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The Erdos Theorem and the Halberstam Theorem
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1. Introduction. For n € N, define w(n) to be the number of distinct
prime divisors of n. The Turdn Theorem [9] concerns the second moment of
w(n) and it implies a result of Hardy and Ramanujan [4] that the normal or-
der of w(n) is loglog n. Further development of probabilistic ideas led Erdés
and Kac [2] to prove a remarkable refinement of the Hardy—Ramanujan The-
orem, namely, the existence of a normal distribution for w(n). More precisely,
they proved that for z,v € R,

~w(n) — loglogn

1
lim ——— <x:
s #{n <z} #{n =T loglogn

< 7} —G(y)
1o —t2/2
_ dt.
V2T _S ‘

Instead of the sequence of all natural numbers, we can consider only the

set of primes. Since w(p) = 1 for each prime p, the normal order of w(p) is
not loglog p. However, Erdds [1] proved in 1935 that

Z(w(p —1) —loglogz)? < m(x)loglog z,

p<w
where 7(x) = #{p prime : p < z}. This implies that the normal order of
w(p — 1) is loglogp. In 1955, Halberstam [3] improved Erd6s’s result and
proved that

) 1 w(p—1) —loglogp
el m(x) #{p =T Vl1oglogp =7 ™)

This result can be viewed as a “prime analogue” of the Erdés—Kac Theorem.

Let IF4[t] be the polynomial ring in one variable over a finite field Fy. Let
P be the set of monic irreducible polynomials in F[t]. For m € Fg[t], let
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deg m be the degree of the polynomial m. Also, let w(m) denote the number
of distinct monic irreducible polynomials dividing m, i.e.,

wim) =Y 1.

lepP
llm

We can formulate analogues of the Erdés Theorem and the Halberstam
Theorem in Fy[t].

THEOREM 1. Let P be the set of monic irreducible polynomials in F]t].
Fiz a nonzero polynomial a in Fy[t]. For n € N, we have

Z (w(p — a) —logn)?* < 7(n)logn,
peP
degp<n

where m(n) = #{p € P : degp < n}.
As a direct consequence of Theorem 1, we have

COROLLARY 1. Let {gn} be a sequence of real numbers with g, — oo as
n — oo. Then

- de . | @ —a) —log(degp) — olnln
#{peP-d gp <n, Tos(dosp) '>gn} (m(n)).

In particular, given € > 0, we have
#{p € P :degp < n, |w(p — a) —log(degp)| > elog(degp)} = o(m(n)).
Thus the normal order of w(p — a) is log(deg p).

As we see from previous examples, Corollary 1 implies a possibility that

the quantit
a Y w(p — a) — log(degp)

log(deg p)

distributes normally. This is indeed the case.

THEOREM 2. Let P be the set of monic irreducible polynomials in Fg[t].
Fiz a nonzero polynomial a in Fy[t]. For n € N, v € R, we have

lim L#{p € P:degp <n, wip—a) — log(degp) 7} = G(y).
n—o0 (n) log(deg p)

2. Proof of Theorem 1. We begin with two facts that are essential for
the proof of Theorem 1. Let P be the set of monic irreducible polynomials
in Fy[t]. The following facts concern elements of P; their proofs can be found
in [8].
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Facr 1 ([8, p. 14]). For d € N, we have

d
#{pe P:degp=d} = % +O(qd/2).

The next fact concerns arithmetic progressions of irreducible polynomials
in function fields. It is a theorem of Kornblum [5].

Fact 2 ([8, p. 40]). Let a,m be polynomials in F[t] that are relatively
prime. For any € > 0 and d € N, we have

1 qd d
p. _ _ _ T (1+¢)/2
#{p e P:degp=d, p=a (modm)} om) d +0(q )

where ¢p(m) is the cardinality of (Fq[t]/mIF,[t])*.

Before proving Theorem 1, we consider its analogous version for monic
irreducible polynomials of a fixed degree.

LEMMA 1. Let a be a fized nonzero polynomial and p a monic irreducible
polynomial in Fy[t]. For d € N, we have

d
Z (w(p — a) —logd)? < % log d.
deg p=d

Proof. Let 6§ be a constant with 0 < 6 < 1 which will be chosen later.
Let [ be a monic irreducible polynomial. Notice that

wp—a)= > 1+ Y 1=uwsp—a)+0(1/d),

U|(p—a) l|(p—a)
degl<dd dd<degl<d
where
ws(p —a) = Z 1.
l|(p—a)
degl<dd

By Facts 1 and 2, we have

Yo wlp-a)= > (wilp—a)+0(1/5))

deg p=d deg p=d

= > > 1406l

degl<dd degp=d
p=a (mod1)

1 qd
= <ng17_1 ot O(q“”"””)) +0(q"/d).
degl<dd
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By choosing 6 < 1/2, Fact 1 implies that

d 1

> wlp-a) =T Y g +0("/d)
deg p=d degl<dd q

q’ 1 (¢" k/2 d
=7 > q—k<?+0(q / )) +0(¢"/d)

k<éd

¢

= Elogd—i—O(qd/d).

Now, consider }_ o, ,—q w?(p — a). Write
Y WPp—a)= ) (wilp—a)+0(1/6))
deg p=d deg p=d
= ) Wilp—a)+O0(q"logd/d).
deg p=d
We have
> wde-a= Y > > >
deg p=d degly,degla<dd deg p=d degl<dd degp=d
11 #lg p=a (mod l1l2) p=a (mod l)

d
- X (e Frowtm)

degly,degla<dd
+ O(¢%logd/d).
By choosing 0 < § < 1/4, we have

d
2 _ 9 1 d
Y. Ph-a=2 > et etz T Old"logd/d)
deg p=d degly,degla<dd

d
= % (logd)? + O(q%log d/d).

Combining all the above results and choosing § = 1/5, we obtain

Y (w(p—a)—logd)?
deg p=d
= Z 2(p —a) —2logd Z + (logd)? Z 1

degp=d degp=d deg p=d
q“logd
7
Thus Lemma 1 follows.
Now, Theorem 1 follows directly from Lemma 1:




Erdds Theorem and Halberstam Theorem 327

Proof of Theorem 1. By Lemma 1, we have

Y (wp—a)~logn)®

degp<n

=> ) (W —logd + logd — logn)?
d<n degp=d

< Z Z —logd) +Z Z (logd — logn)?
d<n degp=d d<n degp=d

< Zq—logd+ Z Z (logn)? Z Z (logd — logn)?.
d<n 1<d<n/2 degp=d n/2<d<n degp=d

The third term of the last inequality is
> ) (logd—logn)® < (log2)> Y Y 1< m(n
n/2<d<n degp=d n/2<d<n degp=d
The second term can be estimated by
Z Z (logn)? = (logn)*n(n/2) < w(n).
1<d<n/2 degp=d

The first term is the main term. It is bounded by

d
Z % logd < lognz #{p € P:degp = d} < m(n)logn.
d<n d<n

Combining all the above estimates, we obtain
Z (w(p —a) —logn)* < m(n)logn.
degp<n

Hence, Theorem 1 follows. We have thus obtained an analogue of the Erdos
Theorem in Fy[t].

3. Proof of Theorem 2. In this section, we shall prove that the quan-
tity
w(p — a) —log(degp)
log(deg p)

distributes normally. This follows from Theorem 1 of [6]. Instead of stating
that theorem in its general form, we state below its consequence in Fg[t].
Let P be the set of monic irreducible polynomials in F,[t]. For m € F[t],
define N(m) := ¢48™. Take X = {¢* : z € Z}. Let S be an infinite subset
of Fy[t]. For x € X, define

S(x)={meS:N(m) <z}




328 Y.-R. Liu

We assume that S satisfies the following condition:
(C) 1S(z'/?)| = o(|S(z)]) for all z € X.
Let f be a map from S to M. For each | € P, we write
1
o #m e S(x) 1] f(m)} = Mi(z) + erfz),
S ()]
where \; = \;j(z) can be thought of as the main term (and is usually chosen

to be independent of z) and e¢; = ¢;(z) is an error term. For any sequence
of distinct elements I1,...,[l, € P, we write

—1 .
15(2)] #{m e S(x): ;| f(m) foralli=1,...,u} =X, -\, +e.1,(T).
We will use e, ;, to abbreviate e;, . ;, (x) below.

Suppose that for all x € X, there exists a constant 8 with 0 < 8 < 1
and y = y(z) < 2” such that the following conditions hold:

(1)  #{eP:N1)>2% 1| f(m)} =0(Q) for each m € S(x).
(2) Z A = o((loglog z)/?).
y<N(l)<zP

(3) > el = o((loglogz)'/?).

y<N(l)<zP

(4) Z A = loglog = + o (loglog z)'/?).
N()<y

(5) > Al =o((loglogz)'/?).
N(O<y

(6) Forre Nand u=1,...,r, we have

g —r/2
> len.a,| = o((loglog z)~/?),

where 3" extends over all u-tuples (I1,...,1,) with N(l;) <y and [;
are all distinct.

It was proved in [6] that there is a generalization of the Erdés—Kac
Theorem in Fy[t].

THEOREM 3 (Theorem 1 in [6]). Let P and X be as before. Let S be a
subset of Fy[t] satisfying condition (C). Let f : S — Fg[t]. Suppose there
exists a constant 3 with 0 < 8 <1 and y = y(z) < 2” such that conditions
(1) to (6) hold. Then for v € R, we have

Jim #{m € S(z) - U (m)) —loglog N(m) 7} G,
z—o0 |5(x)] log log N (m)

Now, we are ready to prove Theorem 2. Let S = P and f:p— p—a.
By Fact 1, condition (C) follows. Choose y = z!/1°81°8% and let 3 be any
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constant such that 0 < § < 1/2. Since for N(p) < z = ¢" with x large (say
> N(a)), we have

#{leP:NI)>2"1|(p—a)} <1/8,
condition (1) is satisfied. For a monic irreducible polynomial [, Fact 2 implies

that

#{pe P:degp<n,p=a (modl)} = % 7(n) + O(w(n)Y/2+%).

Take \; = 1/¢(1). Lemmas 1 and 2 in [7] state that
1 1
—— =logl o1 — < 1
Z NO) oglogx + O(1), Z NQ? <
N()<z N()<=
Thus conditions (2), (4), and (5) follow. Also, we have
Y lal<wn) V2 r(n)f < 1,
y<N()<zf
since 8 < 1/2. Thus, condition (3) follows. For distinct primes l1, ..., [, with
N(l;) <y, by Fact 2, we have
lety. 0] <€ w(n) A

Since y = o(z®), condition (6) is satisfied. Combining all the above results,
Theorem 3 implies that

1 w(p — a) —log(degp) }
hm—#{peP:degpgn, <~y =G").
n—oco m(n) log(deg p) "

We have thus obtained an analogue of the Halberstam Theorem in F[t].
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