Z,

A(n,d) = (1gx [Nine i K3 ) X (ng(Fd(m/K)) fa K Ux<r5”>/K)/UX(F§")/K)’
A(n d) <1K>< /NKnr/KKnr X > (U (F(n)/K)) d YFén)/Ksr/YF(gn)/Kgr .

Proof. Follows from Proposition and the basic property (iii) of ram-

ification theory of ¢>(L“7K and @%O/)K together with the basic property (i) of

¢(sz)}( and Q(LW/)K stated in Section =

For any increasing net w = (w(, q)) in R>o, let 1V 32 denote the kernel of
the projection Pry : V?&w — 2, and 1VI% denote the kernel of the projection
Pry : V% — Z. An immediate consequence of Lemma is

COROLLARY 4.12. Let w be any increasing net in R>g and o € Gy.
Then:

(i) 45&?) <a> c N}%-

Now, for an increasing net w = (w(md)) in R>g, introduce

(4.17) Q% = ex (VR Nim(@)),
where cg : V§ — Vg is the canonical map defined by (3.28). Note that
ck(1VE) =1V by the commutativity of the square (3.27) and by Propo-
sitions .2 and .8
LEMMA 4.13. For an increasing net w = (W, q)) in R>o,
Y (), nr (Win,d))
(1.19 {a i i wcomen, |
d d d d’ nosn
dd
18 a projective system and its projective limit is
P

F(”) /Knr

F<n>/Km( (n.d))

(4.19) Qy = (15) x lim @
(nd)
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Proof. The projectivity of (4.18)) follows from the projectivity of the
(¥) o
F§">/K)’ W/ r

d'ld
(3.27). Moreover, the equality (4.19) follows from ({3.28]) and (3.27)). m

In the lemma below, whose proof is clear, w’ denotes the successor of w.

system {im( )y }n'<n combined with Proposition 4.8 and

LEMMA 4.14. (i) For any increasing net w = (W q)) in R>_1 and for

an element u = (Ugpn)dn = ((1K></NK3r/KK(riAr>< Udn))dn of

¥ (n) (W(n,a))
o ~ X N r /KT
VY —<1Z>X<%(U>z<r;n>/m) o Usrs iy Vsiro 1y

we have: u € 1V‘;%w — 1V§%wl if and only if

ud,’l’b = (1KX/NK3F/KK3rX’Ud7n) € <1KX/NK3Y/KKLrier>

% (n) nr(w(n,d))
o ik
X ((UX(F('”)/K)) d d UX(F;TL)/K)/UX(F(YL)/K)
d
Y (n) e (Win,a)) 1
(170 r{™ /K
<U§§(py> /K)) co U K/ Ux(rim /K)
for some (n,d) € Z>1 X Z>1.
(ii) For any increasing net w = (w(,q)) in R>_1 and for an element

U= (Udpn)dn = ((1KX/NK3r/KK3rXaUd,n))d,n of

Fd /K‘d“ ’ Y " Y N

we have: u € 1V[% — Q%’ if and only if

ud’n e (1KX/NK3r/KK3rX’Ud’”) € <1KX/NK3r/KK3rX>

¢F§")/K;‘r (W(n,a))+1

wpén)/Kgr(w(n,d))
0

0o
X ((Usz(Fén)/K)) Ypé")/Ksr/YF;")/KCrl.r - Q

for some (n,d) € Z>1 x L>1.

4.3. Main theorems. We can now state and prove the main theorem,
that is, the ramification theorem for the non-abelian local reciprocity map

45%). In order to do so, we first prove the ramification theorem for the gen-

eralized arrow ¢§f) G — V%.

THEOREM 4.15 (Ramification theorem for q&%)). For any increasing net

w = (Wn,q) in R>_1 satisfying 0 < ¢FF§”)/K;“ (Wn,q)) € Z for every (n,d)
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in Z>1 X Z>1, we have the inclusion
(4.20) (e e S N\ el
Proof. Let w be as in the assumptions. Let

0= (0dn)dn € lin G(d,n)"md = G}ﬂ{'

(n d)
Clearly, by Corollary - (o) € V. By Lemma the condition
o€ Gy — G’%( is equivalent to the existence of a pair (n,d) € Z>1 X Z>1

sa‘msfymg gin € G(d,n) G(d,n)y Winay)+1- Lhere-

¥ r(m e nr (W) F(n)/ nr

fore, by the ramification theorem for the generalized arrow ¢ <)n>/ stated
in (1),

(%)
(4

(Wen,a))
o
X ((UX(FQH)/K))

i /xar U

x(r{™ /K)/ U

X(I{ /K)

P o (Wi, ay)+1
£ gone (Vi)

= U0 i) Urgm a0/ Uk )

which proves, by Lemma [4.14](i), that
%)(J) € 1V§%H — 1V0’g/. L]

THEOREM 4.16 (Ramification theorem for Q(Lp)). For any increasing net
w = (Wp,q)) in R>_1 satisfying 0 < wF(TL)/Km( (nd)) € Z for every (n,d) €
d d

Z>1 X L>1, we have the inclusion

(421) #,0(G - G) € Vi - Q.
Proof. Let w be as above. Let 0 = (04n)dn € lim G(d,n)" D = G%.
(n,d)
Clearly, by Corollary ( i), @gf) (0) € V. By Lemma the condition
o€ Gy — G’%{ is equ1valent to the existence of a pair (n,d) € Z>; X Z>1

sat1sfy1ng gin € G(d,n) — G(d,n)y Winay)+1- Lhere-

111 n nr(wn,d) n nr(
£ a0 sy

fore, by the ramification theorem for the generalized Fesenko reciprocity

map 455:‘21)/[(, stated in (4.2)),
d

Odn) € <1KX/NKgr/KK3YX>

d’ n nr(w n,d )+1
wp(;M/Kgr(w("’d))Y (™) e ()

= n n Y n -
X(FCE )/K)) Fé >/K§r/ Fc<l )/K;‘r Qfén)/K;‘r ’
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which proves, by Lemma [4.14{(ii), that

ng)(a) S 1V}U? — Q% u
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