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On primitive lattice points in planar domains

by

Wenguang Zhai (Jinan)

1. Introduction and statements of results. Let D denote a compact
convex subset of R2 which contains the origin as an inner point. Suppose that
the boundary ∂D of D is smooth with finite nonzero curvature throughout,
and define a canonical map M from ∂D to the unit circle, which maps
every point u of ∂D to the outward normal vector of ∂D at u of length
one. Assume that M is one-one and of class C4. Let F denote the distance
function of D, i.e.

F (u) = inf{τ > 0 : u/τ ∈ D} (u ∈ R2),

and Q = F 2, thus Q is homogeneous of degree 2.
For a large real variable x, define AD(x) as the number of lattice points

of Z2
∗ := Z2 \ {(0, 0)} in the blown up domain

√
xD, i.e.,

AD(x) = #(
√
xD ∩ Z2

∗) = #{m ∈ Z2
∗ : Q(m) ≤ x},

and PD(x) as the “lattice rest”,

PD(x) = AD(x)− a(D)x,

where a(D) is the area of D. In his deep work [6], Huxley proved that

(1.1) PD(x) = O(x23/73(log x)315/146).

A bit earlier, Nowak [13] proved that

(1.2)
T�

0

P 2
D(x) dx� T 3/2,

T�

0

|PD(x)| dx� T 5/4.

It is also interesting to study the number BD(x) of primitive lattice points
in
√
xD, i.e.,

BD(x) = #{(u1, u2) : (u1, u2) ∈ √xD ∩ Z2
∗, gcd(u1, u2) = 1}.
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By the usual device we have

(1.3) BD(x) =
∑

m∈N
µ(m)AD

(
x

m2

)
,

where µ(m) is the Möbius function. We can easily derive the result

(1.4) BD(x) =
6
π2 a(D)x+O(x1/2ω(x))

from the bound

(1.5)
∑

m≤y
µ(m)� yω(y)

combined with (1.1) and (1.3), where

ω(y) = exp(−c(log y)3/5(log log y)−1/5)

for some c > 0. The exponent 1/2 in the error term of (1.4) is closely
connected with the zero of the Riemann zeta-function ζ(s). At present we
cannot reduce the exponent 1/2 since ζ(s) could have zeros with real part
arbitrarily close to the line <s = 1.

In order to get a sharper bound, it is therefore natural to assume the
truth of the Riemann Hypothesis (RH). Moroz [11] first proved that if RH
is true, then

(1.6) BD(x) =
6
π2 a(D)x+O(x41/91+ε).

The exponent 41/91 comes from Huxley’s result (1.1). Huxley and Nowak [7]
proved that the error term in (1.6) can be sharpened to O(x5/12+ε) if RH is
true. Müller [12] obtained the estimate O(x9/22) under RH.

In this paper, we prove the following

Theorem 1. If RH is true, then

BD(x) =
6
π2 a(D)x+O(x

33349
84040 +ε).

Actually, we can study the same problem for a much larger class of planar
domains D: suppose that C = ∂D is a closed piecewise smooth curve which
can be written in polar coordinates (r, λ) as

C : r = %(λ), 0 ≤ λ ≤ 2π,

where % is continuous on [0, 2π] and %(0) = %(2π). Assume further that
[0, 2π] can be subdivided by an increasing sequence

0 = λ0 < λ1 < . . . < λJ = 2π

such that each restriction %j to [λj−1, λj ] has four continuous derivatives on
[λj−1, λj ]. Suppose finally that each of the curves

Cj : r = %j(λ), λj−1 ≤ λ ≤ λj , j = 1, . . . , J,
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has finite nonvanishing curvature throughout and satisfies the tangent con-
dition (see Nowak [14, pp. 498 and 500]). Let

S = {D : D satisfies the above conditions}.
Remark 1.1. The curve C defined above may have corners and may

even possess an asteroid-like shape. For example, C = {(ψ, η) : |ψ|1/2 +
|η|1/2 = 1}.

For any D ∈ S, let AD(x), BD(x), PD(x) be as defined before. Now (1.1)
is still true (see Huxley [6]). The proof of (1.2) can be found in Nowak [14].
Thus following the arguments of Huxley and Nowak [7] without any modi-
fications, we can deduce under RH that the asymptotic formula

BD(x) =
6
π2 a(D)x+O(x5/12+ε)

holds for any D ∈ S. And by the arguments of Müller [12], the exponent
5/12 in the above formula can be replaced by 9/22 for any D ∈ S. We shall
prove that for all D ∈ S, the exponent 9/22 can be improved.

By Nowak [14, p. 502],

(1.7) PD(x) =
J∗∑

j=1

ejSj(
√
x) +O(1),

for some finite integer J∗ > 0, where

(1.8) Sj(t) =
∑

ajt<n≤bjt, n∈Z
ψ

(
tfj

(
n

t

))
,

ψ is a row-of-teeth function satisfying

(1.9)
ψ(t) = t− [t]− 1/2 for t 6∈ Z,
−1/2 ≤ ψ(t) ≤ 1/2 for t ∈ Z,

and for each 1 ≤ j ≤ J∗, fj is a real-valued function defined on an interval
[aj , bj ] with continuous derivatives up to order 4 and f ′′j has no zero on
[aj , bj ]; ej is + or −. Define

GD =
J∗⋃

j=1

{f ′j(aj), f ′j(bj)}.

Now recall a few facts from the theory of Diophantine approximation:
By the (approximation) type t(α) of an irrational real number α we denote
the infimum of all reals r for which there exists a constant c(r, α) such that

|α− p/q| ≥ c(r, α)/qr+1

for all integers p and all positive integers q. Let

R(1) = {α ∈ Q : t(α) = 1}.
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By Roth’s theorem [17], R(1) contains all algebraic irrationals. Also, the
Lebesgue measure of R\R(1) is 0 (due to Khinchin). Namely, R(1) contains
almost all irrationals.

Finally define

α(D) =





0 if GD ⊂ Q,
2c2

2c2 + 3c+ 3
if GD ∩Q is not empty,

where c := max{t(α) : α ∈ GD ∩Q}.
We then have the following

Theorem 2. Let D ∈ S. If RH is true, we have

BD(x) =
6
π2 a(D)x+O(x

33349
84040 +ε + x

749−146α(D)
2082−584α(D) +ε).

Theorem 1 is a special case of Theorem 2. Since the tangent of the curve
C is continuous, we can always divide C into finite pieces such that in each
piece we have {f ′(a), f ′(b)} ⊂ Q. Accordingly, GD ⊂ Q and α(D) = 0.

Corollary 1.1. For any D ∈ S, we have

BD(x) =
6
π2 a(D)x+O(x603/1498+ε).

Remark 1.2. Theorem 2 shows that there exists a constant c0 =14.46 . . .
such that for c ≤ c0, the error term reads O(x33349/84040+ε). This is true for
almost all D ∈ S. The worst case is O(x603/1498+ε).

For comparison, we have
41
91

= 0.4505 . . . ,
5
12

= 0.4166 . . . ,
9
22

= 0.40909 . . . ,

33349
84040

= 0.3968 . . . ,
603
1498

= 0.4025 . . .

Much better results can be obtained if D has a nice form. For example,
we consider the case that D is a rational ellipse disc. In this case, Nowak
[15] proved under RH that

(1.10) BD(x) =
6
π2 a(D)x+O(x15/38+ε).

In particular, if D is the unit disc, Zhai and Cao [21] proved that the expo-
nent 15/38 can be replaced by 11/30. And recently, Wu [20] obtained the
exponent 221/608.

In this paper, we give the following Theorem 3 without proof since the
proof is almost the same as that of Wu [20].

Theorem 3. Suppose D is a rational ellipse disc. If RH is true, then

BD(x) =
6
π2 a(D)x+O(x221/608+ε).
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It is also interesting to study the asymptotic behaviour of the quantity
BD(x + U)− BD(x), where U is another large real parameter but of order
smaller than x. When D is a convex planar domain containing the origin
in its interior with ∂D of class C4 and has finite nonvanishing curvature
throughout, Krätzel and Nowak [8] proved that

(1.11) BD(x+ xθ)−BD(x) =
6
π2 a(D)xθ(1 + o(1))

for θ > 11/29. They also remarked that if D is the unit disc, then (1.11) is
true for θ > 29/80.

In this paper we shall generalize this statement to any D ∈ S. Our
argument is slightly different. We have the following theorems.

Theorem 4. Suppose D ∈ S. Then (1.11) is true for

θ > max
(

11
29
,

2
6− α(D)

)
.

Corollary 1.2. For almost all D ∈ S, (1.11) is true for θ > 11/29.

Corollary 1.3. For any D ∈ S, (1.11) is true for θ > 2/5.

Theorem 5. Suppose Q(Z2
∗) ⊂ N and for any η,

rQ(n) =
∑

n=Q(m,l)∈Z2
∗

1� nη.

Suppose further that AD(x) = a(D)x + O(xθ0+ε) for some θ0 > 1/4. Then
(1.11) is true for θ > θ0.

Corollary 1.4. Suppose D is a rational ellipse disc. Then (1.11) is
true for θ > 23/73.

Before going into technical details, we sketch the ideas of our proof. Write

BD(x) =
∑

m≤y
µ(m)AD

(
x

m2

)
+
∑

m>y

µ(m)AD

(
x

m2

)
(1.12)

= a(D)x
∑

m≤y
µ(m)/m2 + S1 + S2,

where

S1 =
∑

m≤y
µ(m)PD

(
x

m2

)
,(1.13)

S2 =
∑

m>y

µ(m)AD

(
x

m2

)
.(1.14)
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In order to deal with S2, Moroz [11] used an elementary argument. Hux-
ley and Nowak [7] used the Perron formula. Müller [12] used a similar argu-
ment to deal with S2 and obtained a better result.

In order to deal with S1, Moroz used the upper bound of PD(x) directly.
Huxley and Nowak [7] used the mean square estimate (1.2) to deal with S1.
Müller [12] used the seventh power moment of PD(x).

The exponents 5/12 and 9/22 are sharp. Firstly, the zeta-function of D
has no functional equation. Secondly, as mentioned by Huxley and Nowak
in their paper, it is not clear how to use the method of exponential sums to
deal with S1.

In this paper, we shall use the method of exponential sums to deal with
S1. The work of Nowak [14] and Kühleitner and Nowak [9] supplies the
foundations of using exponential sums.

In order to estimate S2, we first obtain a better mean square estimate
of the zeta-function of D. Finally we can get a better estimate of S2.

It should be mentioned that we can only get the upper bound S1 �
x1/4+εy1/2 by using any power moment results for PD(x) since the best
possible upper bound for PD(x) is � x1/4+ε. However, using the method of
exponential sums, we can get an upper bound smaller than x1/4+εy1/2.

Notations. Z denotes the set of all integers, N denotes the set of all
natural numbers, Q denotes the set of all rational numbers, Q denotes the
set of all irrational numbers, R(1) denotes the set of all irrational numbers
with type 1; ε denotes a small positive constant which may be different at
each occurrence; e(t) = e2πit; ‖t‖ means the distance between t and the
integer nearest to t; m ∼ M means M < m ≤ 2M ; and m � M means
c1M < m ≤ c2M for two positive constants c2 > c1 > 0. Finally define

ED(x) = BD(x)− 6
π2 a(D)x.

Acknowledgements. Prof. Dr. W. G. Nowak and Prof. Wu Jie kindly
sent their papers to me and I am very grateful to them. I also thank Prof.
Tanigawa Yoshio and Dr. Furuya Jun for helpful discussions.

2. An estimation of a special sum. Suppose α is an irrational num-
ber, and W > 0 is a sufficiently large real number. In this section, we shall
estimate the sum

(2.1) B(α;W ) =
∞∑

h=1

h−1 min
(

1
‖hα‖ ,

W

h1/2

)
.

In this section we always suppose that ε > 0 is a fixed sufficiently small real
number.

The following lemmas will be needed.
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Lemma 2.1 ([16, Lemma 19.1.5]). Suppose

(2.2) α =
a

q
+

θ

q2 , gcd(a, q) = 1, q ≥ 2, |θ| ≤ 1.

Then

(2.3)
∑

1≤h≤q/2
1/‖hα‖ � q log q.

Lemma 2.2. Suppose (2.2) holds. Then for any x > 0 and integer N ≥ 2,

(2.4)
∑

1≤h≤N
min(x, 1/‖hα‖)� (N/q + 1)(x+ q log q).

Proof. This is contained in Lemma 19.1.4 of Pan and Pan [16].

Lemma 2.3. Let r ≥ 1 denote the type of α. Then there exists a constant
C = C(α, ε) such that for any Y ≥ C(α, ε), α can be written in the form
(2.2) with

Y ≤ q ≤ Y r+ε/2.
Proof. Let an/qn be the nth convergent of α. Then

(2.5) |α− an/qn| ≤
1

qnqn+1
.

This formula can be found in Hua [5, Section 2 of Chapter 10]. By the
definition of type we know that the inequality

|α− a/q| ≤ q−(r+1+ε/2)

has only finitely many solutions (a, q). So there exists a constant C ′ =
C ′(α, ε) such that for every qn ≥ C ′(α, ε), we have

(2.6) |α− an/qn| ≥ q−(r+1+ε/2)
n .

From (2.5) and (2.6), we see that if qn ≥ C ′(α, ε), then

(2.7) qn+1 ≤ qr+ε/2n .

Let qn0 be the smallest qn with qn ≥ C ′(α, ε), and let C(α, ε) = qn0+1.
Now suppose Y is a real number with Y ≥ C(α, ε). There must exist an

nY such that qnY ≤ Y ≤ qnY +1. Then by (2.7) we have

(2.8) Y ≤ qnY +1 ≤ qr+ε/2nY ≤ Y r+ε/2.
Taking a = anY +1 and q = qnY +1 completes the proof of Lemma 2.3.

We now prove

Lemma 2.4. Suppose r ≥ 1 denote the type of α. Then

B(α;W )�W
2r2

2r2+3r+3
+ε
,

where the � constant depends on α, r and ε.
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Proof. By Lemma 2.3, α has the form (2.2) with

W
2(r+1)

2r2+3r+3 ≤ q ≤W
2(r+1)r

2r2+3r+3
+ε/2

.

Then B(α;W ) can be written as

(2.9) B(α;W ) = Σ1 +Σ2 +Σ3 +Σ4,

where

Σ1 =
∑

h≤q1/(r+1)

h−1 min
(

1
‖hα‖ ,

W

h1/2

)
,

Σ2 =
∑

q1/(r+1)<h≤q/2
h−1 min

(
1
‖hα‖ ,

W

h1/2

)
,

Σ3 =
∑

q/2<h≤W 3/2

h−1 min
(

1
‖hα‖ ,

W

h1/2

)
,

Σ4 =
∑

h>W 3/2

h−1 min
(

1
‖hα‖ ,

W

h1/2

)
.

By the definition of type again we get

Σ1 �
∑

h≤q1/(r+1)

1
h‖hα‖ =

∑

h≤C′(α,ε)
1 +

∑

C′(α,ε)<h≤q1/(r+1)

1
h‖hα‖(2.10)

�
∑

h≤q1/(r+1)

hr−1+ε/2 � qr/(r+1)+ε/2 �W
2r2

2r2+3r+3
+ε
.

By Lemma 2.1 we get

Σ2 �
∑

q1/(r+1)<h≤q/2

1
h‖hα‖ � q−1/(r+1)

∑

h≤q/2

1
‖hα‖(2.11)

� qr/(r+1) log q �W
2r2

2r2+3r+3
+ε
.

Let

Hj = {h : jq/2 < h ≤ (j + 1)q/2}, j = 1, . . . , J = [3W 3/2/q].

Then by Lemma 2.2 we get

Σ3 �
J∑

j=1

∑

h∈Hj
h−1 min

(
1
‖hα‖ ,

W

h1/2

)
(2.12)

�
J∑

j=1

1
jq

∑

h∈Hj
min

(
1
‖hα‖ ,

W

(jq)1/2

)
�

J∑

j=1

1
jq

(
W

(jq)1/2
+ q log q

)

�Wq−3/2 + logW log q �W
2r2

2r2+3r+3
+ε
.
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Trivially we get

(2.13) Σ4 �
∑

h>W 3/2

Wh−3/2 �W 1/4.

Combining (2.9)–(2.13) completes the proof of Lemma 2.4.

3. Estimates of exponential sums. In this section we shall study the
exponential sums which appear in estimating S1. We first estimate the sum

(3.1) S(D0,H) =
∑

d∼D0

a(d)
∑

(m,h)∈T
b(m,h)e(Adαg(m,h)),

where D0 ≥ 100 and H ≥ 10 are real numbers, a(d) � 1, b(m,h) � 1,
A 6= 0 is a real number, α (6= 0, 1, 2, . . .) is a real number, T is a subset of

{(u, v) : |u| � H, H < v ≤ 2H},
and g(u, v) 6= 0 is a real-valued function defined on T with g(m,h) � H.
Let F = |A|Dα

0H. We suppose that g(u, v) satisfies

Condition 3.1. Let N(H,∆) denote the number of lattice points (m,h)
∈ T with H −∆ ≤ g(m,h) ≤ H, where 0 < ∆ ≤ H/2. Then

N(H,∆)� H2/3 +H∆.

In order to estimate S(D0,H), we need the following lemmas.

Lemma 3.1. Suppose 0 < ∆ ≤ H/2 and let N(∆) denote the number of
quadruples (m1, h1,m2, h2) with (mi, hi) ∈ T and

|g(m1, h1)− g(m2, h2)| ≤ ∆.
Then

N(∆)� H8/3 +H3∆.

Proof. This follows from Condition 3.1.

Lemma 3.2 ([4, Lemma 1]). Let N < N1 ≤ 2N . Then
∑

N<N1≤2N

e(λnα)� min(N, |λ|−1N1−α) + (|λ|Nα)1/2.

Lemma 3.3 ([18, Lemma 3]). Let

L(Q) =
∑

1≤j≤J
CjQ

cj +
∑

1≤k≤K
DkQ

−dk ,

where Cj , cj ,Dk, dk > 0. Then for any 0 < Q′ ≤ Q, there is some Q1 ∈
[Q′, Q] such that

L(Q1)�
J∑

j=1

K∑

k=1

(Cdkj D
cj
k )1/(cj+dk) +

∑

1≤j≤J
CjQ

′cj +
∑

1≤k≤K
DkQ

−dk .
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Now we prove

Lemma 3.4. We have

L−1S(D0,H)� F 1/6D
2/3
0 H16/9 +D

2/3
0 H2 +D0H

4/3

+ F−1/2D0H
2 + F 1/4D

1/2
0 H5/3

where L = logFHD0.

Proof. We use the same argument as in Heath-Brown [4]. Suppose 1 ≤
Q ≤ H4/3 is a parameter to be determined. Also suppose 0 < g(m,h) ≤ CH.
For each 1 ≤ q ≤ Q, define

Eq = {(m,h) : (m,h) ∈ T , (q − 1)CH/Q < g(m,h) ≤ qCH/Q}.
Now we write

S(D0,H) =
Q∑

q=1

∑

d∼D0

a(d)
∑

(m,h)∈Eq
b(m,h)e(Adαg(m,h)).

By Cauchy’s inequality we get

|S(D0,H)|2� QD0

∑

q

∑

d∼D0

∣∣∣
∑

(m,h)∈Eq
b(m,h)e(Adαg(m,h))

∣∣∣
2

(3.2)

� QD0

∑

q

∑

(m1,h1)∈Eq
(m2,h2)∈Eq

|b(m1, h1)b(m2, h2)|
∣∣∣
∑

d∼D0

e(Aλdα)
∣∣∣,

where λ = g(m1, h1)− g(m2, h2). An application of Lemma 3.2 yields

(3.3) |S(D0,H)|2

� QD0

∑

(m1,h1)∈T
(m2,h2)∈T

(
min

(
D0,

D0

|Aλ|Dα
0

)
+ (|Aλ|Dα

0 )1/2
)
,

where m1, h1,m2, h2 are restricted by |λ| ≤ CH/Q. So the contribution of
(|Aλ|Dα

0 )1/2 to |S(D0,H)|2 is

� QD0(F/Q)1/2N(CH/Q)(3.4)

� QD0(F/Q)1/2H2(H2/3 +H2/Q)� Q−1/2F 1/2D0H
4,

where we used Lemma 3.1 and the assumption Q� H4/3.
For |λ| ≤ (|A|Dα

0 )−1, the term D0 in the minimum produces a contribu-
tion

QD2
0N

(
1

|A|Dα
0

)
� QD2

0H
2
(
H2/3 +

H

|A|Dα
0

)
(3.5)

� QD2
0H

8/3 +QD2
0H

4F−1

by Lemma 3.1 again.
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Divide the remaining range

(|A|Dα
0 )−1 < |λ| ≤ CH/Q

into O(L) intervals ∆/2 < |λ| ≤ ∆. We find that the term D1−α
0 |Aλ|−1 in

the minimum contributes

� QD2−α
0 |A|−1L max

|∆|≥(|A|Dα0 )−1
∆−1N(∆)(3.6)

� QD2
0H

8/3L+QD2
0H

4F−1L.
From (3.3)–(3.6) we get

(3.7) L−1|S(D0,H)|2 � QD2
0H

8/3 +QD2
0H

4F−1 +Q−1/2F 1/2D0H
4.

Hence Lemma 3.4 follows from (3.7) via Lemma 3.3 by choosing a best
Q ∈ [1,H4/3].

Now we estimate the exponential sum

S∗(W,D0) =
∑

d∼D0

µ(d)e
(
W

d

)
,

where W,D0 ≥ 10 are two positive numbers with D0 �W 1−ε.

Lemma 3.5 ([3, Proposition 1]). Let X and Y be two finite sets of real
numbers, X ⊂ [−X,X],Y ⊂ [−Y, Y ]. Then for any complex functions u(x)
and v(y) we have
∣∣∣
∑

x∈X

∑

y∈Y
u(x)v(y)e(xy)

∣∣∣
2

≤ 20(1 +XY )
∑

x,x′∈X
|x−x′|≤Y −1

|u(x)u(x′)|
∑

y,y′∈Y
|y−y′|≤X−1

|v(y)v(y′)|.

Lemma 3.6. Let α, α1, α2, z be real numbers such that zαα1α2 6= 0,
α 6∈ N. Let M ≥ 2,M1 ≥ 1,M2 ≥ 1, and let am and bm1m2 be complex num-
bers with |am| ≤ 1, |bm1m2 | ≤ 1. Let F1 = |z|MαMα1

1 Mα2
2 . If F1 ≥M1M2,

then∑

m∼M

∑

m1∼M1

∑

m2∼M2

ambm1m2e(zm
αmα1

1 mα2
2 )

�MM1M2 log 2MM1M2{(M1M2)−1/2 + F
1/6
1 M−1/3(M1M2)−1/6}.

Proof. This is Theorem 2 of Baker [1] with (κ, λ) = (1/2, 1/2).

Lemma 3.7. Suppose am � 1 is any complex number. If M � D
1/3
0

and D0 �MN � D0, then

SI =
∑

m∼M
am

∑

n∼N
e

(
W

mn

)
� D2

0W
−1 +W 1/6D

7/12
0 .
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Proof. This lemma follows by using the exponent pair (1/6, 4/6) for the
sum over n.

Lemma 3.8. Suppose am � 1 and bn are any complex numbers. If D1/3
0

�M � D
1/2
0 and D0 �MN � D0, then

SII =
∑

m∼M
am

∑

n∼N
bne

(
W

mn

)
� (W 1/6D

7/12
0 +D

5/6
0 +D

3/2
0 W−1/2) logD0.

Proof. Let F1 = W/D0. If F1 < N , then by Lemma 3.5 we get

SII �MNF
−1/2
1 � D

3/2
0 W−1/2.

If F1 ≥ N , by Lemma 3.6 we get (take m1 = 1,m2 = n)

SII log−1D0 �W 1/6D
7/12
0 +D

5/6
0

if we notice D1/3
0 �M � D

1/2
0 .

Now we prove

Lemma 3.9. We have

D−ε0 S∗(W,D0)�W 1/6D
7/12
0 +D

5/6
0 +D

3/2
0 W−1/2.

Proof. We use the skillful decomposition due to Montgomery and Vau-
ghan [10] and write

S∗(W,D0) = Σ1 +Σ2 +Σ3,

say, where

Σ1 = −
∑

m≤U
ξm

∑

n∼D0/m

e

(
W

mn

)
,

Σ2 = −
∑

U<m≤U2

ξm
∑

n∼D0/m

e

(
W

mn

)
, ξm =

∑

m=d1d2

d1,d2≤U

µ(d1)µ(d2)� mε,

Σ3 = −
∑

m>U, n>U
mn∼D0

µ(m)ηne
(
W

mn

)
, ηn =

∑

d|n, d≤U
µ(d)� nε.

Take U = D
1/3
0 . Now Lemma 3.9 follows by using Lemma 3.7 to estimate

Σ1 and using Lemma 3.8 to estimate Σ2 and Σ3.

4. Estimation of S1. In this section we estimate

S1 =
∑

d≤y
µ(d)PD

(
x

d2

)
,

where 10 ≤ y � √x is a parameter to be determined.
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By a splitting argument we get, for some 1� D0 � y,

(4.1) S1 log−1 x� |S1(D0, x)|,
where

S1(D0, x) =
∑

d∼D0

µ(d)PD

(
x

d2

)
.

By (1.1) we have

(4.2) S1(D0, x)� x23/73D
27/73
0 log3 x.

This is our first estimate of S1(D0, x).
By (1.7) we have

(4.3) S1(D0, x) =
J∗∑

j=1

ej
∑

d∼D0

µ(d)Sj

(√
x

d

)
+O(D0).

So we only need to estimate

(4.4) S1(D0;x, f, a, b) =
∑

d∼D0

µ(d)S
(√

x

d

)
,

where {f, a, b} is any one of {fj , aj , bj}J
∗
j=1, and S(u) is defined by (1.8) with

the function f .
By Vaaler’s result [19], we can write

(4.5) ψ(u) =
∑

1≤|h|≤H0

a(h)e(hu) +O
( ∑

1≤h≤H0

b(h)e(hu)
)

+O(1/H0)

for any H0 ≥ 2, where a(h)� 1/|h|, b(h)� 1/H0.
Suppose xε � H0 � x1/4 is a parameter to be determined. By (1.8) and

(4.5) we have

(4.6)
∑

d∼D0

µ(d)S
(√

x

d

)
= Σ1 +O(Σ2) +O

(√
x

H0

)
,

where

Σ1 =
∑

d∼D0

µ(d)
∑

1≤|h|≤H0

a(h)
∑

a
√
x/d<n≤b√x/d

e

(
h

√
x

d
f

(
nd√
x

))
,

Σ2 =
∑

d∼D0

∑

1≤h≤H0

b(h)
∑

a
√
x/d<n≤b√x/d

e

(
h

√
x

d
f

(
nd√
x

))

with a(h) � 1/|h|, b(h) � 1/H0. We only estimate Σ1. The proof of Σ2 is
similar and easier.

By a splitting argument we get

(4.7) Σ1 log−1 x� |Σ1(D0,H, x)|
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for some 1� H � H0, where

Σ1(D0,H, x) =
∑

d∼D0

µ(d)
∑

h∼H
a∗(h)

∑

a
√
x/d<n≤b√x/d

e

(
h

√
x

d
f

(
nd√
x

))

with a∗(h) � 1/h. Now we use the B-process to the sum over n. Since
Kühleitner and Nowak [9] has used this procedure, we use their result di-
rectly. By formula (3.2) of Kühleitner and Nowak [9], we get (take t =

√
x/d)

(4.8) Σ1(D0,H, x) = Σ11(D0,H, x) +O(Σ12(D0,H, x)) +O(D0 log x),

where

Σ11(D0,H, x) = x1/4
∑

d∼D0

µ(d)
d1/2

∑

h∼H
a∗(h)

1
h1/2

∑′′

−hf ′(a)≤m≤−hf ′(b)
κ(m,h)

× e
(√

xG(m,h)
d

− 1
8

)
,

Σ12(D0,H, x) =
∑

d∼D0

∑

h∼H
h−1(rh(a) + rh(b)),

and where for c = a or b,

rh(c) =





0, hf ′(c) ∈ Z,

min
(

1
‖hf ′(c)‖ ,

x1/4

(dh)1/2

)
, else,

and where ′′ means that if −hf ′(a) or −hf ′(b) is an integer, then the corre-
sponding term should be weighted by 1/2.

If f ′(a) and f ′(b) are both rational numbers, then

(4.9) Σ12(D0,H, x)� D0 log x.

If {f ′(a), f ′(b)} 6⊂ Q then Lemma 2.4 yields

(4.10) Σ12(D0,H, x)� xα(D)/4+εD
1−α(D)/2
0 .

Now we estimate Σ11(D0,H, x). Obviously

(4.11) Σ11(D0,H, x)� x1/4

D
1/2
0 H3/2

|Σ∗11(D0,H, x)|,

where

Σ∗11(D0,H, x) =
∑

d∼D0

µ(d)D1/2
0

d1/2

∑

(m,h)∈T
κ∗(m,h)e

(√
xG(m,h)

d

)
,

T = {(u, v) ∈ R× R+ : −vf ′(a) ≤ u ≤ −vf ′(b), v ∼ H},
and κ∗(m,h) � 1, |G(m,h)| ≤ CH for some C > 0.
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By Lemma 4 of Nowak [14], we know thatG(m,h) satisfies Condition 3.1.
Thus we can use Lemma 3.4 to bound Σ∗11(D0,H, x). Taking A = x1/2 and
α = −1 in Lemma 3.4 we get

(4.12) Σ11(D0,H, x) log−2 x

� D0 + x1/4D
1/6
0 H1/2 + x1/3H4/9 + x3/8D

−1/4
0 H5/12 + x1/4D

1/2
0 H−1/6.

Now we use Lemma 3.9 to estimate Σ∗11(D0,H, x) over d and estimate
the sum over (m,h) trivially. We get

(4.13) Σ11(D0,H, x)x−ε � x1/3D
1/12
0 H2/3 + x1/4D

1/3
0 H1/2 +D0.

From (4.12) and (4.13) we have

Σ11(D0,H, x)x−ε � D0 + x1/4D
1/6
0 H1/2 + x1/3H4/9(4.14)

+ x3/8D
−1/4
0 H5/12 + E1 + E2,

where

E1 = min(x1/4D
1/2
0 H−1/6, x1/3D

1/12
0 H2/3)

≤ (x1/4D
1/2
0 H−1/6)4/5(x1/3D

1/12
0 H2/3)1/5 = x4/15D

5/12
0 ,

E2 = min(x1/4D
1/2
0 H−1/6, x1/4D

1/3
0 H1/2)

≤ (x1/4D
1/2
0 H−1/6)3/4(x1/4D

1/3
0 H1/2)1/4 = x1/4D

11/24
0 .

Collecting (4.6)–(4.11) and (4.14) we get (note H � H0)

x−ε
∑

d∼D0

µ(d)S
(√

x

d

)
�D0 + x1/4D

1/6
0 H

1/2
0 + x1/3H

4/9
0 + x3/8D

−1/4
0 H

5/12
0

+ x1/2H−1
0 + x4/15D

5/12
0 + x1/4D

11/24
0 + δ(x,D0)

where

δ(x,D0) =
{

0 if {f ′(a), f ′(b)} ⊂ Q,

xα(D)/4D
1−α(D)/2
0 otherwise.

Now choose a best H0 ∈ [xε, x1/4] via Lemma 3.3. We get

x−ε
∑

d∼D0

µ(d)S
(√

x

d

)
� D0 + x5/13 + x1/3D

1/9
0 + x7/17D

−3/17
0

+ x4/15D
5/12
0 + x1/4D

11/24
0 + δ(x,D0),

which combined with (4.3) yields

x−εS1(D0, x)� D0 + x5/13 + x1/3D
1/9
0 + x7/17D

−3/17
0(4.15)

+ x4/15D
5/12
0 + x1/4D

11/24
0 + δ∗(x,D0),
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where

δ∗(x,D0) =
{

0 if GD ⊂ Q,

xα(D)/4D
1−α(D)/2
0 otherwise.

This is our second estimate of S1(D0, x).
From (4.1), (4.2) and (4.15) we finally get (note D0 � Y ) the estimate

x−εS1 � y + x1/3y1/9 + x4/15y5/12 + x1/4y11/24 + δ∗(x,D0)(4.16)

+ x5/13 + min(x7/17D
−3/17
0 , x23/73D

27/73
0 )

� y + x1/3y1/9 + x4/15y5/12 + x1/4y11/24 + δ∗(x, y) + x5/13

for any xε � y � x1/2−ε.

5. Estimation of S2 and proof of Theorem 2. In this section we
shall estimate S2 and give the proof of Theorem 2. We need a new estimate
of the mean square of the zeta-function ZD(s) of D.

Lemma 5.1. Suppose D ∈ S, 1 ≤ t ≤ 10. Then
∑

Q(m)≤X
PD(tQ(m))� X87/68 log2 X.

Proof. Obviously, we can suppose t = 1. It suffices to show

(5.1)
∑

Q(m)∼N
PD(Q(m))� N87/68 log2 N

for any X1/2 � N � X. By (1.7) we have

(5.2)
∑

Q(m)∼N
PD(Q(m))�

J∗∑

j=1

∣∣∣
∑

Q(m)∼N
Sj(Q1/2(m))

∣∣∣,

where Sj(u) is defined by (1.8). Let {f, a, b} denote any one of {fj , aj , bj}J
∗
j=1,

and let S(u) denote this Sj(u).
Suppose H0 is a parameter to be determined. Similarly to (4.6), we have

(5.3)
∑

Q(m)∼N
Sj(Q1/2(m)) = Σ∗1 +O(Σ∗2) +O

(
N3/2

H0

)
,

where

Σ∗1 =
∑

Q(m)∼N

∑

1≤|h|≤H0

a(h)
∑

aQ1/2(m)<n≤bQ1/2(m)

e

(
hQ1/2(m)f

(
n

Q1/2(m)

))
,

Σ∗2 =
∑

Q(m)∼N

∑

1≤h≤H0

b(h)
∑

aQ1/2(m)<n≤bQ1/2(m)

e

(
hQ1/2(m)f

(
n

Q1/2(m)

))
,
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with a(h) � 1/|h|, b(h) � 1/H0. We only consider the contribution of Σ∗1 .
The contribution of Σ∗2 is the same. By a splitting argument we have

(5.4) Σ∗1 � |Σ∗1(N,H)| logN

for some 1� H � H0, where

Σ∗1(N,H) =
∑

Q(m)∼N

∑

h∼H
a∗(h)

×
∑

aQ1/2(m)<n≤bQ1/2(m)

e

(
hQ1/2(m)f

(
n

Q1/2(m)

))

with a∗(h)� 1/h. Using the B-process to the sum over n, we get

Σ∗1 (N,H) =
∑

Q(m)∼N
Q1/4(m)

∑

h∼H

a∗(h)
h1/2

×
∑′′

−hf ′(a)≤l≤−hf ′(b)
κ(l, h)e(Q1/2(m)G(l, h)− 1/8) +O(N5/4)

� N1/4

H3/2
max

N<N ′≤2N
|S∗(N,H)|+N5/4,

where

S∗(N,H) =
∑

N<Q(m)≤N ′

∑

(l,h)∈T
b(l, h)e(Q1/2(m)G(l, h))

with b(l, h)� 1 and T is defined by

T = {(u, v) ∈ R× R+ : −vf ′(a) ≤ u ≤ −vf ′(b), v ∼ H}.

Now we estimate S∗(N,H) by the same argument of Lemma 3.4. Suppose
1 ≤ R ≤ H4/3 is a parameter to be determined. Also suppose 0 < G(l, h) ≤
CH. For each 1 ≤ r ≤ Q, define

Er = {(l, h) : (l, h) ∈ T , (r − 1)CH/Q < G(l, h) ≤ rCH/Q}.
Now we write

S∗(N,H) =
R∑

r=1

∑

N<Q(m)≤N ′

∑

(l,h)∈Er
b(l, h)e(Q1/2(m)G(l, h)).

By Cauchy’s inequality we get

(5.5) |S∗(N,H)|2 � RN
∑

r

∑

N<Q(m)≤N ′

∣∣∣
∑

(l,h)∈Er
b(l, h)e(Q1/2(m)G(l, h))

∣∣∣
2
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� RN
∑

q

∑

(l1,h1)∈Er
(l2,h2)∈Er

|b(l1, h1)b(l2, h2)|
∣∣∣

∑

N<Q(m)≤N ′
e(Q1/2(m)λ)

∣∣∣,

where λ = G(l1, h1)−G(l2, h2). Notice |λ| � H/R.
By Stieltjes integration we have

∑

N<Q(m)≤N ′
e(Q1/2(m)λ) =

N ′�

N

e(
√
uλ) dAD(u)

= a(D)
N ′�

N

e(
√
uλ) du− πiλ

N ′�

N

PD(u)e(
√
uλ)u−1/2 du

+ PD(u)e(
√
uλ)|N ′N

=
�
1

+
�
2

+O(N1/3),

say, where we used the estimate PD(u)� u1/3. We have
�
1
� min(N,N1/2/|λ|).

By (1.2) we have (for the proof of (1.2) for general D ∈ S, see Nowak [14])
�
2
� |λ|N3/4.

This yields
∑

N<Q(m)≤N ′
e(Q1/2(m)λ)� min(N,N1/2/|λ|) + |λ|N3/4 +N1/3(5.6)

� min(N,N1/2/|λ|) + |λ|N3/4,

where N1/3 can be absorbed because

min(N,N1/2/|λ|) + |λ|N3/4 � N5/8.

Similarly to the proof of Lemma 3.4, the contribution of min(N,N 1/2/|λ|)
to |S∗(N,H)|2 is

� (RN2H8/3 +RN3/2H3)logN.

The contribution of |λ|N 3/4 to |S∗(N,H)|2 is

� R−1N7/4H5.

Combining the above we get

|S∗(N,H)|2 log−1 N � RN2H8/3 +RN3/2H3 +R−1N7/4H5.

Choosing a best R ∈ [10,H4/3] via Lemma 3.3 we get
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(5.7) S∗(N,H) log−1N

� N15/16H23/12 +N13/16H2 +NH4/3 +N3/4H3/2 +N7/8H11/6

� N15/16H23/12 +NH4/3,

if we notice

N3/4H3/2 � N13/16H2 � N15/16H23/12, N7/8H11/6 � N15/16H23/12.

Inserting (5.7) into (5.5), we get

(5.8) Σ∗1(N,H) log−1 N � N19/16H5/12 +N5/4.

Now Lemma 5.1 follows from (5.1)–(5.4) and (5.8) by choosing H0 = N15/68.

Lemma 5.2. Suppose D ∈ S. For any T ≥ 10, we have

2T�

T

|ZD(749/1168 + it)|2 dt� T log3 T.

Proof. The zeta-function of D is defined by

ZD(s) =
∑

m∈Z2
∗

Q−s(m),

which is absolutely convergent for <s > 1. Suppose X is a large real number
not attainable by Q(m) as m runs through Z2

∗. For <s > 1, by Stieltjes
integration we have

ZD(s) =
∑

Q(m)≤X
Q−s(m) +

∞�

X

dAD(ω)
ωs

(5.9)

=
∑

Q(m)≤X
Q−s(m) + a(D)

X1−s

s− 1
− PD(X)

Xs
+ s

∞�

X

PD(ω)
ωs+1 dω.

By (1.2) we know that ZD(s) has a continuation to the half-plane <s > 1/4
with a simple pole at s = 1 with residue a(D).

Suppose 87/136 < σ < 1 is fixed, 100T ≤ X ≤ T 2 is a parameter to be
determined. Then by (5.9) we have

(5.10)
2T�

T

|ZD(σ + it)|2 dt�W1 + T 2W2 +X2−2σT−1 + T,

where

W1 =
2T�

T

∣∣∣∣
∑

Q(m)≤X

1
Qσ+it(m)

∣∣∣∣
2

dt, W2 =
2T�

T

∣∣∣∣
∞�

X

PD(ω)
ωσ+1+it

∣∣∣∣
2

dt.
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We first estimate W1. Squaring and integrating, we have

W1 � T
∑

Q(m)≤X
Q−2σ(m)(5.11)

+
∑

Q(m)<Q(n)≤X
Q−σ(m)Q−σ(n) min

(
T,

1

log Q(n)
Q(m)

)

= Σ1 +Σ2.

For Σ1, we have

(5.12) Σ1 � T

X�

1

u−2σ dAD(u)� T.

We write Σ2 as

(5.13) Σ2 = Σ21 +Σ22 +Σ23,

where

Σ21 = T
∑

Q(m)≤X
Q−σ(m)

∑

Q(m)<Q(n)≤e1/TQ(m)

Q−σ(n),

Σ22 =
∑

Q(m)≤X
Q−σ(m)

∑

e1/TQ(m)<Q(n)≤2Q(m)

Q−σ(n)
1

log Q(n)
Q(m)

,

Σ23 =
∑

Q(m)≤X
Q−σ(m)

∑

Q(n)>2Q(m)

Q−σ(n)
1

log Q(n)
Q(m)

.

For Σ23, we trivially have

(5.14) Σ23 �
( ∑

Q(m)≤X
Q−σ(m)

)2
� X2−2σ.

For Σ21, we have

Σ21 � T
∑

Q(m)≤X
Q−2σ(m)

∑

Q(m)<Q(n)≤e1/TQ(m)

1(5.15)

= T
∑

Q(m)≤X
Q−2σ(m)(AD(e1/TQ(m))− AD(Q(m)))

� T
∑

Q(m)≤X
Q−2σ(m)((e1/T − 1)Q(m))

+ T
∣∣∣
∑

Q(m)≤X
PD(e1/TQ(m))Q−2σ(m)

∣∣∣

+ T
∣∣∣
∑

Q(m)≤X
PD(Q(m))Q−2σ(m)

∣∣∣ = Σ1
21 +Σ2

21 +Σ3
21,
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say. We have

(5.16) Σ1
21 � T (e1/T − 1)

∑

Q(m)≤X
Q1−2σ(m)� X2−2σ.

Let
F (t) =

∑

Q(m)≤t
PD(e1/TQ(m)).

Then by Lemma 5.1 we have

F (t)� t87/68 log2 t.

Thus we have

(5.17) Σ2
21 � T

X�

1

dF (t)
t2σ

� T log2 T.

Similarly we have

(5.18) Σ3
21 � T log2 T.

Now we estimate Σ22. Let

δj = 2jQ(m)T−1, j = 0, 1, . . . , J0 = [logT/log 2].

Then

Σ22 �
∑

Q(m)≤X
Q−2σ(m)

∑

e1/TQ(m)<Q(n)≤2Q(m)

1

log Q(n)
Q(m)

(5.19)

�
∑

Q(m)≤X
Q1−2σ(m)

∑

e1/TQ(m)<Q(n)≤2Q(m)

1
Q(n)−Q(m)

�
∑

Q(m)≤X
Q1−2σ(m)

J0∑

j=0

∑

δj<Q(n)−Q(m)≤δj+1

1
Q(n)−Q(m)

�
∑

Q(m)≤X
Q1−2σ(m)

J0∑

j=0

1
δj

∑

Q(m)+δj<Q(n)≤Q(m)+δj+1

1

=
∑

Q(m)≤X
Q1−2σ(m)

J0∑

j=0

1
δj
a(D)(δj+1 − δj)

+
∑

Q(m)≤X
Q1−2σ(m)

×
J0∑

j=0

1
δj

(PD(Q(m) + δj+1)− PD(Q(m) + δj))
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�
∑

Q(m)≤X
Q1−2σ(m)

J0∑

j=0

δj+1 − δj
δj

+
∣∣∣∣
∑

Q(m)≤X
Q1−2σ(m)

J0∑

j=0

PD(Q(m) + δj)
δj

∣∣∣∣ = Σ1
22 +Σ2

22,

if we notice δj+1 ∼ δj .
We have

(5.20) Σ1
22 �

∑

Q(m)≤X
Q1−2σ(m) log T � X2−2σ log T.

For Σ2
22, we have

Σ2
22 �

∣∣∣∣
∑

Q(m)≤X
Q1−2σ(m)

J0∑

j=0

T

2jQ(m)
PD((1 + 2jT−1)Q(m))

∣∣∣∣(5.21)

� T

J0∑

j=0

2−j
∣∣∣
∑

Q(m)≤X
Q−2σ(m)PD((1 + 2jT−1)Q(m))

∣∣∣

� T log T,

where we used the same argument of (5.17) with the help of Lemma 5.1.
From (5.11)–(5.21), we get

(5.22) W1 � X2−2σ logX + T log2 T.

For W2, we have the estimate

(5.23) W2 log−3 X � X−2σ+γ+1/4,

where γ denotes the smallest α such that PD(x)� xα holds. This estimate
(5.23) is formula (18) of Müller [12]. Note that Xε therein can be replaced
by log3 X.

Now Lemma 5.2 follows from (5.10), (5.22) and (5.23) by taking σ =
749/1168, X ∼ T 584/419 and γ = 23/73.

In order to estimate S2, we need the following

Lemma 5.3. Suppose D ∈ S. If RH is true and
2T�

T

|ZD(σ + it)|2 dt� T 1+ε

for some σ ≥ 1/2, then

S2 = a(D)x
∑

m>y

µ(m)
m2 + x1/3+ε + xσ+εy1/2−2σ .
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The proof of this lemma is contained in Huxley and Nowak [7].
From Lemmas 5.2 and 5.3 we immediately get

Proposition 5.1. Suppose D ∈ S. If RH is true, then

S2 = a(D)x
∑

m>y

µ(m)
m2 + x1/3+ε + x749/1168+εy−914/1168.

Now we prove Theorem 2. By (4.16) and Proposition 5.1, the estimate

x−εED(x)� y + x1/3y1/9 + x4/15y5/12 + x1/4y11/24(5.24)

+ δ∗(x, y) + x5/13 + x749/1168y−914/1168

holds for any xε � y � x1/2−ε. Now Theorem 2 follows from (5.24) by
choosing a best y via Lemma 3.3.

6. Proof of Theorem 4. Suppose U = xθ, 0 < θ < 1. We have

BD(x+ xθ)−BD(x) =
∑

x<Q(m,n)≤x+U
gcd(m,n)=1

1 =
∑

x<d2Q(m,n)≤x+U

µ(d)(6.1)

=
∑

d≤xε
+
∑

d>xε

,

where ε > 0 is a sufficiently small fixed real number. By (1.1) we have
∑

d≤xε
=
∑

d≤xε
µ(d)

(
AD

(
x+ U

d2

)
− AD

(
x

d2

))
(6.2)

=
6
π2 a(D)U +O(Ux−ε + x23/73+ε).

For
∑
d>xε , we have
∣∣∣
∑

d>xε

∣∣∣ ≤
∑

x<d2Q(m,n)≤x+U
d>xε

1 =
∑

x<d2Q(m,n)≤x+U
xε<d≤y1

1 +
∑

x<d2Q(m,n)≤x+U
d>y1

1(6.3)

= Σ1 +Σ2,

where xε � y1 � x1/2 is a parameter to be determined.
We first estimate Σ1. We have

Σ1 =
∑

xε<d≤y1

(
AD

(
x+ U

d2

)
− AD

(
x

d2

))
(6.4)

� Ux−ε + max
x≤x0≤x+U

∣∣∣∣
∑

xε<d≤y1

PD

(
x0

d2

)∣∣∣∣

� Ux−ε + max
x≤x0≤x+U

∣∣∣∣
∑

d∼D0

PD

(
x0

d2

)∣∣∣∣ log x
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for some xε � D0 � y1. It suffices to estimate

S∗1 (D0, x) =
∑

d∼D0

PD

(
x

d2

)
.

Since the procedure is the same as that for S1(D0, x) in Section 4 if we
replace µ(d) by 1, we only give the final estimate. The error term of the
B-process will produce the contribution � D0 log x if GD ⊂ Q and the
contribution xα(D)/4+εD

1−α(D)/2
0 if GD ∩Q is nonempty.

The B-process will also produce the exponential sum

Σ∗∗11 (D0,H, x) =
∑

d∼D0

D
1/2
0

d1/2

∑

(m,h)∈T
κ∗(m,h)e

(√
xG(m,h)

d

)
.

We use the exponent pair (2/18, 13/18) to estimate the sum over d and then
choose a best H0.

We finally get

(6.5) x−εΣ1 � x11/29 + y1 + δ∗(x, y1),

where δ∗(x, y) was defined in last section.
For Σ2, we trivially have

Σ2 �
∑

Q(m,n)�x/y2
1

([(
x+ U

Q(m,n)

)1/2]
−
[(

x

Q(m,n)

)1/2])
(6.6)

�
∑

Q(m,n)�x/y2
1

(
Ux−1/2

Q1/2(m,n)
+ 1
)
� Uy−1

1 + xy−2
1 .

Now Theorem 4 follows from (6.1)–(6.6) by taking y1 = x
4−α(D)

12−2α(D) .

7. Proof of Theorem 5. We use the notations in the last section. If

AD(x) = a(D)x+O(xθ0+ε),

then

(7.1)
∑

d≤xε
=

6
π2 a(D)U +O(Ux−ε + xθ0+ε).

For
∑
d>xε , we have

(7.2)
∣∣∣
∑

d>xε

∣∣∣ ≤
∑

x<d2Q(m,n)≤x+U
d>xε

1 =
∑

x<d2n≤x+U
d>xε

rQ(n),

where
rQ(n) =

∑

n=Q(m,l)

1.
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By the estimate rQ(n)� nε
2

we get

(7.3)
∣∣∣
∑

d>xε

∣∣∣� xε
2 ∑

x<d2n≤x+U
d>xε

1.

Now the problem is reduced to estimating the sum on the right side of (7.3).
For this sum, we have the following Lemma 7.1, which is contained in the
proof of Theorem 1 of Filaseta and Trifonov [2].

Lemma 7.1. We have∑

x<d2n≤x+U
d>xε

1� Ux−ε + x1/5+ε.

Lemma 7.1 implies that

(7.4)
∣∣∣
∑

d>xε

∣∣∣ ≤ Ux−ε/2 + x1/5+2ε.

Now Theorem 5 follows from (7.1) and (7.4).
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