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The Erdős Theorem and the Halberstam Theorem
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1. Introduction. For n ∈ N, define ω(n) to be the number of distinct
prime divisors of n. The Turán Theorem [9] concerns the second moment of
ω(n) and it implies a result of Hardy and Ramanujan [4] that the normal or-
der of ω(n) is log logn. Further development of probabilistic ideas led Erdős
and Kac [2] to prove a remarkable refinement of the Hardy–Ramanujan The-
orem, namely, the existence of a normal distribution for ω(n). More precisely,
they proved that for x, γ ∈ R,

lim
x→∞

1
#{n ≤ x} #

{
n ≤ x :

ω(n)− log logn√
log logn

≤ γ
}

= G(γ)

:=
1√
2π

γ�

−∞
e−t

2/2 dt.

Instead of the sequence of all natural numbers, we can consider only the
set of primes. Since ω(p) = 1 for each prime p, the normal order of ω(p) is
not log log p. However, Erdős [1] proved in 1935 that

∑

p≤x
(ω(p− 1)− log log x)2 � π(x) log log x,

where π(x) = #{p prime : p ≤ x}. This implies that the normal order of
ω(p − 1) is log log p. In 1955, Halberstam [3] improved Erdős’s result and
proved that

lim
x→∞

1
π(x)

#
{
p ≤ x :

ω(p− 1)− log log p√
log log p

≤ γ
}

= G(γ).

This result can be viewed as a “prime analogue” of the Erdős–Kac Theorem.
Let Fq[t] be the polynomial ring in one variable over a finite field Fq. Let

P be the set of monic irreducible polynomials in Fq[t]. For m ∈ Fq[t], let
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degm be the degree of the polynomial m. Also, let ω(m) denote the number
of distinct monic irreducible polynomials dividing m, i.e.,

ω(m) =
∑

l∈P
l|m

1.

We can formulate analogues of the Erdős Theorem and the Halberstam
Theorem in Fq[t].

Theorem 1. Let P be the set of monic irreducible polynomials in Fq[t].
Fix a nonzero polynomial a in Fq[t]. For n ∈ N, we have

∑

p∈P
deg p≤n

(ω(p− a)− logn)2 � π(n) logn,

where π(n) = #{p ∈ P : deg p ≤ n}.
As a direct consequence of Theorem 1, we have

Corollary 1. Let {gn} be a sequence of real numbers with gn →∞ as
n→∞. Then

#
{
p ∈ P : deg p ≤ n,

∣∣∣∣
ω(p− a)− log(deg p)√

log(deg p)

∣∣∣∣ > gn

}
= o(π(n)).

In particular , given ε > 0, we have

#{p ∈ P : deg p ≤ n, |ω(p− a)− log(deg p)| > ε log(deg p)} = o(π(n)).

Thus the normal order of ω(p− a) is log(deg p).

As we see from previous examples, Corollary 1 implies a possibility that
the quantity

ω(p− a)− log(deg p)√
log(deg p)

distributes normally. This is indeed the case.

Theorem 2. Let P be the set of monic irreducible polynomials in Fq[t].
Fix a nonzero polynomial a in Fq[t]. For n ∈ N, γ ∈ R, we have

lim
n→∞

1
π(n)

#
{
p ∈ P : deg p ≤ n, ω(p− a)− log(deg p)√

log(deg p)
≤ γ

}
= G(γ).

2. Proof of Theorem 1. We begin with two facts that are essential for
the proof of Theorem 1. Let P be the set of monic irreducible polynomials
in Fq[t]. The following facts concern elements of P ; their proofs can be found
in [8].
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Fact 1 ([8, p. 14]). For d ∈ N, we have

#{p ∈ P : deg p = d} =
qd

d
+O(qd/2).

The next fact concerns arithmetic progressions of irreducible polynomials
in function fields. It is a theorem of Kornblum [5].

Fact 2 ([8, p. 40]). Let a,m be polynomials in Fq[t] that are relatively
prime. For any ε > 0 and d ∈ N, we have

#{p ∈ P : deg p = d, p ≡ a (modm)} =
1

φ(m)
· q

d

d
+O(qd(1+ε)/2),

where φ(m) is the cardinality of (Fq[t]/mFq[t])∗.

Before proving Theorem 1, we consider its analogous version for monic
irreducible polynomials of a fixed degree.

Lemma 1. Let a be a fixed nonzero polynomial and p a monic irreducible
polynomial in Fq[t]. For d ∈ N, we have

∑

deg p=d

(ω(p− a)− log d)2 � qd

d
log d.

Proof. Let δ be a constant with 0 < δ < 1 which will be chosen later.
Let l be a monic irreducible polynomial. Notice that

ω(p− a) =
∑

l|(p−a)
deg l≤δd

1 +
∑

l|(p−a)
δd<deg l≤d

1 = ωδ(p− a) +O(1/δ),

where

ωδ(p− a) =
∑

l|(p−a)
deg l≤δd

1.

By Facts 1 and 2, we have
∑

deg p=d

ω(p− a) =
∑

deg p=d

(ωδ(p− a) +O(1/δ))

=
∑

deg l≤δd

∑

deg p=d
p≡a (mod l)

1 +O(qd/d)

=
∑

deg l≤δd

(
1

qdeg l − 1
· q

d

d
+O(qd(1+ε)/2)

)
+O(qd/d).
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By choosing δ < 1/2, Fact 1 implies that

∑

deg p=d

ω(p− a) =
qd

d

∑

deg l≤δd

1
qdeg l +O(qd/d)

=
qd

d

∑

k≤δd

1
qk

(
qk

k
+O(qk/2)

)
+O(qd/d)

=
qd

d
log d+O(qd/d).

Now, consider
∑

deg p=d ω
2(p− a). Write

∑

deg p=d

ω2(p− a) =
∑

deg p=d

(ωδ(p− a) +O(1/δ))2

=
∑

deg p=d

ω2
δ (p− a) +O(qd log d/d).

We have∑

deg p=d

ω2
δ (p− a) =

∑

deg l1,deg l2≤δd
l1 6=l2

∑

deg p=d
p≡a (mod l1l2)

1 +
∑

deg l≤δd

∑

deg p=d
p≡a (mod l)

1

=
∑

deg l1,deg l2≤δd

(
1

φ(l1l2)
· q

d

d
+O(qd(1+ε)/2)

)

+O(qd log d/d).

By choosing 0 < δ < 1/4, we have

∑

deg p=d

ω2(p− a) =
qd

d

∑

deg l1,deg l2≤δd

1
qdeg l1 · qdeg l2

+O(qd log d/d)

=
qd

d
(log d)2 +O(qd log d/d).

Combining all the above results and choosing δ = 1/5, we obtain
∑

deg p=d

(ω(p− a)− log d)2

=
∑

deg p=d

ω2(p− a)− 2 log d
∑

deg p=d

ω(p− a) + (log d)2
∑

deg p=d

1

� qd log d
d

.

Thus Lemma 1 follows.
Now, Theorem 1 follows directly from Lemma 1:
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Proof of Theorem 1. By Lemma 1, we have
∑

deg p≤n
(ω(p− a)− logn)2

=
∑

d≤n

∑

deg p=d

(ω(p− a)− log d+ log d− logn)2

�
∑

d≤n

∑

deg p=d

(ω(p− a)− log d)2 +
∑

d≤n

∑

deg p=d

(log d− logn)2

�
∑

d≤n

qd

d
log d+

∑

1≤d≤n/2

∑

deg p=d

(logn)2 +
∑

n/2<d≤n

∑

deg p=d

(log d− logn)2.

The third term of the last inequality is
∑

n/2<d≤n

∑

deg p=d

(log d− logn)2 � (log 2)2
∑

n/2<d≤n

∑

deg p=d

1� π(n).

The second term can be estimated by
∑

1≤d≤n/2

∑

deg p=d

(logn)2 = (logn)2π(n/2)� π(n).

The first term is the main term. It is bounded by
∑

d≤n

qd

d
log d� logn

∑

d≤n
#{p ∈ P : deg p = d} � π(n) logn.

Combining all the above estimates, we obtain
∑

deg p≤n
(ω(p− a)− log n)2 � π(n) logn.

Hence, Theorem 1 follows. We have thus obtained an analogue of the Erdős
Theorem in Fq[t].

3. Proof of Theorem 2. In this section, we shall prove that the quan-
tity

ω(p− a)− log(deg p)√
log(deg p)

distributes normally. This follows from Theorem 1 of [6]. Instead of stating
that theorem in its general form, we state below its consequence in Fq[t].
Let P be the set of monic irreducible polynomials in Fq[t]. For m ∈ Fq[t],
define N(m) := qdegm. Take X = {qz : z ∈ Z}. Let S be an infinite subset
of Fq[t]. For x ∈ X, define

S(x) = {m ∈ S : N(m) ≤ x}.
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We assume that S satisfies the following condition:

(C) |S(x1/2)| = o(|S(x)|) for all x ∈ X.
Let f be a map from S to M . For each l ∈ P , we write

1
|S(x)| #{m ∈ S(x) : l | f(m)} = λl(x) + el(x),

where λl = λl(x) can be thought of as the main term (and is usually chosen
to be independent of x) and el = el(x) is an error term. For any sequence
of distinct elements l1, . . . , lu ∈ P , we write

1
|S(x)| #{m ∈ S(x) : li | f(m) for all i = 1, . . . , u} = λl1 · · ·λlu + el1...lu(x).

We will use el1...lu to abbreviate el1...lu(x) below.
Suppose that for all x ∈ X, there exists a constant β with 0 < β ≤ 1

and y = y(x) < xβ such that the following conditions hold:

(1) #{l ∈ P : N(l) > xβ , l | f(m)} = O(1) for each m ∈ S(x).

(2)
∑

y<N(l)≤xβ
λl = o((log log x)1/2).

(3)
∑

y<N(l)≤xβ
|el| = o((log log x)1/2).

(4)
∑

N(l)≤y
λl = log log x+ o((log log x)1/2).

(5)
∑

N(l)≤y
λ2
l = o((log log x)1/2).

(6) For r ∈ N and u = 1, . . . , r, we have
∑′′ |el1...lu | = o((log log x)−r/2),

where
∑′′ extends over all u-tuples (l1, . . . , lu) with N(li) ≤ y and li

are all distinct.

It was proved in [6] that there is a generalization of the Erdős–Kac
Theorem in Fq[t].

Theorem 3 (Theorem 1 in [6]). Let P and X be as before. Let S be a
subset of Fq[t] satisfying condition (C). Let f : S → Fq[t]. Suppose there
exists a constant β with 0 < β ≤ 1 and y = y(x) < xβ such that conditions
(1) to (6) hold. Then for γ ∈ R, we have

lim
x→∞

1
|S(x)| #

{
m ∈ S(x) :

ω(f(m))− log logN(m)√
log logN(m)

≤ γ
}

= G(γ).

Now, we are ready to prove Theorem 2. Let S = P and f : p 7→ p − a.
By Fact 1, condition (C) follows. Choose y = x1/log log x and let β be any
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constant such that 0 < β < 1/2. Since for N(p) ≤ x = qn with x large (say
> N(a)), we have

#{l ∈ P : N(l) > xβ, l | (p− a)} ≤ 1/β,

condition (1) is satisfied. For a monic irreducible polynomial l, Fact 2 implies
that

#{p ∈ P : deg p ≤ n, p ≡ a (mod l)} =
1
φ(l)

π(n) +O(π(n)1/2+ε).

Take λl = 1/φ(l). Lemmas 1 and 2 in [7] state that
∑

N(l)≤x

1
N(l)

= log log x+O(1),
∑

N(l)≤x

1
N(l)2 � 1.

Thus conditions (2), (4), and (5) follow. Also, we have
∑

y<N(l)≤xβ
|el| � π(n)−1/2+ε · π(n)β � 1,

since β < 1/2. Thus, condition (3) follows. For distinct primes l1, . . . , lu with
N(li) ≤ y, by Fact 2, we have

|el1...lu | � π(n)−1/2+ε.

Since y = o(xε), condition (6) is satisfied. Combining all the above results,
Theorem 3 implies that

lim
n→∞

1
π(n)

#
{
p ∈ P : deg p ≤ n, ω(p− a)− log(deg p)√

log(deg p)
≤ γ

}
= G(γ).

We have thus obtained an analogue of the Halberstam Theorem in Fq[t].
Acknowledgements. I would like to thank Prof. B. Mazur and Prof.
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