
ACTA ARITHMETICA

132.4 (2008)

Kloosterman sums, elliptic curves, and
irreducible polynomials with prescribed trace and norm

by

Marko Moisio (Vaasa)

1. Introduction. Let Fq be a finite field with q= pr, and let a, b∈Fq,
b 6= 0. Fairly little is known about the number Pm(a, b) of irreducible poly-
nomials p(x) = xm−axm−1 + · · ·+ (−1)mb in Fq[x]. Carlitz [1] obtained the
asymptotic formula

Pm(a, b) =
qm − 1

mq(q − 1)
+O(qm/2) (m→∞),

and evaluated
∑

b Pm(a, b) where b runs over F∗q , and over the set of squares
(resp. non-squares) in F∗q . Later Yucas [20] calculated elementarily the num-
bers

∑
a Pm(a, b) and

∑
b Pm(a, b) where a, b run over Fq.

By the bijection p(x) 7→ (−1)mb−1xmp(1/x) we see that Pm(a, b) equals
the number of irreducible monic polynomials of degree m in the arithmetic
progression

{cx+ d+ f(x)x2 : f(x) ∈ Fq[x]},
where c = (−1)m+1ab−1 and d = (−1)mb−1. Applying a general asymptotic
bound on the number of primes on an arithmetic progression (see e.g. [16,
p. 40]) we actually have the asymptotic bound

Pm(a, b) =
qm−1

m(q − 1)
+O

(
qm/2

m

)
(m→∞).

Finally, Wan [18, Thm. 5.1] obtained the following effective bound:

(1.1)
∣∣∣∣Pm(a, b)− qm−1

m(q − 1)

∣∣∣∣ ≤ 3
m
qm/2.

For a more complete survey the reader is referred to [5].
The bounds above are obtained by using Dirichlet L-series over Fq[x] and

the Riemann hypothesis for function fields over a finite field. In this paper
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we express Pm(a, b) in terms of the numbers Nt(a, b) of elements x ∈ Fqt

(with t |m) satisfying Trace(x) = a and Norm(x) = b (Trace, Norm are from
Fqm onto Fq), which, in turn, are expressed in terms of exponential sums.
This opens up a possibility to calculate Pm(a, b) explicitly in certain special
cases. Moreover, we shall obtain an improvement of the bound (1.1) if m is
small compared to q, more precisely, if m ≤ 3

2(q − 1). If a = 0 the bound is
obtained elementarily, but if a 6= 0 this is done by linking the problem to
the number of solutions of certain system of equations, and making use of
the Katz bound [11]:

(1.2)
∣∣∣∣Nm(a, b)− qm − 1

q(q − 1)

∣∣∣∣ ≤ mq(m−2)/2,

proved by using deep algebraic geometry.
The Katz bound with m = 3 plays a significant role in the proof by

Huczynska and Cohen [10] of the existence of a primitive free (normal) cubic
polynomial with a ( 6= 0) and b fixed, which completed a general existence
theorem (see also [4, 6, 5]). We shall improve the Katz bound in this case.
In fact, we get sharp lower and upper bounds for N3(a, b), and as a corollary
for P3(a, b), by using only the Hasse–Weil bound for elliptic curves together
with a simple divisibility argument.

Another special case where the Katz bound can be improved is the case
m = pk for some k. In particular, if p = 3 (resp. p = 2) a result on the
distribution of irreducible cubic (resp. quartic) polynomials in Fq[x] with
trace and norm prescribed is obtained in terms of Kronecker class num-
bers by using the known value distribution of a Kloosterman sum over Fq
[12, 13].

Next, necessary and sufficient conditions for a Kloosterman sum over F2r

divisible by 3 is given. In the case of r odd this result follows also from [3,
Thm. 3]. Finally, a new proof for the value distribution of a Kloosterman
sum over the field F3r is given. The proof uses only elementary properties
of elliptic curves together with a result by Deuring [8] which lies deeper: the
knowledge of the number of isomorphism classes of elliptic curves over Fq
having q + 1 + t points with gcd(q, t) = 1.

Acknowledgments. The author is indebted to the anonymous referee
for helpful comments and suggestions which improved the clarity of the
paper considerably.

2. Basic formulae. The aim of this section is to establish a link between
the numbers Nm(a, b) and Pm(a, b), and to give basic formulae for Nm(a, b)
and Pm(a, b) in terms of exponential sums. The formulae will be studied
more closely in later sections.
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m, p, r fixed positive integers, m ≥ 2, p a prime
Fq the finite field with pr elements
a, b fixed elements in Fq, b 6= 0
Pm(a, b) the number of irreducible polynomials

xm − axm−1 + · · ·+ (−1)mb ∈ Fq[x]
t a positive factor of m
d equals gcd(q − 1,m/t)
γt a primitive element of Fqt

g the primitive element of Fq defined by g = Normt(γt)
trt(x) the trace function from Fqt onto Fq
Normt(x) the norm function from Fqt onto Fq
St(a, b) the set of the elements x in F∗qt with

trm(x) = a and Normm(x) = b

Nt(a, b) the number of elements in St(a, b)
µ the Möbius function
χ and e the canonical additive characters of Fq and Fqt

X (Fq) the set of rational points on an algebraic
curve X defined over Fq

The following two lemmas relate the numbers Pm(a, b) and Nt(a, b):

Lemma 2.1.
Pm(a, b) =

1
m

∑
t|m

µ(t)Nm/t(a, b).

Proof. Let

Ht(a, b) = |{x ∈ F∗qt : trm(x) = a, Normm(x) = b, and x 6∈ Fqs if s < t}|.
Obviously Nm(a, b) =

∑
t|mHt(a, b), and now by the Möbius inversion for-

mula
Hm(a, b) =

∑
t|m

µ(t)Nm/t(a, b).

But Hm(a, b) = mPm(a, b), completing the proof.

Lemma 2.2. Let m = pe11 · · · p
ek
k be the canonical prime number decom-

position of m (p1 < p2 < · · · ), and let m′ = p1 · · · pk. Then

Nm(a, b)−M1m
′/2 ≤ mPm(a, b) ≤ Nm(a, b) +M2(m′ − 2)/2

with M1 = maxh{Nm/h(a, b)}, M2 = maxs{Nm/s(a, b)} where h (resp. s>1)
runs over the factors of m′ having an odd (resp. even) number of prime
factors. If k = 1, set M2 = 0.
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Proof. Assume k = 1. Now mPm(a, b) = Nm(a, b) − Nm/p1(a, b) by
Lemma 2.1. Moreover, since M1 = Nm/p1(a, b) and M2 = 0, the conclu-
sion follows in this case. Assume k > 1. By Lemma 2.1 we have

mPm(a, b) = Nm(a, b) +
∑
s

Nm/s(a, b)−
∑
h

Nm/h(a, b).

Since m′ ≥ 2k, we now get

mPm(a, b)−Nm(a, b) ≥ −M1

∑
h

1 = −M1

bk/2c∑
i=0

(
k

2i+ 1

)
= −M12k−1

≥ −M1m
′/2.

Moreover,

mPm(a, b)−Nm(a, b) ≤M2

∑
s

1 = M2

bk/2c∑
i=1

(
k

2i

)
= M2(2k−1 − 1)

≤M2(m′ − 2)/2,

and the proof is complete.

Next we derive a formula for Nt(a, b). First, we observe that if a 6= 0,
then

(2.1) x ∈ St(a, b) ⇔ p - m/t and trt(x) = (t/m)a and Normt(xm/t) = b,

and if a = 0, then

x ∈ St(a, b) ⇔ p |m/t and Normt(xm/t) = b,(2.2)

or p - m/t, trt(x) = 0, and Normt(xm/t) = b.

Second, we see that

Normt(xm/t) = b ⇔ (m/t)i ≡ indg b (mod q − 1)(2.3)
⇔ d | indg b and i = i0 + (q − 1)j/d,

where j runs over the set
{

0, . . . , qt−1
(q−1)/d − 1

}
, and i0 is a solution of the

congruence mi/dt ≡ (indg b)/d (mod (q − 1)/d).

Lemma 2.3. Assume p - m/t and d | indg b. Let i0 be a solution of the
congruence mi/dt ≡ (indg b)/d (mod (q − 1)/d) and let a0 = ta/m. Then

Nt(a, b) =
d

q(q − 1)
(qt − 1 + σt(a, b)),

where

(2.4) σt(a, b) =
∑
c∈F∗q

χ(−ca0)
∑
x∈F∗

qt

e(cγi0t x
(q−1)/d).
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Proof. Let α be an element in Fqt with trt(α) = t/m. Now, by (2.3) and
by the orthogonality of characters we get

qNt(a, b) =

qt−1
(q−1)/d

−1∑
j=0

∑
c∈Fq

χ(c trm(γi0+(q−1)j/d
t − αa))

=
∑
c∈Fq

χ(−ca)

qt−1
(q−1)/d

−1∑
j=0

e

(
m

t
cγi0t γ

(q−1)j/d
t

)
c 7→ t

m
c

=
d

q − 1

∑
c∈Fq

χ(−ca0)
∑
x∈F∗

qt

e(cγi0t x
(q−1)/d)

=
d

q − 1
(qt − 1 + σt(a, b)).

3. Zero trace. In this section we assume that a = 0 and simplify
formula (2.4) by using Gauss sums and some very elementary group theory.
This will enable us to obtain an improvement of the Katz bound and the
Wan bound in the case a = 0. We use the following notations:

Hn the subgroup of order n of the multiplicative
character group of Fq

λ0 the trivial character of Hn

For a multiplicative character ψ of Fqt we define a Gauss sum

G(ψ) :=
∑
x∈F∗

qt

e(x)ψ(x).

Lemma 3.1. Let n be a factor of q − 1 and let α ∈ F∗qt. Then∑
x∈F∗

qt

e(αxn) =
∑
λ∈Hn

G(λ ◦Normt)λ(Normt(α)),

where λ = λ−1.

Proof. It is easy to see [14, p. 217] that∑
x∈F∗

qt

e(αxn) =
∑
ψ∈H′n

G(ψ)ψ(α),

where H ′n is the subgroup of order n of the multiplicative character group of
Fqt . But the surjectivity of Normt implies that H ′n = {λ◦Normt : λ ∈ Hn}.
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Assume a = 0, p - m/t, and d | indg b. Now, by Lemma 3.1 we get

σt(0, b) =
∑
c∈F∗q

∑
x∈F∗

qt

e(cγi0t x
(q−1)/d) =

∑
c∈F∗q

∑
λ∈H(q−1)/d

G(λ ◦Normt)λ(ctgi0)

=
∑

λ∈H(q−1)/d

G(λ ◦Normt)λ(gi0)
∑
c∈F∗q

λ(cn),

where n = gcd(q − 1, t). Since∑
c∈F∗q

λ(cn) =
∑
c∈F∗q

λn(c) =
{ 0 if λn 6= λ0,
q − 1 if λn = λ0, i.e. if λ ∈ Hn ∩H(q−1)/d,

we get

σt(0, b) = (q − 1)
∑
λ∈Hs

G(λ ◦Normt)λ(gi0) = (q − 1)
∑
x∈F∗

qt

e(γi0t x
s),

where s = gcd(n, (q − 1)/d). Thus,

Nt(0, b) =
d

q

(
qt − 1
q − 1

+
∑
x∈F∗

qt

e(γi0t x
s)
)
,

implying the following

Theorem 3.2. Assume p - m/t and d | indg b. Then

Nt(0, b) = d

(
qt−1 − 1
q − 1

+
1
q

∑
x∈Fqt

e(γi0t x
s)
)
,

where s = gcd(t, (q − 1)/d) and d = gcd(m/t, q − 1).

Theorem 3.2 and the Weil bound (see e.g. [14, p. 223]) imply an improve-
ment of the Katz bound (see (1.2)) in the case a = 0:

Corollary 3.3.∣∣∣∣Nm(0, b)− qm−1 − 1
q − 1

∣∣∣∣ ≤ (s− 1)q(m−2)/2,

where s = gcd(m, q − 1).

We can now improve the Wan bound (see (1.1)) in the case a = 0 and
m ≤ 3

2(q − 1):

Corollary 3.4.∣∣∣∣Pm(0, b)− qm−1 − 1
m(q − 1)

∣∣∣∣ ≤ s− 1
m

q(m−2)/2 +
qm/2 − 1
q − 1

<
2

q − 1
qm/2,

where s = gcd(m, q − 1).
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Proof. Since d ≤ m/t, it follows from (2.2) and (2.3) that the numbers
M1 and M2 in Lemma 2.2 satisfy

M2 < M1 ≤ p1
qm/p1 − 1
q − 1

≤ 2
qm/2 − 1
q − 1

,

and now, by Lemma 2.2 and Corollary 3.3, we get∣∣∣∣mPm(0, b)− qm−1 − 1
q − 1

∣∣∣∣ ≤ (s− 1)q(m−2)/2 +m
qm/2 − 1
q − 1

.

By Lemma 2.1, Theorem 3.2, (2.3), and (2.2) we get explicit expressions
for Pm(0, b) e.g. in the following special cases:

Example 3.5. If gcd(p,m, q − 1) = 1, then

Pm(0, b) =
1

m(q − 1)

∑
t|m

µ

(
m

t

)
(qt−1 − 1).

Example 3.6. If m = pk > 1, then

mPm(0, b) =
qm−1 − 1
q − 1

− qm/p − 1
q − 1

.

4. Non-zero trace. In this section we assume that a 6= 0. This case
is much harder than the zero trace case, and we are not able to find such
a simple expression for Nt(a, b) as in case a = 0. The best we can do is to
give Nt(a, b) in terms of the number of solutions of a system of equations,
and estimate that number by using the Katz bound. This method will lead
us to an improvement of the Wan bound also in the case a 6= 0.

Let n = (q−1)/d. By Lemma 3.1 and by substitution c 7→ −a−1
0 c we see

that σt(a, b) (see (2.4)) can be written in the form

σt(a, b) =
∑
c∈F∗q

χ(c)
∑
λ∈Hn

G(λ ◦Norm)λ(ct(−a0)−tgi0)

=
∑
λ∈Hn

G(λ ◦Norm)λ(gi0(−a0)−t)
∑
c∈F∗q

χ(c)λt(c)

=
∑
λ∈Hn

G(λ ◦Norm)G(λt)λ(gi0(−a0)−t).

Let c = gi0a−t0 and use the Davenport–Hasse theorem [14, p. 197] to get

σt(a, b) = (−1)t−1
∑
λ∈Hn

G(λ)tG(λt)λ((−1)tc)

= (−1)t−1
∑
λ∈Hn

G(λ)tG(λt)λ((−1)tc).
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Now, by the definition of a Gauss sum we get

σt(a, b) = (−1)t−1
∑

x1,...,xt,u∈F∗q

χ(x1 + · · ·+xt+u)
∑
λ∈Hn

λ(x1 · · ·xt(−u)−tc−1),

and consequently, by substituting x1 7→ −ux1, . . . , xt 7→ −uxt, we obtain

(4.1) σt(a, b) = (−1)t−1
∑

x1,...,xt,u∈F∗q

χ(−u(x1 + · · ·+ xt − 1))

×
∑
λ∈Hn

λ(x1 · · ·xtc−1).

We can now prove the following

Theorem 4.1. If a 6= 0, p - m/t, and d | indg b, then

Nt(a, b) =
d(qt − 1)
q(q − 1)

+ (−1)t−1

(d−1∑
i=0

N(ci)−
d(q − 1)t

q(q − 1)

)
,

where N(ci) is the number of solutions of{
x1 + · · ·+ xt = 1,
x1 · · ·xt = ci,

in Ftq with ci = g(q−1)i/d+i0a−t0 .

Proof. Let n = (q−1)/d and c = gi0a−t0 . The orthogonality of characters
implies that

q(q− 1)N(ci) =
∑

x1,...,xt∈F∗q

∑
u∈Fq

χ(u(x1 + · · ·+ xt − 1))
∑

λ∈Hq−1

λ(c−1
i x1 · · ·xt),

and consequently

q(q − 1)
d−1∑
i=0

N(ci) =
∑

x1,...,xt∈F∗q

∑
u∈Fq

χ(u(x1 + · · ·+ xt − 1))

×
∑

λ∈Hq−1

d−1∑
i=0

λ(c−1
i x1 · · ·xt).

Here
d−1∑
i=0

λ(c−1
i x1 · · ·xt) = λ(c−1x1 · · ·xt)

d−1∑
i=0

λ(g−ni)

=
{
λ(c−1x1 · · ·xt)d if λ ∈ Hn,
0 otherwise,
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and now, by (4.1), we get

q(q − 1)
d−1∑
i=0

N(ci) = d
∑

x1,...,xt∈F∗q

∑
u∈Fq

χ(u(x1 + · · ·+ xt − 1))

×
∑
λ∈Hn

λ(c−1x1 · · ·xt)

= d(−1)t−1σt(a, b) + d
∑

x1,...,xt∈F∗q

∑
λ∈Hn

λ(c−1x1 · · ·xt).

Here ∑
x1,...,xt∈F∗q

∑
λ∈Hn

λ(c−1x1 · · ·xt) =
∑
λ∈Hn

(∑
x∈F∗q

λ(c−1x)
)t

= (q − 1)t

and it follows that

σt(a, b) = (−1)t−1

(
q(q − 1)

d

d−1∑
i=0

N(ci)− (q − 1)t
)
.

Lemma 2.3 now completes the proof.

Lemma 4.2. Let n be a positive integer and let c ∈ F∗q. The number N(c)
of solutions (x1, . . . , xn) in Fnq of{

x1 + · · ·+ xn = 1,
x1 · · ·xn = c,

satisfies ∣∣∣∣N(c)− (q − 1)n

q(q − 1)

∣∣∣∣ ≤ nq(n−2)/2.

Proof. Choose m = t = n, and a = 1, b = c. Now d = gcd(m/t, q−1) = 1
and we choose i0 = indg b (see (2.3)). Now c = gi0/at, and by Theorem 4.1
we get

Nn(a, b) =
qn − 1
q(q − 1)

+N(c)− (q − 1)n

q(q − 1)
or, equivalently,

N(c)− (q − 1)n

q(q − 1)
= Nn(a, b)− qn − 1

q(q − 1)
.

The Katz bound (1.2) now completes the proof.

We are now able to improve the Wan bound (1.1) in the case a 6= 0 and
m ≤ 3

2(q − 1):

Corollary 4.3. Let a, b ∈ F∗q. Then∣∣∣∣Pm(a, b)− qm − 1
mq(q − 1)

∣∣∣∣ ≤ q(m−2)/2 +
qm/2 − 1
q(q − 1)

+
m

2
q(m−4)/4 <

2
q − 1

qm/2.
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Proof. If p |m/t or d - indg b, then Nt(a, b) = 0 by (2.1) and (2.3).
Assume p - m/t and d | indg b. If t is even Theorem 4.1 implies

Nt(a, b) ≤
d(qt − 1)
q(q − 1)

− dN(c) +
d(q − 1)t

q(q − 1)
for some c ∈ F∗q . Now, by Lemma 4.2,

Nt(a, b) ≤
d(qt − 1)
q(q − 1)

− d
(

(q − 1)t

q(q − 1)
− tq(t−2)/2

)
+
d(q − 1)t

q(q − 1)

=
d(qt − 1)
q(q − 1)

+ dtq(t−2)/2.

Since d ≤ m/t, we get

(4.2) Nt(a, b) ≤
m(qt − 1)
tq(q − 1)

+mq(t−2)/2.

If t is odd, then

Nt(a, b) ≤
d(qt − 1)
q(q − 1)

+ dN(c)− d(q − 1)t

q(q − 1)
for some c ∈ F∗q , and

Nt(a, b) ≤
d(qt − 1)
q(q − 1)

+ d

(
(q − 1)t

q(q − 1)
+ tq(t−2)/2

)
− d(q − 1)t

q(q − 1)

=
d(qt − 1)
q(q − 1)

+ dtq(t−2)/2.

Hence, the bound (4.2) holds in this case too.
Now, by (4.2), the numbers M1 and M2 in Lemma 2.2 clearly satisfy

M2 < M1 ≤ 2
qm/2 − 1
q(q − 1)

+mq(m−4)/4,

and consequently, by Lemma 2.2 and by the Katz bound (1.2), we get∣∣∣∣mPm(a, b)− qm − 1
q(q − 1)

∣∣∣∣ < mq(m−2)/2 +m
qm/2 − 1
q(q − 1)

+
m2

2
q(m−4)/4.

Hence, ∣∣∣∣Pm(a, b)− qm − 1
mq(q − 1)

∣∣∣∣ ≤ q(m−2)/2 +
qm/2 − 1
q(q − 1)

+
m

2
q(m−4)/4

<
1
q

(
1 +

1
q − 1

+
m

2
q−mq/4

)
qm/2

=
(

1
q − 1

+
m

2
q−(m+4)/4

)
qm/2.

Obviously (m/2)q−(m+4)/4 < 1/(q − 1), and so the proof is complete.
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5. Cubics and cubic extensions. In this section we assume that
m = 3. Now the system of equations defined in the previous section is
of degree 3, and therefore we can give N3(a, b), and also P3(a, b), in terms of
the number of rational points on a cubic curve defined over Fq. Some elemen-
tary manipulations of cubic curves together with the Hasse–Weil bound for
elliptic curves, and the link between P3(a, b) and N3(a, b), will then lead to
a sharp bound for N3(a, b), which is also an improvement of the Katz bound
in the case m = 3. The following result is a key for such an improvement:

Theorem 5.1. Let c = ba−3, and let X be the projective curve over Fq
defined by

X : y2 + cy + xy = x3.

Then N3(a, b) = |X (Fq)| and

P3(a, b) = 1
3(|X (Fq)| − ε),

where

ε =
{

1 if p 6= 3 and c = 1/27,
0 otherwise.

Proof. Let m = 3 and apply Theorem 4.1 with t = 3 to get

(5.1) N3(a, b) =
q3 − 1
q(q − 1)

+N(c0)− (q − 1)3

q(q − 1)
= N(c0) + 3,

where N(c0) is the number of solutions (x, y, z) in F3
q of{

x+ y + z = 1,
xyz = c0,

with c0 = gi0/a3 = b/a3, or equivalently, N(c0) is the number of solutions
of

(5.2) x2y + xy2 − xy = −c0,
in F3

q .
Equation (5.2) defines an affine component of the projective curve de-

fined by
X ′ : y2 + y − xy = −c0x3,

and that affine component has exactly three points at infinity. Hence

N3(a, b) = |X ′(Fq)|
by (5.1). By multiplying both sides of the equation of X ′ by c20 and then
substituting x 7→ −c−1

0 x and y 7→ c−1
0 y we see that X ′ is isomorphic over Fq

to X .
It follows from Lemma 2.1 that 3P3(a, b) = N3(a, b) − N1(a, b), and

by (2.1), x ∈ S1(a, b) if and only if p 6= 3 and b = (a/3)3. This completes
the proof.
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Corollary 5.2. Assume p 6= 3, and let b = (a/3)3. Then

P3(a, b) = 1
3(q ± 1),

where the sign is plus if p ≡ 2 (mod 3) and 2 - r, and otherwise the sign is
minus.

Proof. If p = 2 then the equation of X is y2+(x+1)y = x3. This equation
has only three solutions with x = 0, 1. By substituting y 7→ (x+ 1)y, we can
write the equation in the form y2+y = x3/(x+1)2, and then by substituting
x 7→ x+ 1 we get the equation

(5.3) y2 + y = x+ 1 + x−1 + x−2.

Since the absolute trace of x−1 +x−2 equals zero we have χ(x−1 +x−2) = 1,
and therefore equation (5.3) has exactly∑
x∈F∗q\{1}

(1 + χ(x+ 1)) = q − 2 + χ(1)
(∑
x∈F∗q

χ(x)− χ(1)
)

= q − 3− χ(1)

solutions in F2
q with x 6= 0, 1. Hence, in the case p = 2, |X (Fq)| = q − 3 −

χ(1) + 3 + 1 and P3(a, b) = (q − χ(1))/3.
Assume p 6= 2 and write the equation y2 + cy + xy = x3 in the form(

y + 1
2(c+ x)

)2 = x3 + 1
4(c+ x)2. Substitute y 7→ y − 1

2(c+ x) to get

y2 = x3 + 1
4x

2 + 1
2cx+ c2/4 = (x+ 1/9)2(x+ 1/36).

Finally, by substituting x 7→ x − 1/9, we see that X is isomorphic over Fq
to

C : y2 = x2(x− 1/12).

Let F be the set of finite points of C and let F ′ be the set of finite points
of the curve C ′ defined over Fq by

C ′ : z2 = u− 1/12.

We note that the map (x, y) 7→ (u = x, z = y/x) from F \ {(0, 0)} to F ′

is injective, and it follows that |F | = |F ′| ± 1 depending on whether the
equation z2 = −1/12 has, or has not, a solution in Fq. Hence, |C(Fq)| =
|C ′(Fq)| ± 1 = q + 1 ± 1, and now, by Theorem 5.1, we get P3(a, b) =
1
3(q + 1± 1− 1).

We can now improve the Katz bound in the case m = 3:

Theorem 5.3. Let a, b ∈ Fq, b 6= 0. Then

3
⌈
q + 1− 2

√
q

3

⌉
≤ N3(a, b) ≤ 3

⌊
q + 1 + 2

√
q

3

⌋
.

Proof. By Lemma 2.1 we have

3P3(a, b) = N3(a, b)−N1(a, b).
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Assume first that a = 0. If p = 3 then N1(a, b) = 1 by (2.2), and 3P3(a, b) =
q+1−1 by Example 3.6. Hence, N3(a, b) = q+1, and the conclusion follows
in the case a = 0 and p = 3.

If p 6= 3 then N1(a, b) = 0 by (2.2), and Corollary 3.3 now implies

(5.4) q + 1− 2
√
q ≤ 3P3(a, b) ≤ q + 1 + 2

√
q,

and therefore ⌈
q + 1− 2

√
q

3

⌉
≤ P3(a, b) ≤

⌊
q + 1 + 2

√
q

3

⌋
.

Since 3P (a, b) = N3(a, b), the proof is complete in case a = 0 and p 6= 3.
Assume next that a 6= 0. It is easy to see that if X : y2 + cy + xy = x3

is singular then p 6= 3 and c = 1/27. Hence, if X is singular then q ± 1 =
3P3(a, b) = N3(a, b) − 1 by Corollary 5.2 and Theorem 5.1, and therefore
N3(a, b) = q ± 1 + 1, proving the assertion if X is singular.

Assume that X is non-singular. Now, by the proof of Corollary 5.2, we
see that p = 3 or c 6= 1/27, and therefore 3P3(a, b) = |X (Fq)| = N3(a, b) by
Theorem 5.1. Now, since X is elliptic, the Hasse–Weil bound (see e.g. [19,
p. 91]) implies that the bounds in (5.4) hold in this case too, and the proof
is complete.

Remark 5.4. The bounds in Theorem 5.3 are sharp. Take q = 5, for
example. If a = b = 1, we have N3(a, b) = |X (Fq)| = 9 = 3b(5+1+2

√
5)/3c.

If a = 1, b = 2, we have N3(a, b) = |X (Fq)| = 3 = 3d(5 + 1−2
√

5)/3e. These
calculations can be verified e.g. by MAGMA.

6. Degree a power of the characteristic. An improvement of the
Katz bound can also be obtained in the special case m = pk (> 2), as we
shall see in this section. The key point is that in this case the number of
solutions of our system of equations, and therefore Nm(a, b) and Pm(a, b),
can be given in terms of hyper-Kloosterman sums over Fq which can be
estimated by the Deligne bound obtained in [7] (see also [14, p. 254]).

In the special cases (p,m) = (3, 3), (2, 4) we can go even further since
then we can use the known value distributions of Kloosterman sums to get
fairly precise information on the distribution of the irreducible cubic and
quartic polynomials over the fields F3r and F2r , respectively. These cases
are considered in Subsections 6.1 and 6.2.

For a positive integer n and c in F∗q let kn(c) be an n-dimensional Kloo-
sterman sum (or a hyper-Kloosterman sum)

kn(c) =
∑

x1,...,xn∈F∗q

χ

(
x1 + · · ·+ xn +

c

x1 · · ·xn

)
.
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Theorem 6.1. Assume m = pk > 2, and let a, b ∈ F∗q. Then

Nm(a, b) =
qm−1 − 1
q − 1

+ (−1)m−1km−2(c),

where c = b/am. Moreover ,∣∣∣∣Nm(a, b)− qm−1 − 1
q − 1

∣∣∣∣ ≤ (m− 1)q(m−2)/2.

Proof. Apply Theorem 4.1 with m = t to get

(6.1) Nm(a, b) =
qm − 1
q(q − 1)

+ (−1)m−1

(
N(c)− (q − 1)m

q(q − 1)

)
,

where N(c) is the number of solutions of{
x1 + · · ·+ xm = 1,
x1 · · ·xm = c.

Obviously N(c) is equal to the number of solutions of

x1 + · · ·+ xm−1 +
c

x1 · · ·xm−1
− 1 = 0,

and therefore, by the orthogonality of characters, we get

qN(c) =
∑

x1,...,xm−1∈F∗q

∑
u∈Fq

χ

(
u

(
x1 + · · ·+ xm−1 +

c

x1 · · ·xm−1
− 1
))

=
∑
u∈F∗q

χ(−u)
∑

x1,...,xm−1∈F∗q

χ

(
ux1 + · · ·+ uxm−1 +

uc

x1 · · ·xm−1

)
+ (q − 1)m−1.

Now, by substitutions x1 7→ x1/u, . . . , xm−1 7→ xm−1/u, and by noting that
x 7→ xm is a permutation of Fq, we get

qN(c)− (q − 1)m−1

=
∑
u∈F∗q

χ(−u)
∑

x1,...,xm−1∈F∗q

χ

(
x1 + · · ·+ xm−1 +

umc

x1 · · ·xm−1

)

=
∑
u∈F∗q

χ(−u)
∑

x1,...,xm−1∈F∗q

χ

(
xm1 + · · ·+ xmm−1 +

umc

xm1 · · ·xmm−1

)

=
∑
u∈F∗q

χ(−u)
∑

x1,...,xm−1∈F∗q

χ

((
x1 + · · ·+ xm−1 +

uc1/m

x1 · · ·xm−1

)m)

=
∑

x1,...,xm−1∈F∗q

χ(x1 + · · ·+ xm−1)
∑
u∈F∗q

χ

(
u

(
c1/m

x1 · · ·xm−1
− 1
))

.
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The inner sum equals q − 1 or −1 according as x1 · · ·xm−1 is equal to c1/m

or not. Hence,

qN(c)− (q − 1)m−1 = qkm−2(c1/m)−
∑

x1,...,xm−1∈F∗q

χ(x1 + · · ·+ xm−1)

= qkm−2(c1/m)− (−1)m−1,

and consequently

N(c) = km−2(c) +
1
q

((q − 1)m−1 − (−1)m−1),

since km−2(c1/m) = km−2(c). It now follows from (6.1) that

Nm(a, b) =
qm−1 − 1
q − 1

+ (−1)m−1km−2(c),

and the Deligne bound concludes the proof.

By Theorem 6.1, equation (2.1), and Lemma 2.1 we get an expression
for Pm(a, b) in terms of a hyper-Kloosterman sum:

Corollary 6.2. If m = pk > 2 and ab 6= 0, then

mPm(a, b) =
qm−1 − 1
q − 1

+ (−1)m−1km−2(b/am).

6.1. Irreducible cubics over F3r . Next we consider the number of irre-
ducible cubics P3(a, b) when q = 3r. The main result of this section is the
following:

Corollary 6.3. Let q = 3r and let a, b ∈ Fq with ab 6= 0. Then
P3(a, b) = (q + 1 + t)/3 where t is an integer satisfying the following two
conditions:

(i) t ≡ −1 (mod 3),
(ii) |t| < 2

√
q.

Conversely , for a given integer t satisfying conditions (i) and (ii) there are
exactly (q − 1)H(t2 − 4q) pairs (a, b) ∈ F2

q with ab 6= 0 and P3(a, b) =
(q + 1 + t)/3. Here H(d) is the Kronecker class number of d.

Proof. For a given c ∈ F∗q there are exactly q − 1 pairs (a, b) ∈ F2
q such

that c = b/a3. Corollary 6.2 and Theorem 6.4 below complete the proof.

Theorem 6.4 ([12]). Let q = 3r. The range S of k1(c), as c runs over F∗q ,
is given by

S = {t ∈ Z : |t| < 2
√
q and t ≡ −1 (mod 3)}.

Moreover , each value t ∈ S is attained exactly H(t2 − 4q) times.
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Example 6.5. Let q = 3. If t is an integer satisfying conditions (i) and
(ii) then t = −1 or t = 2. There should be exactly (3 − 1)H(1 − 12) = 2
pairs (a, b) with ab 6= 0 and P3(a, b) = 1, and exactly (3− 1)H(4− 12) = 2
pairs (a, b) with ab 6= 0 and P3(a, b) = 2.

Indeed, the two pairs (a, b) for which there is exactly one irreducible
polynomial x3 + ax2 + cx + b ∈ F3[x] are (a, b) = (1, 1), (2, 2), and the
corresponding irreducible cubics are

x3 + x2 + 2x+ 1, x3 + 2x2 + 2x+ 2.

The two pairs (a, b) for which there are exactly two irreducible cubics are
(a, b) = (1, 2), (2, 1) and the corresponding irreducible cubics are

x3 + x2 + 2, x3 + x2 + x+ 2, x3 + 2x2 + 1, x3 + 2x2 + x+ 1.

Finally, for a pair (0, b) there should be, by Example 3.6, exactly one irre-
ducible cubic. Indeed, the corresponding polynomials are

x3 + 2x+ 1, x3 + 2x+ 2.

Thus we have counted all the eight irreducible cubics in F3[x].

6.2. Irreducible quartics over F2r . We conclude Section 6 by considering
the number of irreducible quartics P4(a, b) when q = 2r. We need the fol-
lowing result by Carlitz which links one- and two-dimensional Kloosterman
sums:

Theorem 6.6 ([2]). Let c ∈ F∗q. Then

k2(c) = k1(c)2 − q.

Now we are able to prove the main result of this section:

Corollary 6.7. Let q = 2r (r > 1) and let a, b ∈ Fq with ab 6= 0. Then
P4(a, b) = (q2 + 2q+ 1− t2)/4, where t is an integer satisfying the following
two conditions:

(i) t ≡ 1 (mod 2),
(ii) 1 ≤ t < 2

√
q.

Conversely , for a given integer t satisfying conditions (i) and (ii) there are
exactly (q − 1)H(t2 − 4q) pairs (a, b) ∈ F2

q with ab 6= 0 and P4(a, b) =
(q2 + 2q + 1− t2)/4.

Proof. Let c = b/a4. By Corollary 6.2, 4P4(a, b) = q2 +q+1−k2(c), and
now, by Theorem 6.6, we get

4P4(a, b) = q2 + 2q + 1− k1(c)2.

Theorem 6.8 below completes the proof.
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Theorem 6.8 ([13]). Let q = 2r. The range S of k1(c), as c runs over
F∗q , is given by

S = {t ∈ Z : |t| < 2
√
q and t ≡ −1 (mod 4)}.

Moreover , each value t ∈ S is attained exactly H(t2 − 4q) times.

Example 6.9. Let q = 4. Now t = 1 and t = 3 are the only integers
satisfying (i) and (ii). There should be exactly (4 − 1)H(1 − 16) = 6 pairs
(a, b) with ab 6= 0 and P4(a, b) = (16 + 8 + 1 − 1)/4 = 6, and exactly
(4−1)H(9−16)=3 pairs (a, b) with ab 6= 0 and P4(a, b)=(16+8+1−9)/4=4.

Indeed, if F4 = {0, 1, α, β}, then the six pairs (a, b) for which there are
exactly six irreducible polynomials x4 + ax3 + · · ·+ b ∈ F4[x] are

(a, b) = (1, α), (1, β), (α, 1), (α, β), (β, 1), (β, α),

and the three pairs (a, b) for which there are exactly four irreducible quartics
are

(a, b) = (1, 1), (α, α), (β, β).

Finally, for a pair (0, b) there should be, by Example 3.6, exactly (q2 +
q + 1 − (q + 1))/4 = 4 irreducible quartics. This is indeed the case, and so
we counted all the 6 · 6 + 3 · 4 + 4 · 3 = 60 irreducible quartics in F4[x].

7. Divisibility modulo three of Kloosterman sums, q = 2r. Let
q = 2r. We consider the divisibility modulo three of Kloosterman sums
k(c) := k1(c). We use the following notations:

Trq2s the trace function from Fq onto F2s

A the set of elements a ∈ Fq with Trq2(a) = 0
T3(b) the number of irreducibles x3 + ax2 + cx+ b ∈ Fq[x]

with b fixed and a running over the set A

We need the following

Theorem 7.1 ([15]). Let α ∈ F∗qm. Then∑
x∈F∗qm

e(αxq−1) = (−1)m−1(q − 1)km−1(Normm(α)).

Lemma 7.2. Let b ∈ F∗q. Then

T3(b) = 1
3

(
1
2(q2 + 1 + k(b)2)−N(b)

)
,

where N(b) is the number of solutions of x3 = b in A.

Proof. By Lemma 2.1,

(7.1) 3T3(b) =
∑
a∈A

N3(a, b)−
∑
a∈A

N1(a, b).
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By (2.1) the latter sum is equal to N(b). Consider next the first sum. Apply
Lemma 2.3 with t = m = 3 to get∑

a∈A
N3(a, b) =

q3 − 1
2(q − 1)

+
1

q(q − 1)

∑
a∈A

σ3(a, b),

where ∑
a∈A

σ3(a, b) =
∑
c∈F∗q

∑
x∈F∗

q3

e(cγi03 x
q−1)

∑
a∈A

χ(ca)

=
1
2

∑
c∈F∗q

∑
x∈F∗

q3

e(cγi03 x
q−1)

∑
a∈Fq

χ(c(a+ a2)).

Since χ(ca) = χ(c2a2) the orthogonality of characters implies∑
a∈A

σ3(a, b) =
1
2

∑
c∈F∗q

∑
x∈F∗

q3

e(cγi03 x
q−1)

∑
a∈Fq

χ((c+ c2)a2)

=
q

2

∑
x∈F∗

q3

e(γi03 x
q−1).

By Theorems 7.1 and 6.6 we get∑
a∈A

σ3(a, b) = 1
2q(q − 1)k2(b) = 1

2q(q − 1)(k1(b)2 − q)

(note that Norm3(γi03 ) = gi0 = b), and therefore∑
a∈A

N3(a, b) = 1
2(q2 + q + 1 + k1(b)2 − q).

Equation (7.1) now completes the proof.

Theorem 7.3. Let q = 2r, and let b ∈ F∗q. Then 3 divides k(b) if and
only if one of the following condition holds:

(1) r is odd and Trq2( 3
√
b) = 0,

(2) r is even, b = a3 for some a ∈ Fq, and Trq4(a) 6= 0.

Proof. We have, by Lemma 7.2,
1
2(q2 + 1 + k(b)2)−N(b) ≡ 0 (mod 3),

or equivalently,
k(b)2 ≡ −N(b)− 2 (mod 3).

Hence, 3 | k(b) if and only if N(b) ≡ 1 (mod 3) if and only if N(b) = 1. If
r is odd, then x3 = b has the unique solution x = 3

√
b in Fq and therefore

N(b) = 1 if and only if Trq2( 3
√
b) = 0.

Assume r is even and let ζ (∈ F4) be a primitive third root of unity.
Now N(b) = 1 if and only if b = a3 and Trq2(aζi) = 0, for some a ∈ Fq and
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for unique i ∈ {0, 1, 2}. It follows by the transitivity of Trq2 that the latter
condition is equivalent to Trq4(a) 6= 0.

Remark 7.4. In the case of r odd Theorem 7.3 follows also from [3,
Thm. 3] proved by using different methods.

8. A proof for the value distribution of a Kloosterman sum,
q = 3r. The aim of this section is to give a fairly elementary proof for
Theorem 6.4. Let q = 3r, and let c ∈ F∗q . Let k(c) := k1(c) and let X be the
elliptic curve over Fq defined by

X : y2 + cy + xy = x3.

Lemma 8.1.

|X (Fq)| = q + 1 + k(c) and k(c) ≡ −1 (mod 3).

Proof. Choose p = m = 3, and combine Theorem 5.1 and Corollary 6.2
to get

|X (Fq)| = 3P (1, c) = q + 1 + k(c).

Lemma 8.2. X is isomorphic over Fq to X ′ : y2 = x3 + x2 − c.
Proof. Complete the square to get the equation of X in the form

(y + x+ c)2 = x3 + (x+ c)2.

Then substitute y 7→ y − x− c, x 7→ x− c to get

y2 = x3 + x2 − c3,
and then substitute x 7→ x3, y 7→ y3 to obtain

(y2 − x3 − x2 − c)3 = 0.

Let E be an elliptic curve over Fq. Starting from the long Weierstrass
form

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

of the equation of E , it is easy to see (see e.g. [19, p. 10]) that the equation
of E can be given in the form

y2 = x3 + ax2 + cx+ d.

If a 6= 0 the substitution x 7→ x+ e with e = c/a yields the equation

y2 = x3 + ax2 + e3 + ae2 + ce+ d,

and therefore we may assume that the equation of E is one of the following:

(i) y2 = x3 + ax2 + b,
(ii) y2 = x3 + cx+ b,

for some a, b, c ∈ Fq. Since E is smooth we must have ab 6= 0 in case (i), and
c 6= 0 in case (ii).
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The j-invariant of E is given by

j(E) =
{
−a3/b in case (i),
0 in case (ii).

Lemma 8.3. Let |E(Fq)| = q + 1 + t. The following three conditions are
equivalent :

(1) E is supersingular ,
(2) j(E) = 0,
(3) 3 | t.

Proof. See [19, pp. 75, 121].

Assume next that E is ordinary (i.e. non-supersingular). We may now
assume that E is defined by

E : y2 = x3 + ax2 + b.

Lemma 8.4. If a is a square in F∗q then E is isomorphic over Fq to

X ′ : y2 = x3 + x2 + b/a3,

and |E(Fq)| = q + 1 + t for some integer t with t ≡ −1 (mod 3).
If a is not a square, then |E(Fq)| = 2(q + 1) − |X ′(Fq)|, and |E(Fq)| =

q + 1 + t for some integer t with t ≡ 1 (mod 3).

Proof. If a = c2 for some c ∈ F∗q , the substitution x 7→ ax, y 7→ c3y yields
the equation y2 = x3 + x2 + b/a3. Assume next that a is not a square. Let
η be the quadratic character of Fq with η(0) = 0. The number of solutions
N of y2 = x3 + ax2 + b in F2

q is

N =
∑
x∈Fq

(1 + η(x3 + ax2 + b)) = q +
∑
x∈Fq

η(x3 + ax2 + b).

Now substitute x 7→ ax to obtain

N = q + η(a)
∑
x∈Fq

η(x3 + x2 + b/a3) = q −
∑
x∈Fq

η(x3 + x2 + b/a3),

and so
|E(Fq)| = N + 1 = q + 1− (|X ′(Fq)| − (q + 1)).

The remaining assertions follow immediately from Lemmas 8.2 and 8.1.

Proof of Theorem 6.4. Let t ≡ −1 (mod 3) be an integer belonging to the
interval (−2

√
q, 2
√
q). By Theorem 8.5 below there exist exactly H(t2− 4q)

pairwise non-isomorphic elliptic curves E with |E(Fq)| = q + 1 + t, and
by Lemma 8.3 each of them is ordinary. Now, by Lemma 8.4 each E is
isomorphic over Fq to X ′ : y2 = x3 + x + c for some c ∈ F∗q , and finally
Lemmas 8.2 and 8.1 conclude the proof.
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Theorem 8.5 ([8, 17]). The number M(t) of isomorphism classes of
elliptic curves over Fq having q + 1 + t points with gcd(q, t) = 1 is given by

M(t) =
{
H(t2 − 4q) if t2 < 4q,
0 otherwise.

Remark 8.6. Yet another proof of Theorem 6.4, which uses fairly ad-
vanced methods, is given in [9].
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