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A note on circular distributions
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SOOGIL SEO (Seoul)

1. Introduction. Let u, be the set of nth roots of unity in a fixed

algebraic closure Q of Q. Let fioo = Unen tins 15 = 1in \ {1}, 1l = 11 \ {1},
where N is the set of positive integers. A circular distribution (cf. [1], [2]) is
a Galois equivariant map f from p’, to Q* such that

II 7)) =f(e) foreepi anddeN.
¢l=e

We denote by X the set of all circular distributions. Let

Ry = Z[Gal(Q(pn) /Q)]

be the group ring of the Galois group Gal(Q(u,)/Q) and R := lim R,, be the
projective limit of R,, with respect to the natural restriction maps. Then X
has a natural R-module structure. Let 9 be the element of X' defined by

PO =1-¢ (€ g

By finding elements in X' but not in R, Coleman checked that X # Ru.
He defined a subgroup F of X consisting of f € X satisfying, for each prime
number [ and n € N with ([,n) =1,

f(e¢) = f(¢) modulo primes over (1)
for all € € puf, ¢ € py;. Coleman conjectured
CONJECTURE (Coleman). F = Ri.

In [11], by using the Iwasawa theory (cf. [5]) and arguments involving
Euler systems (cf. [6], [8] and [9]) we showed that the values of F and
Ry on p are “essentially” equal for all n. In [10], we were able to show
that Greenberg’s conjecture implies that the values of 7 and R on u), are
equal for all n. In this paper we investigate to what extent the equality of
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values of F and Ry implies Coleman’s conjecture. Let C(n) be the group
of Sinnott’s cyclotomic units in the field Q(uy,) (cf. [12], [13]),

C(n):={(1 =) | C € pin, 7 € R}

Note that the set of values of Ry on u) is C(n). Hence throughout this
paper we will assume that F(u,) = C(n) for all n. For each n € N, let ¢,
be a primitive nth root of unity in u, such that (7, = ¢, for all m,n € N.
Let D(n) be the R-submodule of C(n) generated by 1 — (,,. We prove

THEOREM A. Let f € F. Then f(¢,) € D(n) for all n € N.

We first show that F((,) is a cyclic R,-module. Let n = p{'---pg.
Let E, denote the group of global units of the nth cyclotomic field and
Cp := C(n) N E,. In general C,, is generated as an R-module by

{1 =G | t]n, tis divisible by at least two distinct primes}

1—¢%
2
Ug——1i=1,...,7,
{1—(1,? }

which is a set of cardinality >°;_, (}) +r =>7_; (;) = 2" — 1. Then we use
a basis for C),, modulo +pu,, constructed by M. Conrad (see §2).

In Section 3, we compute the torsion subgroups Yo and Fior of X and
F respectively. For any set S of square free odd numbers, let §g be the

function on p% defined by

65(Cn) = {

Let D be the R-submodule of X' generated by dg for all such S. When S is
the set of all square free odd numbers, we denote dg by dp,qq- We prove

THEOREM B. Xior = D, Fior = (0odd)-

—1 if n involves only primes in S,

1 otherwise.
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2. F(¢p) is cyclic. Let Z be the profinite group im(Z/nZ) = [1,Zp. Let
X+ Gal(Q(poo)/Q) — Aut(pes) = Z =[], Z, be the cyclotomic character
defined by ¢7 = ¢x(@) for all ¢ € loo- Recall that

o [[ra—. f(¢) = f(e) for e € pi, and d € N, }

¥ {f oo = QT L0 R(0) = F(OXO) for o € Gal(Q(11a0)/Q)
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and
Foe {fEE for each prime number [ and n € N with (I,n) = 1, }

o f(e¢) = f(¢) modulo primes over (1) for all € € puf, ¢ € w |
Let F(¢n) :={f(Cn) | f € F} and Fy, := F((n) N Ey, where E,, is the group
of units in Q(uy). Let C(n) be the group of circular numbers of the nth

cyclotomic field Q(uy,), as defined above, and C,, the group of circular units
(in the sense of Sinnott [12]),

Cp :=C(n)N E,.
It follows from Flu) F
Hn n
~_—  forall N
Cn) . oralln €

that we can transform results on F((,),C(n) into those on Fy,,C), and
vice versa. Furthermore the fact (cf. [10]) that if n is divisible by two dis-
tinct primes then f((,) is always a unit allows us to supress the distinction
whether f(¢,) lies in C'(n) or C,.

Let n = p{* -+ p&. For each p; we choose a; € N such that a; generates
(Z/p;'Z)* as a multiplicative group. If p; = 2 then we assume e; > 2,
(Z)247)* = 7/27 x 7,/2% 27 and choose a generator a; of Z/2%~2Z. Write
a |l b when a divides b and a is prime to b/a. In general, C), is generated as
an R-module by

{1 =G | t]n, tis divisible by at least two distinct primes}

1- Caeii
Ud—>|i= 1,...,7"},
{ L= Cpei
which is a set of cardinality >;_, (}) +r = >I_, () = 2" — 1. Finding a
minimal set of generators over R depends heavily on the prime factors of
n (cf. [4]). For instance if n = pq, p generates Z/qZ and q generates Z/pZ
then one sees easily that Cpy = R(1 — (pq); p = 3, ¢ = 5 will satisfy this
condition. On the other hand, Cs5 # R(1 — (55) as C5 is not contained in
R(1 — Cs5).
Now, we want to show that F((,) is a cyclic R,-module generated by
1 — (pn. For n|m we let

Smp = ( Z U) € R,

o€Gal(Q(um)/Q(pn))
and denote the norm map from Q(pm,) to Q(uyn) by N p-
For motivation, let us consider the case n = p"q where p and ¢ are
distinct primes. For f € F, if f({rq) € C(p"q) then it follows from the
formula

(1= Gprig)?rarla = (1 — Cpr—lgg)
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that f(Crc? "

(1) FGr ) = (1= G ) (1= ) (1 = ),

for some a,, b, ¢, € Rprq. The product condition

11 7 = 1)

Ci=e

) can be expressed in the following form:

for € € oo and d € N is known to be equivalent to the following conditions
(see Section 2 of [10]):

e For any prime number [ and square free integer r with (r,1) =1,

Nip o f(GG) = F(G)FYifr # 1.

eForn—12>1,
Ninggn-1,f(GnCE) = F(Gn-iCl).

Here Fr, is Frobenius at p. It then follows from Njrgpq f(ngCg
f(¢p¢,) and (1) that

(1= Gple)* (1 — gp)br((l - Cq)cr)ppl = (1= Gplg)™ (1= Cp)bl(l — )

for all n > 1. Even if the exponent p"~! in the last term on the left hand
side is large, it may be compensated for by the first term as

(1 = Gpg)??1 = (1 - Cq)Frp_l-

This problem occurs because (1— (yrq) e and (1—(,;)F are not necessarily
linearly disjoint over Z,

14— Cprq)S(p’"mq)Rprq =(1— gq)(Frp—l)Rq c(1- Cprq)Rprq Nn(1- Cq)Rq-

With this regard, the expression of (1) seems to be possible without (1—¢,)¢"
equaling 1. We will show this is not the case.

We mention here that the study of inverse limits of circular units was
considered in a long and interesting paper [7] of Kuz’min. In the first section
of [7], Kuz'min finds a set of generators for P, the inverse limit of P, the
circular units modulo roots of unity over the cyclotomic Z, extension. He
presents P, as a product of D, and P_; in order to obtain the inverse
limit of P,, as that of D,,. We show that the inverse limit of P,, can be
obtained only in terms of D,, independently of P_; using a nice basis found
by Conrad. This basis behaves well with respect to the norm maps in the
cyclotomic Z, extension.

Conrad constructed a basis B,, for the group of cyclotomic units (modulo
+uy,) of the nth cyclotomic field. (The “modulo +u,” does not concern us
since —(, = (1—(,)'~7 for the complex conjugation 7.) The relative circular

—(r—1)

) =
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units 6n are defined to be the group
Ch
tpn Hd\n, d#n Ca
THEOREM 2.1. If B\d C Cyq maps to a basis of éd for d|n then B, =
Ugn Ba maps to a basis of Cp/(£pm).
Proof. See Theorem 5.3 of [3]. u
Indeed, Conrad constructed a basis B, = Ud‘n Ed of C,, so that Ed

induces a basis for the group of relative cyclotomic units Cy ([3, pp. 13,
14]). In what follows by Ed C Cy4 we denote a subset of Cj which maps to a
basis of Cj. Let D(n) be the cyclic R,-module generated by 1 — ¢, and D,
be the units in D(n),

D(n):=1—-¢)¥ ={(1-¢)™ | € Ry}, Dy, :=D(n)NE,.

Note that D(n) = D, if n is divisible by two distinct primes. Let n =
pi' - pr. It follows from the observation

D(pi*---pir) € D(pY---pbr)  for 1<a; <b;
that C,, = Hd”n Dy. It also follows that
_ HawDa D,
 aman Hoga Do~ Ty’ Dot

From this we are led to the following

Chn

LEMMA 2.2. Let b € B,. Then we can write b = (1 — ()™ for some
™ € R,,.

Let <§d> denote the group generated by B,.
LEMMA 2.3. prf7pvf(<§pwf>) = <§pvf> forl1<v<w.

Proof. The norm map Nyuwy 0 induces a surjective map from @)w 7 to

~

vafl

Nw v
Dyoy —2L20 Doy —— 0
= Nw v =
Cpuy —2L2L Chpop —— 0. m

THEOREM 2.4 (= Theorem A). Let f € F. Then f(¢,) € C(n) if and
only if f(¢n) = (1 —Cu)™ for some r, € Ry,.

Proof. The “if” direction is clear, now we take care of the “only if” direc-
tion. If n is a prime power then it follows immediately from the hypotheses
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that f(¢,) = (1 — ¢,)™. Now suppose n is divisible by two distinct primes.
We know that in this case f((,) is a unit and hence f((,) lies in the group
of circular units, Cy. Let n = p{' -~ pfr. Let f(Cn) =[]}, G(n) mod £p,
for some G(n') € (B,/). We claim that all the G(n') terms with py - - - p, f n/
are trivial. Suppose p|n and write

n) = [[ G I G(b) mod .

plaln pfbln
Suppose w € N and write
w—+eq
J(Cnpw) H H G'(p'd) HG' ) mod =iy .
=1 d|-¢ T

Applying Nypw , and using Lemma 2.3 we see that
f(Cn) = HG" (H G'(b ) mod £y,
pla

for some G”(a) € (B,). From this and Theorem 2.1 it follows that [ G(0)
€ £y Thus our claim is proved and hence

= HG(n’

where the product is taken over n’ | n where p; - - - p, | n'. It then follows from
Lemma 2.2 and the facts that

G(n') € (B,) for all n’ with pa---p, |0/
and that +u, C D, that
f(Cn) =1 =)™ for some r, € R,. =
Let A, be the annihilator of D,, in R,
A, :={rp, € R, |u™ =1forall u € D,}.

One can obtain a well defined restriction map resymq pnq from Aym, into Ayng
(m > mn > 1) using the norm maps Npmq png; then respmg g Apmg C Apng
and hence we have a well defined map

respmapna * Bpma/Apma — Rpna/Apna.
From Theorem 2.4 we have

COROLLARY 2.5. Let f € F. Then f((pna) € Cpra if and only if f((pra)
= (1 = Gpra)"?"e for some (rpna) € Im(Ryna/ Apra).

By taking inverse limits with respect to the restriction maps the short
exact sequence,

1 — Apna — ana — pna/Apna — 1
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produces the left short exact sequence

l— @Ap"a - @Rp"a - @Rp"a/“‘lpna-
In general Ay := liLnApna is not zero. When a = 1, we have Ay, # 1 for all
prime p and

1 —lim Apn — Lim Ryn — lim Ryn /Apn — 1.
This implies that in Corollary 2.5 we can lift elements (ryr) € Um(Rpn /Apn)
to (rpn) € lim Ryn. We refer to [10] for the details.

3. Yior and Fior. In this section, we will compute the torsion subgroups
Yiory Fror Of X and F respectively. We begin by considering interesting ex-
amples found by Coleman. For any set S of square free odd numbers, let dg
be the function on u}, defined by

65(Cn) = {

Then one can easily check that g € X'\ F and 6% = 1. Conversely, we
can characterize Coleman’s examples to be those f € X such that f2 = 1.
Indeed suppose that f € X, f2 = 1. Thus f(¢,) = £1 for any ¢, € u’,. We
take

—1 if n involves only primes in .5,

1 otherwise.

S = {m | m is square free and f((,) = —1}.

If S is an empty set then f = 1 from the definition of the circular dis-
tribution. Let n € S and n = py---p,. If n is even, say p; = 2, then
f does not satisfy the axiomatic definition of circular distribution: Let

w=pip2--pr,v =p1---p,. Then
1= (_1)2 = Nw,vf(Cw) = f((v) =—-1

Hence the set S consists of odd numbers. We now claim that f = dg. By
the definition of g and the distributive property of f we have

-1 ifn:qfl---qggWitheizlforlgigr
f(Cn) = d5(Cn) = and q1---q4 € S,
1 otherwise.

This shows that f = §g. Let D be the R-submodule of X' generated by dg
for all such S. We obtain the following

LEMMA 3.1 (Coleman). D is the submodule of X consisting of all ele-
ments f such that f? = 1.

The above lemma provides us the subgroup D of 2-torsions of Y. First
we will show that D is the torsion subgroup of X. We fix some notations. Let
{p1,...,pr} be aset of (temporarily fixed) distinct primes and P := py - - - p;.
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Let X = X(P) denote the set of all numbers divisible only by P,
X ={pf'--pr|cg>1foralli=1,...,r}.
Let
Xi=A{p1pi - plez1}CX
For any subset T of N and f € X, let
T(f):={f(¢)|teT CN}
and let Q(T'(f)) == Q(a | a € T(f)). For each m > n, we write
dy(f) = [Q(f(Gm)) : QUG €N, dT(f) := [Q(T(f)) : Q] € NU {oo}.
We start with the following

PROPOSITION 3.2. Suppose that f € X. Then X (f) is contained in {£1}
if and only if dX(f) is finite. Moreover X;(f) is not contained in Tupsp, if

n+1
and only if diﬁ% (f) is equal to p; for all sufficiently large n.
Proof. Suppose that dX(f) is finite. Then there are positive integers
et,...,e such that Q(X(f)) C Q(,up‘iln_pﬁr). For any s and n; > e; such
that s = 1rnodp?j for j = 1,...,i—1,i +1,...,r, we have f((,) =

pra@f(gpfa) = f(Cpfa)pf where a = pi*---p}". As s can be made arbi-
trarily large, it follows that f((a) € 1, /pi and hence

FG) € [ gy C {1},
i=1,...,r

By the norm coherence property, we conclude X (f) C {£1}. Conversely, if

X (f) C {£1} then clearly d¥(f) is finite.

n+1
If dig; (f) is equal to p; for all sufficiently large n then X;(f) is not

contained in any finite set and hence not contained in +up/,,. To prove

n+1
necessity suppose that dpiz (f) # p for infinitely many n. Then there are
infinite sequences of numbers, n1 < ng < -+, and $1 < s9 < ---, such

it
that diz;j (f) =1, =1modpy for g =1,...,0 —1,i+1,...,r and
Sp—1 < ny < 8. It follows from
f(Cppjk) = (Npp?k"'l,Pp:k Nppijrl7Pp?k+1+1f(Cppjk+1 )P
that
f((prl)

t
= Neyit g e = IT Vo gy Ny pymat F(Cppe) V-
=2,3,...t

This leads to the conclusion that X;(f) C +up/p,. =
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In the following corollary we assume that P is prime.

COROLLARY 3.3. Let P = p be prime. Suppose f € F. Then d*(f) ¢
{£1} if and only if dX(f) = co. Moreover, in this case dgzﬂ(f) =p for all
sufficiently large n.

Proof. This follows immediately from Proposition 3.2. m

COROLLARY 3.4. Yo = D.
Proof. Apply Lemma 3.1 and Proposition 3.2. =

The following example which is contained in Coleman’s examples of D
was suggested to us by Bae.

EXAMPLE.
—1 if nis odd,

50 n) —
aa(Gn) {1 otherwise.

Then doqq € F. We will show that it generates the torsion subgroup Fior
of F.

THEOREM 3.5 (= Theorem B). Fior = {1, d04d}-

Proof. By Corollary 3.4, Fior is contained in D, Fior C Lior = D. Sup-
pose that 1 # f € DN F. Thus f = §g for some nonempty set S. We claim
that f = doqq. Let n € S and n = py---p,. Let ¢ # n be a square free
odd number. Let ¢ be a prime such that (¢,n) = 1,¢|¢t. It follows from the
congruence conditions of F that

—1= f(Cpr-p,) = f(Cgprp.) modulo primes over g.

Since ¢ is an odd prime we have f((4p,...p,) = —1. In this way one can
easily arrive at f((;) = —1. It follows from the norm coherence property
that f(¢s) = —1 for all odd numbers s as we wanted to show. m

We will show elsewhere that d,qq can be written in the form oq4(¢n) =
(1 —¢n)™ for all n, but is not contained in Ri). We are led to the question,
an affirmative answer to which would be a slight modification of Coleman’s
original conjecture on the circular distributions:

Does F equal Ry & Fior ?
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