Indivisibility of class numbers of imaginary quadratic function fields

by

Dongho Byeon (Seoul)

1. Introduction. Let \(p \) be an odd prime number, \(q \) a power of \(p \), and \(\mathbb{F}_q \) the finite field of cardinality \(q \). Let \(T \) be an indeterminate and \(K = \mathbb{F}_q(T) \) the rational function field. Let \(A = \mathbb{F}_q[T] \) and \(A^{(1)} \) be the set of all non-zero monic polynomials in \(A \).

There have been many works on the divisibility of class numbers of function fields \(F \) over \(K \). For example, Friesen [3] and Cardon and Murty [1] proved that there are infinitely many real and imaginary, respectively, quadratic extensions \(F \) over \(K \) such that the class number of \(F \) is divisible by \(l \), which is a function field analogue of the well-known result on the quadratic number fields.

However, much less is known on indivisibility. In [6], Kimura proved that there are infinitely many quadratic extensions \(F \) over \(K \) such that the class number of \(F \) is not divisible by 3. For an odd prime number \(l \), Ichimura [5] constructed infinitely many imaginary quadratic extensions \(F \) over \(K \) such that the class number of \(F \) is not divisible by \(l \), when the order of \(q \) mod \(l \) in the multiplicative group \((\mathbb{Z}/l\mathbb{Z})^* \) is odd or \(l = p \).

In this paper, we shall prove the following theorem.

Theorem 1.1. Let \(l \) be an odd prime number. Then there are infinitely many imaginary quadratic extensions \(F \) over \(K \) such that the class number of \(F \) is not divisible by \(l \).

Theorem 1.1 is a function field analogue of Hartung’s work [4] on imaginary quadratic number fields. To prove it, following Hartung’s idea in [4], we shall use the class number relation over function fields, due to Yu [8].

2000 Mathematics Subject Classification: Primary 11R58; Secondary 11R11, 11R29.

Key words and phrases: class number, function field.

This work was supported by KRF-2005-070-C00004.

The author also holds joint appointment in the Research Institute of Mathematics, Seoul National University.
Remark. In the number field case, the Cohen–Lenstra heuristics implies that if l is an odd prime number, then the probability that l does not divide the class number of an imaginary quadratic number field is
\[
\prod_{i=1}^{\infty} \left(1 - \frac{1}{l^i}\right).
\]
In the function field case, Lee [7, Section 3.3] shows that Friedman and Washington’s conjectures [2] for the function field analogue of the Cohen–Lenstra heuristics imply that if $l (\neq p)$ is an odd prime number, then the probability that l does not divide the class number of an imaginary quadratic function field is also
\[
\prod_{i=1}^{\infty} \left(1 - \frac{1}{l^i}\right).
\]

2. Class number relation. For details, we refer to the paper of Yu [8].

Let $D \in A$ be a fundamental discriminant. Let $F = K(\sqrt{D})$ be the quadratic extension over $K = \mathbb{F}_q(T)$ and $\mathcal{O}_{Df^2} = A + A\sqrt{Df^2}$ the order of conductor $f \in A^{(1)}$ in F. The order of the finite group $\text{Pic}(\mathcal{O}_{Df^2})$ is called the class number of discriminant Df^2 and is denoted by $h(Df^2)$.

From now on, we assume that $F = K(\sqrt{D})$ is imaginary, i.e., the place ∞ of K does not split in F. We also say that D and Df^2 are imaginary discriminants. Then we can define $\omega(Df^2) := \sharp\mathcal{O}_{Df^2}^*/(q-1)$ and $h'(Df^2) := h(Df^2)/\omega(Df^2)$. Let χ_D be the usual Kronecker character satisfying for prime $P \in A^{(1)}$, $\chi_D(P) = 1$ if P splits in F, $\chi_D(P) = 0$ if P ramifies in F, and $\chi_D(P) = -1$ otherwise. For an element $x \in A$, we let $|x| := q^{\deg x}$.

Then for any fundamental imaginary discriminant D and conductor f, we have
\[
h'(Df^2) = h'(D)|f|\prod_{P | f} \left(1 - \frac{\chi_D(P)}{|P|}\right),
\]
where the product runs over primes $P \in A^{(1)}$ dividing f. We define the Hurwitz class number $H(Df^2)$ as
\[
H(Df^2) := \sum_{f' \in A^{(1)}} h'(Df'^2).
\]

Yu obtained the following class number relation.

Theorem 2.1 (Yu [8]). For any m in $A^{(1)}$,
\[
\sum_{t \in A} H(t^2 - \mu m) = \sum_{d \in A^{(1)}} \max(|d|, |m/d|) - \sum_{d \in A^{(1)}} |m|^{-1/2} \frac{|m| - |m - d^2|}{q - 1},
\]
where $\mu \in K^*/K^{*2}$.
where the first sum runs over all pairs \((t, \mu) \in A \times K^*/K^{*2}\) such that \(t^2 - \mu m\) is an imaginary discriminant or \(t^2 - \mu m = 0\).

3. Proof of Theorem 1.1. For \(l = p\), Ichimura already constructed infinitely many imaginary quadratic extensions \(F\) over \(K\) such that the class number of \(F\) is not divisible by \(l\) (see Theorem 3 in [5]). So in this section we consider the case \(l \neq p\). We can choose \(m\) satisfying:

(i) \(m\) is a prime in \(A^{(1)}\) with odd degree \(M\),

(ii) \(\chi_D(m) = -1\) for all imaginary fundamental discriminants \(D\) of degree \(\leq N\).

Then from the class number relation in Theorem 2.1 and (i), we have

\[
\sum_{t \in A, \mu \in K^*/K^{*2}} H(t^2 - \mu m) = 2q^M.
\]

Since \(l \neq p\), there is a pair \((t, \mu) \in A \times K^*/K^{*2}\) such that

\[
H(t^2 - \mu m) \not\equiv 0 \pmod{l}.
\]

We can write

\[
t^2 - \mu m = D_{t,\mu}f^2
\]

for some imaginary fundamental discriminant \(D_{t,\mu}\) and conductor \(f\). By the definition of \(h'\) and the Hurwitz class number, we have

\[
h(D_{t,\mu}) \not\equiv 0 \pmod{l}.
\]

From the condition (ii), the degree of \(D_{t,\mu} > N\). Since \(N\) can be arbitrarily large, there are infinitely many imaginary fundamental discriminants \(D\) whose class number \(h(D)\) is not divisible by \(l\). □

Acknowledgements. The author thanks the referee for some helpful suggestions.

References

Department of Mathematics
Seoul National University
Seoul 151-747, Korea
E-mail: dhbyeon@math.snu.ac.kr

Received on 4.8.2007
and in revised form on 29.2.2008