Hilbert symbols as maps of functors

by
Kevin Hutchinson and Dermot Ryan (Dublin)

1. Introduction. The Hilbert symbol on a local field, F, gives a homomorphism $H_{F}: K_{2} F \rightarrow \mu(F)$. It is natural to ask how this behaves under extension of fields; that is, if E / F is a finite extension of local fields, what map $\mu(F) \rightarrow \mu(E)$ (if any) makes the diagram

commute? The first thing to observe is that the inclusion map $\mu(F) \rightarrow \mu(E)$ does not usually work. In other words if we interpret the assignment $F \rightarrow$ $\mu(F)$ as a functor in the obvious way, the Hilbert symbol is not a morphism of functors. In fact, it is more naturally a map of contravariant functors, in the sense that the diagram

will commute, where the right hand vertical arrow is the appropriate surjective power map; see [1, Proposition 2] and [3]. (Indeed, if we use this fact in conjunction with properties of the K-theory transfer, we can arrive at an answer to the question above. This gives us, in an ad hoc manner, a formula for a map $\mu(F) \rightarrow \mu(E)$ which will make the diagram commute; see [8, Lemma 1.3.3] or [5]. But we are seeking a more conceptual answer to the question in this paper.)

Of course it is well known to K-theorists and number theorists that when the nth roots of unity are contained in a local field F, then the Hilbert

[^0]symbol of order n on F is essentially equal to the Galois symbol
$$
\Gamma_{F, n}: K_{2} F \rightarrow H^{2}\left(G_{F}, \mu_{n}^{\otimes 2}\right)
$$

The primary reference for this last fact is [9, Chapter XIV, 2, Proposition 5]. The Galois symbols, $\Gamma_{F, n}$, are naturally maps of functors on the category of finite extensions of a given local field. Our question however involves comparing Hilbert symbols of (possibly) different orders. The Galois symbol is less obviously a map of functors of the second variable " n " (that is, the underlying category is the set of natural numbers partially ordered by divisibility). In order to make this work, the domain functor is $K_{2} F / n=K_{2} F \otimes \mathbb{Z} / n \mathbb{Z}$ and, when n divides m, the map $H^{2}\left(G_{F}, \mu_{n}^{\otimes 2}\right) \rightarrow H^{2}\left(G_{E}, \mu_{m}^{\otimes 2}\right)$ is induced by a homomorphism of coefficient modules $\mu_{n} \otimes \mu_{n} \rightarrow \mu_{m} \otimes \mu_{m}$, but not by the natural map obtained by tensoring the inclusion $\mu_{n} \rightarrow \mu_{m}$ with itself.

In this note, we give a natural generalization of the Hilbert symbol of order n to the situation where the nth roots of unity do not belong to the local field F. The target functor can then be identified as the group, $\left(\mu_{n}\right)_{G_{F}}$, of G_{F}-coinvariants of μ_{n}, which is naturally a functor of both F and n. This (slightly) generalized Hilbert symbol $H_{F}: K_{2} F / n \rightarrow\left(\mu_{n}\right)_{G_{F}}$ is a map of functors. In fact it is a map of functors with transfers. In order to prove this, we show that our generalized Hilbert symbol is essentially equal to the Galois symbol, via Tate duality. The subtlety of this result derives from the fact that the Hilbert symbols are naturally defined in terms of Tate cohomology, which behaves poorly as a functor, while the Galois symbols involve Galois cohomology. This having been proven, our original question has a natural answer (see Corollary 2.3).

In a final section, as an application of the functorial behaviour of Hilbert symbols, we identify the quotient $W K_{2} F / K_{2}^{\infty} F$, where $W K_{2} F$ is the wild kernel of the number field F and $K_{2}^{\infty} F=\bigcap_{n}\left(K_{2} F\right)^{n}$, as the well known Tate-Shafarevich group $\amalg^{1}\left(F, \mu_{N}\right)$ (for N sufficiently large).

This note arose from the desire to give a short conceptual answer to the question: why is the wild kernel of a number field a functor? Recall that if F is a number field then each place v of F yields a Hilbert symbol $H_{v}: K_{2} F \rightarrow \mu\left(F_{v}\right)$ and the wild kernel is the intersection of the kernels of all these symbols. One would like to say that each H_{v} is a map of functors (so that $\operatorname{ker}\left(H_{v}\right)$ and hence $\bigcap_{v} \operatorname{ker}\left(H_{v}\right)$ is also a functor). Although this statement is not true as it stands, we have shown how to modify it to make it correct.
2. Hilbert symbols as maps of functors. Our goal is to interpret the classical Hilbert symbol of order n on a local field F as a map of functors:

$$
K_{2} F / n \rightarrow\left(\mu_{n}\right)_{G_{F}}
$$

We make this statement precise as follows. Fix a field k. The domain category for these functors is the category \mathcal{C}_{k} whose objects are pairs (F, n), where F is a finite field extension of k, and n is a positive integer which is relatively prime to char k if char $k>0$. There are no morphisms $(F, n) \rightarrow(E, m)$ if $n \nmid m$; otherwise the morphisms $(F, n) \rightarrow(E, m)$ are the k-algebra homomorphisms $F \rightarrow E$. The functors $(F, n) \rightarrow K_{2} F / n$ and $(F, n) \rightarrow\left(\mu_{n}\right)_{G_{F}}$ are functors with transfers on this category with values in the category of finite abelian groups; thus, given $\sigma:(F, n) \rightarrow(E, m)$ (where n divides m) there are maps

$$
\frac{m}{n} K_{2}(\sigma): K_{2} F / n \rightarrow K_{2} E / m, \quad N_{E / F}:\left(\mu_{n}\right)_{G_{F}} \rightarrow\left(\mu_{m}\right)_{G_{E}}
$$

and maps
$K_{2} E / m \rightarrow K_{2} F / n, x \mapsto \operatorname{tr}_{E / F}(x), \quad\left(\mu_{m}\right)_{G_{E}} \rightarrow\left(\mu_{n}\right)_{G_{F}}, \quad \zeta \mapsto \tilde{\sigma}^{-1}\left(\zeta^{m / n}\right)$, which make these into covariant and contravariant functors. (Here $\widetilde{\sigma}$ is any extension of σ to a field isomorphism $\widetilde{\sigma}: F_{\text {sep }} \rightarrow E_{\text {sep }}$. Moreover, $\widetilde{\sigma}$ induces an embedding $G_{E} \rightarrow G_{F}, \tau \mapsto \widetilde{\sigma}^{-1} \tau \widetilde{\sigma}$, with respect to which $N_{E / F}$ is defined. For simplicity we will always assume that σ is an inclusion and $\widetilde{\sigma}$ is the identity.) Furthermore the composites $K_{2} F / n \rightarrow K_{2} E / m \rightarrow K_{2} F / n$ and $\left(\mu_{n}\right)_{G_{F}} \rightarrow\left(\mu_{m}\right)_{G_{E}} \rightarrow\left(\mu_{n}\right)_{G_{F}}$ are just multiplication by $(m / n)[E: F]$.

Our main result is the following:
Theorem 2.1. For k a local field and $(F, n) \in \operatorname{Obj} \mathcal{C}_{k}$, there is a group homomorphism

$$
H_{F, n}: K_{2} F / n \rightarrow\left(\mu_{n}\right)_{G_{F}}
$$

such that
(1) if $\mu_{n} \subset F$, the composite

$$
F^{*} \times F^{*} \rightarrow K_{2} F / n \rightarrow \mu_{n}=\left(\mu_{n}\right)_{G_{F}}
$$

is the classical Hilbert symbol,
(2) $H_{F, n}$ is a map of functors with transfers.

Theorem 2.1(1) is a consequence of Lemma 4.1 below, while Theorem 2.1(2) follows from Theorem 6.5, Lemma 7.1 and Lemma 7.2 below.

Corollary 2.2. Let k be a non-archimedean local field and $(F, m) \in$ $\operatorname{Obj} \mathcal{C}_{k}$, suppose that $\mu_{m}(F)=\mu_{n}$ and suppose that $r=m / n$. Then $\left(\mu_{m}\right)_{G_{F}}$ $\cong \mu_{n}$ by $\zeta \mapsto \zeta^{r}$. The composite

$$
F^{*} \times F^{*} \rightarrow K_{2} F / m \xrightarrow{H_{F, m}}\left(\mu_{m}\right)_{G_{F}} \xrightarrow{\sim} \mu_{n}
$$

is the Hilbert symbol of order n.

Proof. The morphism $(F, n) \rightarrow(F, m)$ gives the following diagram of contravariant functors:

hence the result.
Observe, by contrast, that the diagram of covariant functors corresponding to the morphism $(F, n) \rightarrow(F, m)$ gives

Corollary 2.3. Let E / F be an extension of non-archimedean local fields. Let $m \in \mathbb{N}$ be such that char $E \nmid m$ and $\mu_{m} \subset \mu(E)$. Suppose that $\mu_{m}(F)=\mu_{n}$ and let $r=m / n$. Then the diagram

commutes, where the horizontal arrows are the Hilbert symbols of the appropriate order and $\mathfrak{N}(\zeta)=N_{E / F}\left(\zeta^{1 / r}\right)$.

Proof. The following diagram commutes:

hence the claim.
3. Some background. Let F be a local field, let $F_{\text {sep }}$ denote the separable closure of F and let $G_{F}=\operatorname{Gal}\left(F_{\mathrm{sep}} / F\right)$ be the absolute Galois group of F. In this situation:
(i) There is a canonical isomorphism

$$
\operatorname{inv}_{F}: H^{2}\left(G_{F}, F_{\mathrm{sep}}^{*}\right) \rightarrow I(F) \subset \mathbb{Q} / \mathbb{Z}
$$

where

$$
I(F)= \begin{cases}\mathbb{Q} / \mathbb{Z}, & F \text { a } p \text {-adic local field } \\ \mathbb{Q} / \mathbb{Z}(p)^{\prime}=\bigcup_{n \nmid p} \frac{1}{n} \mathbb{Z} / \mathbb{Z}, & F \text { a local field of characteristic } p>0 \\ \frac{1}{2} \mathbb{Z} / \mathbb{Z}, & F=\mathbb{R} \\ 0, & F=\mathbb{C}\end{cases}
$$

(ii) If L / F is a finite Galois extension of degree n, where n is relatively prime to char F if char $F>0$, then the inflation homomorphism

$$
\inf _{L / F}: H^{2}\left(\operatorname{Gal}(L / F), L^{*}\right) \rightarrow H^{2}\left(G_{F}, F_{\mathrm{sep}}^{*}\right)
$$

is injective and $\operatorname{inv}_{L / F}=\operatorname{inv}_{F} \circ \inf _{L / F} \operatorname{maps} H^{2}\left(\operatorname{Gal}(L / F), L^{*}\right)$ isomorphically onto the subgroup $(1 / n) \mathbb{Z} / \mathbb{Z}$ of $I(F)$.
(iii) Thus there is a canonical element $u_{L / F} \in H^{2}\left(\operatorname{Gal}(L / F), L^{*}\right)$ such that $\operatorname{inv}_{L / F}\left(u_{L / F}\right)=1 / n$. Cup-product with $u_{L / F}$ induces isomorphisms of Tate cohomology groups

$$
\widehat{H}^{i}(\operatorname{Gal}(L / F), \mathbb{Z}) \xrightarrow{\sim} \widehat{H}^{i+2}\left(\operatorname{Gal}(L / F), L^{*}\right)
$$

for all $i \in \mathbb{Z}$. In particular, when $i=-2$ this gives an isomorphism

$$
\operatorname{Gal}(L / F)^{\mathrm{ab}}=\widehat{H}^{-2}(\operatorname{Gal}(L / F), \mathbb{Z}) \xrightarrow{\sim} \widehat{H}^{0}\left(\operatorname{Gal}(L / F), L^{*}\right)
$$

The inverse isomorphism

$$
\varrho_{L / F}: F^{*} / N_{L / F}\left(L^{*}\right)=\widehat{H}^{0}\left(\operatorname{Gal}(L / F), L^{*}\right) \rightarrow \operatorname{Gal}(L / F)^{\mathrm{ab}}
$$

is the reciprocity isomorphism.
4. The Hilbert symbol. Let k be a local field and let $(F, n) \in \operatorname{Obj} \mathcal{C}_{k}$ be such that F contains the group, μ_{n}, of all nth roots of unity for some integer $n>1$. Let $F_{n}=F\left(\sqrt[n]{F^{*}}\right)$. By Kummer theory, F_{n} / F is the maximal abelian extension of F of exponent n. Let $G_{n}=\operatorname{Gal}\left(F_{n} / F\right)$. Associated to the short exact sequence of G_{n}-modules

$$
1 \rightarrow \mu_{n} \rightarrow F_{n}^{*} \xrightarrow{()^{n}}\left(F_{n}^{*}\right)^{n} \rightarrow 1
$$

there is a long exact cohomology sequence with connecting homomorphisms denoted by $\delta_{F, n}$ or simply δ_{n} :
$\cdots \rightarrow H^{0}\left(G_{n}, F_{n}^{*}\right) \rightarrow H^{0}\left(G_{n},\left(F_{n}^{*}\right)^{n}\right) \xrightarrow{\delta_{n}} H^{1}\left(G_{n}, \mu_{n}\right) \rightarrow H^{1}\left(G_{n}, F_{n}^{*}\right) \rightarrow \cdots$.
Since $H^{0}\left(G_{n}, F_{n}^{*}\right)=H^{0}\left(G_{n},\left(F_{n}^{*}\right)^{n}\right)=F^{*}$ and since $H^{1}\left(G_{n}, F_{n}^{*}\right)=\{1\}$, by Hilbert's Theorem 90, there is a surjective homomorphism

$$
\delta_{n}: F^{*} \rightarrow H^{1}\left(G_{n}, \mu_{n}\right)=\operatorname{Hom}\left(G_{n}, \mu_{n}\right)
$$

with kernel $\left(F^{*}\right)^{n}$. Let $\varrho_{n}=\varrho_{F_{n} / F}$ denote the reciprocity map

$$
\varrho_{n}: F^{*} \rightarrow \widehat{H}^{-2}\left(G_{n}, \mathbb{Z}\right)=G_{n}^{\mathrm{ab}}=G_{n}
$$

The Hilbert symbol of order n on F is the composite

$$
\lambda_{F, n}=\lambda_{n}: F^{*} \times F^{*} \xrightarrow{\varrho_{n} \times \delta_{n}} G_{n} \times \operatorname{Hom}\left(G_{n}, \mu_{n}\right) \rightarrow \mu_{n}
$$

that is,

$$
\lambda_{n}(a, b)=\delta_{n}(b)\left(\varrho_{n}(a)\right) \in \mu_{n} .
$$

This pairing can be interpreted as a cup-product of Tate cohomology groups and thus generalized to all $(F, n) \in \operatorname{Obj} \mathcal{C}_{k}$ as follows. Let $F_{n}=F\left(\sqrt[n]{F^{*}}\right)$. If $\mu_{n} \not \subset F$ then F_{n} / F is a finite Galois extension but no longer necessarily abelian. A surjective homomorphism $\delta_{n}: F^{*} \rightarrow \widehat{H}^{1}\left(G_{n}, \mu_{n}\right)$ can be constructed as above, although $\widehat{H}^{1}\left(G_{n}, \mu_{n}\right)$ can no longer be identified with $\operatorname{Hom}\left(G_{n}, \mu_{n}\right)$. Furthermore, there is a reciprocity map $\varrho_{n}: F^{*} \rightarrow G_{n}^{\mathrm{ab}}$ but it is not in general true that $G_{n}=G_{n}^{\mathrm{ab}}$.

Thus, for any $(F, n) \in \operatorname{Obj} \mathcal{C}_{k}$ we define a pairing

$$
\lambda_{F, n}^{\prime}=\lambda_{n}^{\prime}: F^{*} \times F^{*} \rightarrow \widehat{H}^{-1}\left(G_{n}, \mu_{n}\right), \quad \lambda_{n}^{\prime}(a, b) \mapsto \varrho_{n}(a) \cup \delta_{n}(b)
$$

Observe that $\widehat{H}^{-1}\left(G_{n}, \mu_{n}\right)=\widehat{H}_{0}\left(G_{n}, \mu_{n}\right)=\left(\mu_{n}\right)_{G_{n}}=\left(\mu_{n}\right)_{G_{F}}$.
LEMMA 4.1. If $\mu_{n} \subset F$ then $\widehat{H}^{-1}\left(G_{n}, \mu_{n}\right)$ is naturally identified with μ_{n}. With this identification, $\lambda_{n}^{\prime}=\lambda_{n}$.

Proof. In general, for a finite group G and a G-module $M, \widehat{H}^{-i}(G, M)=$ $\widehat{H}_{i-1}(G, M)$ for $i \geq 1$ (cf. [2, VI, 4]). Thus $\widehat{H}^{-1}\left(G_{n}, \mu_{n}\right)=\widehat{H}_{0}\left(G_{n}, \mu_{n}\right)=\mu_{n}$ and $\widehat{H}^{-2}\left(G_{n}, \mathbb{Z}\right)=\widehat{H}_{1}\left(G_{n}, \mathbb{Z}\right)=G_{n}^{\text {ab }}$. With these identifications, the cupproduct

$$
\widehat{H}^{-2}\left(G_{n}, \mathbb{Z}\right) \times \widehat{H}^{1}\left(G_{n}, \mu_{n}\right) \rightarrow \widehat{H}^{-1}\left(G_{n}, \mu_{n}\right)
$$

corresponds to the cap-product

$$
H_{1}\left(G_{n}, \mathbb{Z}\right) \times H^{1}\left(G_{n}, \mu_{n}\right) \rightarrow \mu_{n}
$$

which is just the natural evaluation map $[2, \mathrm{~V}, 3.10]$.
Thus we may call λ_{n}^{\prime} the Hilbert symbol of order n on F for any $(F, n) \in$ $\operatorname{Obj} \mathcal{C}_{k}$ and we will denote it λ_{n}.

The generalized Hilbert symbol can be described in a similar way to the classical symbol (cf. [6, V, 3.1]).

Lemma 4.2. Let $a, b \in F^{*}$. Let $\widetilde{\varrho}_{n}(a)$ denote any lifting of $\varrho_{n}(a)$ to $\operatorname{Gal}\left(F_{n} / F\right)=G_{n}$. Suppose that

$$
\widetilde{\varrho}_{n}(a)(\sqrt[n]{b})=\zeta \sqrt[n]{b} \quad \text { for } \zeta \in \mu_{n}
$$

Then $\lambda_{n}(a, b)=\bar{\zeta} \in\left(\mu_{n}\right)_{G_{F}}$.

Proof. $\delta_{n}(b) \in H^{1}\left(G_{n}, \mu_{n}\right)$ is represented by the cocycle

$$
f_{b}(\sigma)=\frac{\sigma(\sqrt[n]{b})}{\sqrt[n]{b}}
$$

By $[2, \mathrm{~V}, 3.10]$, the cap-product $H_{1}\left(G_{n}, \mathbb{Z}\right) \times H^{1}\left(G_{n}, \mu_{n}\right) \rightarrow H_{0}\left(G_{n}, \mu_{n}\right)$ is induced by the evaluation of cocyles.

Example 4.3. Let $F=\mathbb{Q}_{3}$ and $n=4$. Take $a=3, b=-1$. Then $F(\sqrt[4]{b})=\mathbb{Q}_{3}\left(\zeta_{8}\right)$, which is an unramified quadratic extension (since, e.g., $\left.\sqrt{-2} \in \mathbb{Q}_{3}\right)$. The non-trivial element of the Galois group $\operatorname{Gal}\left(\mathbb{Q}_{3}\left(\zeta_{8}\right) / \mathbb{Q}_{3}\right)$ sends ζ_{8} to $\zeta_{8}^{3}=\zeta_{4} \zeta_{8}$. Thus,

$$
\lambda_{4}(3,-1)=\widetilde{\varrho}_{4}(3)\left(\zeta_{8}\right) \zeta_{8}^{-1}=\varrho_{4}(3)\left(\zeta_{8}\right) \zeta_{8}^{-1}=\zeta_{8}^{3} \zeta_{8}^{-1}=\zeta_{4} \in\left(\mu_{4}\right)_{G_{\mathbb{Q}_{3}}}
$$

(compare with Corollary 2.2 above).
Other standard properties of the Hilbert symbol can easily be deduced from Lemma 4.2 by adapting the classical arguments [6, V, 3]:

Corollary 4.4. (i) Let $m=\left|\mu_{n}(F)\right|$. Then $\lambda_{n}(a, b)=1$ if and only if a is a norm from $F(\sqrt[m]{b}) / F$.
(ii) $\lambda_{n}(a, 1-a)=1$ for all $a \in F^{*}-\{1\}$.
5. The Galois symbol. In order to prove Theorem $2.1(2)$ we first introduce another symbol which can be defined on any field. Let k be any field and let $(F, n) \in \operatorname{Obj} \mathcal{C}_{k}$. There is a short exact sequence of G_{F}-modules

$$
1 \rightarrow \mu_{n} \rightarrow F_{\mathrm{sep}}^{*} \xrightarrow{()^{n}} F_{\mathrm{sep}}^{*} \rightarrow 1
$$

and we denote by $d_{F, n}$, or just d_{n}, the associated surjective connecting homomorphism

$$
d_{n}: H^{0}\left(G_{F}, F_{\mathrm{sep}}^{*}\right) \rightarrow H^{1}\left(G_{F}, \mu_{n}\right)
$$

with kernel $\left(F^{*}\right)^{n}$. The Galois symbol of order n on $F, \gamma_{F, n}=\gamma_{n}$, is the composite,

$$
F^{*} \times F^{*} \xrightarrow{d_{n} \times d_{n}} H^{1}\left(G_{F}, \mu_{n}\right) \times H^{1}\left(G_{F}, \mu_{n}\right) \xrightarrow{\cup} H^{2}\left(G_{F}, \mu_{n}^{\otimes 2}\right) .
$$

That is $\gamma_{n}(a, b)=d_{n}(a) \cup d_{n}(b)$. It can be shown (see [11, Theorem 3.1]) that $\gamma_{n}(a, 1-a)=1$ for $a \neq 0,1$ and, since γ_{n} is clearly bimultiplicative, it is a Steinberg symbol on F. Thus γ_{n} induces a map on $K_{2} F / n$ which we will denote by $\Gamma_{F, n}$ or Γ_{n}, that is,

$$
\Gamma_{n}: K_{2} F / n \rightarrow H^{2}\left(G_{F}, \mu_{n}^{\otimes 2}\right)
$$

We will also refer to Γ_{n} as the Galois symbol of order n on F.
We prove Theorem $2.1(2)$ by proving that when F is a local field then the Galois symbol is a map of functors with transfers and furthermore that the Hilbert symbol can be essentially identified with the Galois symbol.
6. Comparing the symbols. We wish to compare the Hilbert symbol $\lambda_{F, n}$ and the Galois symbol $\gamma_{F, n}$ when F is a local field.

Remark 6.1. If $F=\mathbb{C}$, or $F=\mathbb{R}$ and n is odd, the Hilbert symbol and the Galois symbol are both trivial. If $F=\mathbb{R}$ and n is even, a straightforward calculation shows that $\gamma_{\mathbb{R}, n}: \mathbb{R}^{*} \times \mathbb{R}^{*} \rightarrow H^{2}\left(G_{F}, \mu_{n}^{\otimes 2}\right)$ is equivalent to the Hilbert symbol $\lambda_{\mathbb{R}, 2}$ which is given by

$$
\lambda_{\mathbb{R}, 2}(a, b)=(-1)^{((\operatorname{sign}(a)-1) / 2)((\operatorname{sign}(b)-1) / 2)}
$$

For a (non-archimedean) local field k, and $(F, n) \in \operatorname{Obj} \mathcal{C}_{k}$, Tate duality identifies $H^{2}\left(G_{F}, \mu_{n}^{\otimes 2}\right)$, the target of λ_{n}, with $H_{0}\left(G_{F}, \mu_{n}\right)$, the target of γ_{n}. We will show that with this identification the two symbols agree up to sign.

Let μ be the group of all roots of unity in $F_{\text {sep }}^{*}$. Then

$$
H^{2}\left(G_{F}, \mu\right)=H^{2}\left(G_{F}, F_{\mathrm{sep}}^{*}\right)_{\mathrm{tors}}=H^{2}\left(G_{F}, F_{\mathrm{sep}}^{*}\right)
$$

so that inv_{F} induces an isomorphism $H^{2}\left(G_{F}, \mu\right) \rightarrow \mathbb{Q} / \mathbb{Z}$.
For a finite abelian group A let $A^{\#}=\operatorname{Hom}(A, \mathbb{Q} / \mathbb{Z})$ be the Pontryagin dual. If A has exponent n then $A^{\#}=\operatorname{Hom}(A,(1 / n) \mathbb{Z} / \mathbb{Z})$. If A is a G-module for some group G then so is $A^{\#}$ via $(\sigma(\chi))(a)=\chi\left(\sigma^{-1}(a)\right)$ for all $a \in A$, $\chi \in A^{\#}$ and $\sigma \in G$.

Likewise for a finite abelian group A let A^{\prime} denote the $\operatorname{group} \operatorname{Hom}(A, \mu)$. If A has exponent n then $A^{\prime}=\operatorname{Hom}\left(A, \mu_{n}\right)$ and if A is a G-module then A^{\prime} is a G-module via $(\sigma(\chi))(a)=\sigma\left(\chi\left(\sigma^{-1}(a)\right)\right)$ for all $a \in A, \chi \in A^{\prime}$ and $\sigma \in G$. For an abelian group A and $n \in \mathbb{N}$ let $A[n]=\{a \in A \mid n a=0\}$.

Theorem 6.2 (Tate). If F is a local field and if A is a finite G_{F}-module, then for $0 \leq i \leq 2$, cup-product induces a natural duality pairing

$$
\begin{aligned}
& H^{i}\left(G_{F}, A^{\prime}\right) \times H^{2-i}\left(G_{F}, A\right) \rightarrow H^{2}\left(G_{F}, \mu\right) \rightarrow I(F) \subset \mathbb{Q} / \mathbb{Z} \\
&(f, g) \mapsto \operatorname{inv}_{F}(f \cup g)
\end{aligned}
$$

Thus, $H^{i}\left(G_{F}, A^{\prime}\right) \cong H^{2-i}\left(G_{F}, A\right)^{\#}$.
For the proof see [7, VII, 7.2.6].
In the particular case $A=\mu_{n}^{\otimes 2}$, there is a natural pairing of G_{F}-modules

$$
\mu_{n}^{\#} \times \mu_{n}^{\otimes 2} \rightarrow \mu_{n}, \quad(\chi, \zeta \otimes \eta) \mapsto \eta^{n \chi(\zeta)}=\zeta^{n \chi(\eta)}
$$

This pairing identifies $\mu_{n}^{\#}$ with $\left(\mu_{n}^{\otimes 2}\right)^{\prime}$ as G_{F}-modules. Since $H^{2}\left(G_{F}, \mu_{n}\right)=$ $H^{2}\left(G_{F}, F_{\text {sep }}^{*}\right)[n], \operatorname{inv}_{F}$ induces an isomorphism $H^{2}\left(G_{F}, \mu_{n}\right) \cong(1 / n) \mathbb{Z} / \mathbb{Z}$. So Tate's duality theorem implies:

Lemma 6.3. For k a local field and $(F, n) \in \operatorname{Obj} \mathcal{C}_{k}$ there is a natural duality pairing

$$
H^{2}\left(G_{F}, \mu_{n}^{\otimes 2}\right) \times H^{0}\left(G_{F}, \mu_{n}^{\#}\right) \rightarrow \frac{1}{n} \mathbb{Z} / \mathbb{Z}
$$

given by $(x, \chi) \mapsto \operatorname{inv}_{F}(x \cup \chi)$ where the cup-product is defined with respect to the pairing $\mu_{n}^{\otimes 2} \times \mu_{n}^{\#} \rightarrow \mu_{n}$ described above.

Note that $H^{0}\left(G_{F}, \mu_{n}^{\#}\right)=\operatorname{Hom}_{G_{F}}\left(\mu_{n}, \mathbb{Q} / \mathbb{Z}\right)$ is also naturally dual to $H_{0}\left(G_{F}, \mu_{n}\right)=\left(\mu_{n}\right)_{G_{F}}$ via the evaluation map

$$
H_{0}\left(G_{F}, \mu_{n}\right) \otimes H^{0}\left(G_{F}, \mu_{n}^{\#}\right) \rightarrow \mathbb{Q} / \mathbb{Z}, \quad \zeta \otimes \chi \mapsto \chi(\zeta)
$$

Putting all this together we get:
Lemma 6.4. For k a local field and $(F, n) \in \operatorname{Obj}_{k}$, there is a unique isomorphism of groups

$$
\theta_{F, n}=\theta_{n}: H^{2}\left(G_{F}, \mu_{n}^{\otimes 2}\right) \rightarrow\left(\mu_{n}\right)_{G_{F}}
$$

determined by

$$
\operatorname{inv}_{F}(x \cup \chi)=\chi\left(\theta_{n}(x)\right)
$$

for all $x \in H^{2}\left(G_{F}, \mu_{n}^{\otimes 2}\right)$ and $\chi \in H^{0}\left(G_{F}, \mu_{n}^{\#}\right)$.
We will eventually prove:
Theorem 6.5. For k a non-archimedean local field and $(F, n) \in \operatorname{Obj} \mathcal{C}_{k}$, $\theta_{F, n} \circ \gamma_{F, n}=-\lambda_{F, n}$ as maps $F^{*} \times F^{*} \rightarrow\left(\mu_{n}\right)_{G_{F}}$.

Remark 6.1 and Theorem 6.5 imply that for a local field k and for $(F, n) \in \operatorname{Obj} \mathcal{C}_{k}, \lambda_{F, n}(a, 1-a)=1$ for $a \neq 0,1$ and thus $\lambda_{F, n}$ is a Steinberg symbol on F. We denote by $H_{F, n}$ or H_{n} the map induced by $\lambda_{F, n}$ on $K_{2} F / n$, that is,

$$
H_{n}: K_{2} F / n \rightarrow\left(\mu_{n}\right)_{G_{F}}
$$

and we will also refer to H_{n} as the Hilbert symbol of order n on F. Note that we have proved Theorem 2.1(1).

In view of Remark 6.1 and Theorem 6.5 , it only remains to show that the maps $\Gamma_{F, n}$ and $\theta_{F, n}$ are maps of functors with transfers to complete the proof of Theorem 2.1. We shall do this in the next section; the proof of Theorem 6.5 will be given in Sections 8 and 9 .
7. $H^{2}\left(G_{F}, \mu_{n}^{\otimes 2}\right)$ as a functor with transfers. If $n \mid m$, let $\pi_{n}=\pi_{n, m}$: $\mu_{m} \rightarrow \mu_{n}$ be given by $\zeta \mapsto \zeta^{m / n}$ and $j=j_{n, m}: \mu_{n} \rightarrow \mu_{m}$ be the natural inclusion. Thus $\pi \otimes \mathrm{id}: \mu_{m} \otimes \mu_{n} \rightarrow \mu_{n} \otimes \mu_{n}$ is an isomorphism. Let $J: \mu_{n} \otimes$ $\mu_{n} \rightarrow \mu_{m} \otimes \mu_{m}$ be the map $J=(\mathrm{id} \otimes j) \circ(\pi \otimes \mathrm{id})^{-1}$, so that $J(\zeta \otimes \eta)=\zeta \otimes \eta^{\prime}$ where $\eta^{\prime} \in \mu_{m}$ satisfies $\left(\eta^{\prime}\right)^{n / m}=\eta$.

Whenever $(F, n) \rightarrow(E, m)$ is a morphism, then there are homomorphisms

$$
\text { res } \circ J_{*}: H^{2}\left(G_{F}, \mu_{n}^{\otimes 2}\right) \rightarrow H^{2}\left(G_{E}, \mu_{m}^{\otimes 2}\right)
$$

and

$$
(\pi \otimes \pi)_{*} \circ \text { cores }: H^{2}\left(G_{E}, \mu_{m}^{\otimes 2}\right) \rightarrow H^{2}\left(G_{F}, \mu_{n}^{\otimes 2}\right)
$$

which make $H^{2}\left(G_{F}, \mu_{n}^{\otimes 2}\right)$ into a covariant and contravariant functor. Furthermore, the composite of these two homomorphisms is

$$
(\pi \otimes \pi)_{*} \circ \text { cores } \circ \text { res } \circ J_{*}=((\pi \otimes \pi) \circ J)_{*}[E: F]=\frac{m}{n}[E: F]
$$

since $(\pi \otimes \pi) \circ J$ is the map $\zeta \otimes \eta \mapsto(\zeta \otimes \eta)^{m / n}$. Thus $H^{2}\left(G_{F}, \mu_{n}^{\otimes 2}\right)$ is a functor with transfers.

Lemma 7.1. For any field k and $(F, n) \in \operatorname{Obj}_{k}, \Gamma_{F, n}: K_{2} F / n \rightarrow$ $H^{2}\left(G_{F}, \mu_{n}^{\otimes 2}\right)$ is a map of functors with transfers.

Proof. Suppose that n divides m. Given a morphism $(F, n) \rightarrow(E, m)$ we can factor it as $(F, n) \rightarrow(F, m) \rightarrow(E, m)$ and we prove the result for the morphisms $(F, n) \rightarrow(F, m)$ and $(F, m) \rightarrow(E, m)$ separately.

Note that the following:

is a commutative diagram of G_{F}-modules. Hence $j_{*}\left(d_{n}(x)\right)=d_{m}\left(x^{m / n}\right)$ and $\pi_{*}\left(d_{m}(y)\right)=d_{n}(y)$ for x and $y \in F^{*}$. Then the diagram

commutes. For,

$$
(\pi \otimes \mathrm{id})_{*}\left(d_{m}(a) \cup d_{n}(b)\right)=d_{n}(a) \cup d_{n}(b)
$$

and so

$$
\begin{aligned}
& J_{*}\left(\Gamma_{F, n}(\{a, b\})\right)=(\mathrm{id} \otimes j)_{*} \circ(\pi \otimes \mathrm{id})_{*}^{-1}\left(d_{n}(a) \cup d_{n}(b)\right) \\
& \quad=(\mathrm{id} \otimes j)_{*}\left(d_{m}(a) \cup d_{n}(b)\right)=d_{m}(a) \cup d_{m}\left(b^{m / n}\right)=\Gamma_{F, m}(\{a, b\})^{m / n}
\end{aligned}
$$

In the other direction,

$$
\begin{aligned}
& K_{2} F / m \xrightarrow{\Gamma_{F, m}} H^{2}\left(G_{F}, \mu_{m}^{\otimes 2}\right) \\
& \quad \downarrow \begin{array}{r}
\downarrow(\pi \otimes \pi)_{*} \\
\downarrow \\
K_{2} F / n \xrightarrow{\Gamma_{F, n}} H^{2}\left(G_{F}, \mu_{n}^{\otimes 2}\right)
\end{array}
\end{aligned}
$$

commutes. For, given $x=\{a, b\} \in K_{2} F / m$,

$$
\begin{aligned}
& (\pi \otimes \pi)_{*}\left(\Gamma_{F, m}(\{a, b\})\right)=(\pi \otimes \pi)_{*}\left(d_{m}(a) \cup d_{m}(b)\right) \\
& \quad=\pi_{*}\left(d_{m}(a)\right) \cup \pi_{*}\left(d_{m}(b)\right)=d_{n}(a) \cup d_{n}(b)=\Gamma_{n}(\{a, b\})
\end{aligned}
$$

Now $(F, m) \rightarrow(E, m)$ is a morphism. Then

commutes, since
$\operatorname{res}\left(d_{F, m}(a) \cup d_{F, m}(b)\right)=\left(\operatorname{res}\left(d_{F, m}(a)\right) \cup \operatorname{res}\left(d_{F, m}(b)\right)\right)=d_{E, m}(a) \cup d_{E, m}(b)$.
Finally the diagram

$$
\begin{gathered}
K_{2} E / m \xrightarrow{\Gamma_{E, m}} H^{2}\left(G_{E}, \mu_{m}^{\otimes 2}\right) \\
\operatorname{tr}_{E / F} \downarrow \begin{array}{c}
\text { cores } \\
\downarrow
\end{array} \\
K_{2} F / m \xrightarrow{\Gamma_{F, n}} H^{2}\left(G_{F}, \mu_{m}^{\otimes 2}\right)
\end{gathered}
$$

commutes (see for example [10, Chapter 8, Lemma 8.7]).
Lemma 7.2. For any local field k and $(F, n) \in \operatorname{Obj} \mathcal{C}_{k}$ the map $\theta_{F, n}$: $H^{2}\left(G_{F}, \mu_{n}^{\otimes 2}\right) \rightarrow H_{0}\left(G_{F}, \mu_{n}\right)$ is a map of functors with transfers.

Proof. Suppose there is a morphism $(F, n) \rightarrow(E, m)$. We begin by showing that the following diagram commutes:

By definition of θ this amounts to showing, for all $x \in H^{2}\left(G_{F}, \mu_{n}^{\otimes 2}\right)$ and
 $J_{*} x \cup \chi=x \cup\left(\left.\chi\right|_{\mu_{n}}\right)$. But $J_{*} x \cup \chi=x \cup \chi \circ J$ (by definition of J_{*}). Now for $\zeta \otimes \eta \in \mu_{n} \otimes \mu_{n}, \chi(J(\zeta \otimes \eta))=\chi\left(\zeta \otimes \eta^{\prime}\right)=\zeta^{m \chi\left(\eta^{\prime}\right)}=\zeta^{n \chi(\eta)}=\left.\chi\right|_{\mu_{n}}(\zeta \otimes \eta)$. Next, the diagram

commutes. For, given $x \in H^{2}\left(G_{F}, \mu^{\otimes 2}\right)$ and $\chi \in H^{0}\left(G_{E}, \mu_{m}\right)$,

$$
\begin{aligned}
\chi\left(\theta_{E, m}(\operatorname{res}(x))\right) & =\operatorname{inv}_{E}(\operatorname{res}(x) \cup \chi)=\operatorname{inv}_{E}(\operatorname{res}(x \cup \operatorname{cores}(\chi))) \\
& =\operatorname{inv}_{F}(x \cup \operatorname{cores}(\chi)) \quad\left(\operatorname{since}^{\left.\operatorname{inv}_{E} \text { ores }=\operatorname{inv}_{F}\right)}\right. \\
& =\operatorname{cores}(\chi)\left(\theta_{F, m}(x)\right)=\chi\left(N_{E / F}\left(\theta_{F, m}(x)\right)\right)
\end{aligned}
$$

These two diagrams together show that $\theta_{F, n}$ is a map of covariant functors.
In the other direction, the diagram

commutes. For, given $x \in H^{2}\left(G_{E}, \mu_{m}^{\otimes 2}\right)$ and $\chi \in H^{0}\left(G_{F}, \mu_{m}\right)$ we have

$$
\begin{aligned}
\chi\left(\theta_{F, m}(\operatorname{cores}(x))\right) & =\operatorname{inv}_{F}(\operatorname{cores}(x) \cup \chi)=\operatorname{inv}_{E}(\operatorname{res}(\operatorname{cores}(x) \cup \chi)) \\
& =\operatorname{inv}_{E}(x \cup \operatorname{res}(\chi))=\operatorname{res}(\chi)\left(\theta_{E, m}\right)=\chi\left(\theta_{E, m}(x)\right)
\end{aligned}
$$

and hence $\theta_{F, m}(\operatorname{cores}(x))=\theta_{E, m}(x)$.
Finally the diagram

$$
\begin{aligned}
& H^{2}\left(G_{F}, \mu_{m}^{\otimes 2}\right) \xrightarrow{\theta_{E, m}} H_{0}\left(G_{F}, \mu_{m}\right) \\
& \left.(\pi \otimes \pi)_{*} \downarrow \begin{array}{|}
\downarrow \\
{ }^{2}
\end{array}\right) \\
& H^{2}\left(G_{F}, \mu_{n}^{\otimes 2}\right) \xrightarrow{\theta_{F, n}} H_{0}\left(G_{F}, \mu_{n}\right)
\end{aligned}
$$

commutes: for $x \in H^{2}\left(G_{F}, \mu_{m}^{\otimes 2}\right)$ and $\chi \in H^{0}\left(G_{F}, \mu_{n}\right)$ it is enough to prove that $(\pi \otimes \pi)_{*}(x) \cup \chi=x \cup(\chi \circ(m / n))$. This is true since $(\pi \otimes \pi)_{*}(x) \cup \chi=$ $x \cup \chi \circ(\pi \otimes \pi)$ and for $\zeta \otimes \eta \in \mu_{m} \otimes \mu_{m}$,

$$
\begin{aligned}
\chi((\pi \otimes \pi)(\zeta \otimes \eta)) & =\chi\left(\zeta^{m / n} \otimes \eta^{m / n}\right)=\left(\zeta^{m / n}\right)^{n \chi\left(\eta^{m / n}\right)} \\
& =\zeta^{m \chi\left(\eta^{m / n}\right)}=\chi \circ(m / n)(\zeta \otimes \eta)
\end{aligned}
$$

Thus we have proven Theorem $2.1(2)$. If $F=\mathbb{R}$ or $F=\mathbb{C}$ then the result follows from Remark 6.1 and Lemma 7.1. For F a non-archimedean local field it is a consequence of Lemmas 7.1 and 7.2 together with Theorem 6.5.
8. Main results. Finally we prove Theorem 6.5. We need a few preliminary results. Fix $n \in \mathbb{N}$. Let

$$
D_{n}: \widehat{H}^{i}\left(G_{n}, \frac{1}{n} \mathbb{Z} / \mathbb{Z}\right) \rightarrow \widehat{H}^{i+1}\left(G_{n}, \mathbb{Z}\right)
$$

be the connecting homomorphism associated to the exact sequence of $G_{n^{-}}$ modules

$$
0 \rightarrow \mathbb{Z} \rightarrow \frac{1}{n} \mathbb{Z} \rightarrow \frac{1}{n} \mathbb{Z} / \mathbb{Z} \rightarrow 0
$$

The crucial part of the comparison of the symbols $\lambda_{F, n}$ and $\gamma_{F, n}$ is to relate the connecting homomorphisms D_{n} and δ_{n}. The following lemma shows us how to do that.

Lemma 8.1. Let $a \in F^{*}, \chi \in H^{1}\left(G_{n},(1 / n) \mathbb{Z} / \mathbb{Z}\right)$. Let $\beta: \mu_{n} \otimes(1 / n) \mathbb{Z} / \mathbb{Z}$ $\rightarrow F_{n}^{*}$ be the map $\zeta \otimes(r / n) \mapsto \zeta^{r}$. Then

$$
\beta_{*}\left(\delta_{n}(a) \cup \chi\right)=-a \cup D_{n} \chi
$$

in $H^{2}\left(G_{n}, F_{n}^{*}\right)$.
The lemma is a special case of the following technical lemma.
Lemma 8.2. Let G be a finite group and A a G-module. Let $n \in \mathbb{N}$. Let D and d, respectively, be the connecting homomorphisms associated to the sequences of G-modules

$$
0 \rightarrow \mathbb{Z} \rightarrow \frac{1}{n} \mathbb{Z} \rightarrow \frac{1}{n} \mathbb{Z} / \mathbb{Z} \rightarrow 0 \quad \text { and } \quad 0 \rightarrow A[n] \rightarrow A \rightarrow n A \rightarrow 0
$$

Let $x \in H^{i}(G, n A), y \in H^{j}(G,(1 / n) \mathbb{Z} / \mathbb{Z})$. Let α be the inclusion $n A \rightarrow A$ and let β be the map $A[n] \otimes(1 / n) \mathbb{Z} / \mathbb{Z} \rightarrow A, a \otimes(r / n) \mapsto r a$. Then

$$
(-1)^{i}\left(\alpha_{*} x \cup D y\right)+\beta_{*}(d x \cup y)=0 \quad \text { in } H^{i+j+1}(G, A)
$$

Corollary 8.3. Let a, β and χ be as in Lemma 8.1. Then

$$
D_{n}\left(\varrho_{n}(a) \cup \chi\right)=-I_{n}\left(\beta_{*}\left(\delta_{n}(a) \cup \chi\right)\right) \quad \text { in } \widehat{H}^{0}\left(G_{n}, \mathbb{Z}\right)
$$

where $I_{n}: \widehat{H}^{2}\left(G_{n}, F_{n}^{*}\right) \rightarrow \widehat{H}^{0}\left(G_{n}, \mathbb{Z}\right)$ is the inverse of the isomorphism induced by the cup-product with $u_{n}=u_{F_{n} / F}$.

Proof.

$$
\begin{aligned}
u_{n} \cup\left(D_{n}\left(\varrho_{n}(a) \cup \chi\right)\right) & =u_{n} \cup\left(\varrho_{n}(a) \cup D_{n}(\chi)\right)=\left(u_{n} \cup \varrho_{n}(a)\right) \cup D_{n} \chi \\
& =\bar{a} \cup D_{n} \chi \quad\left(\text { by definition of } \varrho_{n}\right) \\
& =a \cup D_{n} \chi \\
& =-\beta_{*}\left(\delta_{n}(a) \cup \chi\right) \quad(\text { by Lemma } 8.1)
\end{aligned}
$$

For any G_{n}-module A and any $i \geq 0$ let res denote the natural map

$$
\text { res }: H^{i}\left(G_{n}, A\right) \rightarrow H^{i}\left(G_{F}, A\right)
$$

Corollary 8.4. For F a local field and n relatively prime to char F the following diagram anti-commutes for any $n \in \mathbb{N}$:

where the cup-product at the bottom is taken with respect to the map

$$
\mu_{n} \otimes \frac{1}{n} \mathbb{Z} / \mathbb{Z} \rightarrow \mu_{n}, \quad \zeta \otimes \frac{r}{n} \mapsto \zeta^{r}
$$

Proof. Let $N=\left[F_{n}: F\right]=\left|G_{n}\right|$ and $\operatorname{inv}_{n}=\operatorname{inv}_{F} \circ \inf _{F_{n} / F}: H^{2}\left(G_{n}, F_{n}^{*}\right)$ $\rightarrow \mathbb{Q} / \mathbb{Z}$. Observe that the connecting homomorphism

$$
D_{N}: \frac{1}{N} \mathbb{Z} / \mathbb{Z}=\widehat{H}^{-1}\left(G_{n}, \frac{1}{N} \mathbb{Z} / \mathbb{Z}\right) \rightarrow \widehat{H}^{0}\left(G_{n}, \mathbb{Z}\right) \cong \mathbb{Z} /\left|G_{n}\right| \mathbb{Z}=\mathbb{Z} / N \mathbb{Z}
$$

is an isomorphism and $\operatorname{inv}_{n}(x)=D_{N}^{-1}\left(I_{n}(x)\right)$ for all $x \in \widehat{H}^{2}\left(G_{n}, F_{n}^{*}\right)$. (For, $D_{N}(1 / N)=1$, so $D_{N}^{-1}\left(I_{n}\left(u_{n}\right)\right)=D_{N}^{-1}\left(I_{n}\left(u_{n} \cup 1\right)\right)=D_{N}^{-1}(1)=1 / N=$ $\left.\operatorname{inv}_{n}\left(u_{n}\right).\right)$

Hence for any $a \in F^{*}$, and $\chi \in \widehat{H}^{1}\left(G_{n},(1 / n) \mathbb{Z} / \mathbb{Z}\right)$, we have

$$
\begin{align*}
\operatorname{inv}_{F}\left(d_{n}(a) \cup \operatorname{res}(\chi)\right) & =\operatorname{inv}_{F}\left(\beta_{*}\left(d_{n}(a) \cup \operatorname{res}(\chi)\right)\right) \\
& =\operatorname{inv}_{F}\left(\beta_{*}\left(\operatorname{res}\left(\delta_{n}(a)\right) \cup \operatorname{res}(\chi)\right)\right) \\
& =\operatorname{inv}_{F}\left(\beta_{*}\left(\operatorname{res}\left(\delta_{n}(a) \cup \chi\right)\right)\right) \\
& =\operatorname{inv}_{F}\left(\inf _{F_{n} / F}\left(\beta_{*}\left(\delta_{n}(a) \cup \chi\right)\right)\right) \\
& =D_{N}^{-1}\left(I_{n}\left(\beta_{*}\left(\delta_{n}(a) \cup \chi\right)\right)\right) \\
& =-D_{N}^{-1}\left(D_{n}\left(\varrho_{n}(a) \cup \chi\right)\right) \quad(\text { by Corollary } 8.3) \tag{byCorollary8.3}\\
& =-\varrho_{n}(a) \cup \chi
\end{align*}
$$

since $D_{N}^{-1} \circ D_{n}:(1 / n) \mathbb{Z} / \mathbb{Z} \rightarrow(1 / N) \mathbb{Z} / \mathbb{Z}$ is the natural inclusion.
REMARK 8.5. A closely related diagram for the case $\mu_{n} \subset F$ occurs in [7, VII, Prop. 7.2.13], but a proof is not given there. The essential point is to relate the reciprocity map ϱ_{n} to the connecting homomorphism δ_{n}; that is, our Corollary 8.3.

We are now in a position to prove Theorem 6.5. For, suppose that F is a non-archimedean local field and let $a, b \in F^{*}$. For some $n \geq 1$ let

$$
\begin{aligned}
\chi \in H^{0}\left(G_{F}, \mu_{n}^{\#}\right)=\widehat{H}^{0}(& \left.G_{n}, \mu_{n}^{\#}\right) . \text { Then } \\
\operatorname{inv}_{F}\left(\gamma_{n}(a, b) \cup \chi\right) & =\operatorname{inv}_{F}\left(\left(d_{n}(a) \cup d_{n}(b)\right) \cup \chi\right) \\
& =\operatorname{inv}_{F}\left(\beta_{*}\left(d_{n}(a) \cup\left(d_{n}(b) \cup \chi\right)\right)\right) \\
& =\operatorname{inv}_{F}\left(\beta_{*}\left(d_{n}(a) \cup \operatorname{res}\left(\delta_{n}(b) \cup \chi\right)\right)\right) \\
& =-\varrho_{n}(a) \cup\left(\delta_{n}(b) \cup \chi\right) \quad(\text { by Corollary } 8.4) \\
& =\chi\left(-\lambda_{n}(a, b)\right)
\end{aligned}
$$

since the map $\widehat{H}^{-1}\left(G_{F}, \mu_{n}\right) \times H^{0}\left(G_{F}, \mu_{n}^{\#}\right) \rightarrow H^{0}\left(G_{F}, \mathbb{Q} / \mathbb{Z}\right)$ induced by the cup-product is identical to the evaluation map $H_{0}\left(G_{F}, \mu_{n}\right) \times H^{0}\left(G_{F}, \mu_{n}^{\#}\right) \rightarrow$ \mathbb{Q} / \mathbb{Z}. Since this equation holds for all $\chi \in H^{0}\left(G_{F}, \mu_{n}^{\#}\right)$, it follows that

$$
-\lambda_{n}(\{a, b\})=\theta_{n}\left(\gamma_{n}(\{a, b\})\right)
$$

by definition of θ_{n}.
9. Proof of Lemma 8.2. Finally we give the proof of Lemma 8.2. This proof was suggested by Serre's proof of [9, Chapter XIV, 2, Proposition 5].

We begin by recalling the formula for the cup-product of cocycles in terms of the bar resolution: if $x \in H^{i}(G, M)$ and $y \in H^{j}(G, N)$ are represented by $f \in C^{i}(G, M)$ and $g \in C^{j}(G, N)$ then $x \cup y$ is represented by the cocycle $f \cup g \in C^{i+j}(G, M \otimes N)$ given by

$$
f \cup g\left(\sigma_{1}, \ldots, \sigma_{i+j}\right)=f\left(\sigma_{1}, \ldots, \sigma_{j}\right) \otimes \sigma_{1} \cdots \sigma_{j} g\left(\sigma_{j+1}, \ldots, \sigma_{i+j}\right)
$$

Next recall that if

$$
0 \rightarrow X \rightarrow Y \rightarrow Z \rightarrow 0
$$

is a short exact sequence of G-modules then the associated connecting homomorphism, δ, is described as follows: if $z \in H^{k}(G, Z)$ is represented by the cocycle $h \in C^{k}(G, Z)$ then $\delta z \in H^{k+1}(G, X)$ is represented by the cocycle $\delta h \in C^{k+1}(G, X)$ defined by

$$
\begin{aligned}
& \delta h\left(\sigma_{1}, \ldots, \sigma_{k+1}\right)=\sigma_{1} l\left(h\left(\sigma_{2}, \ldots, \sigma_{k+1}\right)\right) \\
& \quad+\sum_{r=1}^{k}(-1)^{r} l\left(h\left(\sigma_{1}, \ldots, \sigma_{r} \sigma_{r+1}, \ldots, \sigma_{k+1}\right)\right)+(-1)^{k+1} l\left(h\left(\sigma_{1}, \ldots, \sigma_{k}\right)\right)
\end{aligned}
$$

where $l: Z \rightarrow Y$ is any set-theoretic section of the surjective map $Y \rightarrow Z$.
Thus, let $t:(1 / n) \mathbb{Z} / \mathbb{Z} \rightarrow(1 / n) \mathbb{Z}$ and $s: n A \rightarrow A$ be fixed set-theoretic sections of the maps $(1 / n) \mathbb{Z} \rightarrow(1 / n) \mathbb{Z} / \mathbb{Z}$ and $A \rightarrow n A$. Observe:
(1) If $a_{i} \in A$ are such that $a=\sum a_{i} \in A[n]$ and if $b \in(1 / n) \mathbb{Z} / \mathbb{Z}$ then

$$
\beta(a \otimes b)=a \cdot n t(b)=\sum_{i} a_{i} n t(b) \in A
$$

(2) If $a \in n A$ and $b_{j} \in(1 / n) \mathbb{Z}$ are such that $\sum_{j} b_{j} \in \mathbb{Z}$, then $a\left(\sum_{j} b_{j}\right)=$ $\sum_{j} s(a) \cdot\left(n b_{j}\right)$ in A.

Suppose now that the elements $x \in H^{i}(G, n A)$ and $y \in H^{j}(G,(1 / n) \mathbb{Z} / \mathbb{Z})$ are represented by the cocycles $f \in C^{i}(G, n A)$ and $g \in C^{j}(G,(1 / n) \mathbb{Z} / \mathbb{Z})$. Then $\alpha_{*} x$ is represented by $\alpha_{*} f=\alpha \circ f \in C^{i}(G, A)$. Thus $\alpha_{*} x \cup D y$ is represented by $\alpha_{*} f \cup D g \in C^{i+j+1}(G, A)$ where

$$
\begin{aligned}
\left(\alpha_{*} f\right. & \cup D g)\left(\sigma_{1}, \ldots, \sigma_{i+j+1}\right) \\
= & f\left(\sigma_{1}, \ldots, \sigma_{i}\right) \cdot\left[t\left(g\left(\sigma_{i+2}, \ldots, \sigma_{i+j+1}\right)\right)\right. \\
& \left.+\sum_{r=1}^{j}(-1)^{r} t\left(g\left(\ldots, \sigma_{i+r} \sigma_{i+r+1}, \ldots\right)\right)+(-1)^{j+1} t\left(g\left(\sigma_{i+1}, \ldots, \sigma_{i+j}\right)\right)\right] \\
= & s\left(f\left(\sigma_{1}, \ldots, \sigma_{i}\right)\right) \cdot n t\left(g\left(\sigma_{i+2}, \ldots, \sigma_{i+j+1}\right)\right) \\
& +s\left(f\left(\sigma_{1}, \ldots, \sigma_{i}\right)\right) \cdot\left(\sum(-1)^{r} n t\left(g\left(\ldots, \sigma_{i+r} \sigma_{i+r+1}, \ldots\right)\right)\right) \\
& +(-1)^{j+1} s\left(f\left(\sigma_{1}, \ldots, \sigma_{i}\right)\right) \cdot n t\left(g\left(\sigma_{i+1}, \ldots, \sigma_{i+j}\right)\right)
\end{aligned}
$$

by (2) above. Similarly, $\beta_{*}(d x \cup y)$ is represented by the cocycle $\beta_{*}(d f \cup g) \in$ $C^{i+j+1}(G, A)$ where

$$
\begin{aligned}
\beta_{*}(d f \cup g)(& \left.\sigma_{1}, \ldots, \sigma_{i+j+1}\right) \\
= & \beta\left(\left[\sigma_{1} s\left(f\left(\sigma_{2}, \ldots, \sigma_{i+1}\right)\right)+\sum_{k=1}^{i}(-1)^{k} s\left(f\left(\ldots, \sigma_{k} \sigma_{k+1}, \ldots\right)\right)\right.\right. \\
& \left.\left.+(-1)^{i+1} s\left(f\left(\sigma_{1}, \ldots, \sigma_{i}\right)\right)\right] \otimes g\left(\sigma_{i+2}, \ldots, \sigma_{i+j+1}\right)\right) \\
= & \sigma_{1} s\left(f\left(\sigma_{2}, \ldots, \sigma_{i+1}\right)\right) \cdot n t\left(g\left(\sigma_{i+1}, \ldots, \sigma_{i+j+1}\right)\right) \\
& +\sum_{k=1}^{i}(-1)^{k} s\left(f\left(\ldots, \sigma_{k} \sigma_{k+1}, \ldots\right)\right) \cdot n t\left(g\left(\sigma_{i+2}, \ldots, \sigma_{i+j+1}\right)\right) \\
& +(-1)^{i+1} s\left(f\left(\sigma_{1}, \ldots, \sigma_{i}\right)\right) \cdot n t\left(g\left(\sigma_{i+2}, \ldots, \sigma_{i+j+1}\right)\right)
\end{aligned}
$$

by (1) above.
Hence the term $s\left(f\left(\sigma_{1}, \ldots, \sigma_{i}\right)\right) \cdot n t\left(g\left(\sigma_{i+2}, \ldots, \sigma_{i+j+1}\right)\right)$ occurs twice but with opposite signs in the expression $(-1)^{j}\left(\alpha_{*} f \cup D g\right)+\beta_{*}(d f \cup g)$. So this expression becomes

$$
\begin{aligned}
(-1)^{j}\left(\alpha_{*} f\right. & \cup D g)+\beta_{*}(d f \cup g) \\
= & \sigma_{1} s\left(f\left(\sigma_{2}, \ldots, \sigma_{i+1}\right)\right) \cdot n t\left(g\left(\sigma_{i+1}, \ldots, \sigma_{i+j+1}\right)\right) \\
& \quad+\sum_{k=1}^{i}(-1)^{k} s\left(f\left(\ldots, \sigma_{k} \sigma_{k+1}, \ldots\right)\right) \cdot n t\left(g\left(\sigma_{i+2}, \ldots, \sigma_{i+j+1}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& +\sum_{k=i+1}^{i+j}(-1)^{k} s\left(f\left(\sigma_{1}, \ldots, \sigma_{i}\right)\right) \cdot n t\left(g\left(\ldots, \sigma_{k} \sigma_{k+1}, \ldots\right)\right) \\
& +(-1)^{i+j+1} s\left(f\left(\sigma_{1}, \ldots, \sigma_{i}\right)\right) \cdot n t\left(g\left(\sigma_{i+1}, \ldots, \sigma_{i+j}\right)\right)
\end{aligned}
$$

But this is just the coboundary of the cocycle $h \in C^{i+j}(G, A)$ defined by

$$
h\left(\sigma_{1}, \ldots, \sigma_{i+j}\right)=s\left(f\left(\sigma_{1}, \ldots, \sigma_{i}\right)\right) \cdot n t\left(g\left(\sigma_{i+1}, \ldots, \sigma_{i+j}\right)\right)
$$

10. An application to the wild kernel. Let F be a number field. For any $n \in \mathbb{N}$ and any (finite or infinite) place, v, of F the Hilbert symbol of order n on F_{v} induces a map

$$
H_{v, n}: K_{2} F \rightarrow\left(\mu_{n}\right)_{G_{v}}
$$

Lemma 10.1. For any number field F and any $n \in \mathbb{N}$ there is an exact sequence

$$
K_{2} F / n \xrightarrow{H_{n}} \coprod_{\begin{array}{c}
v \text { finite or } \\
\text { real infinite }
\end{array}}\left(\mu_{n}\right)_{G_{v}} \xrightarrow{\Pi_{n}}\left(\mu_{n}\right)_{G_{F}} \rightarrow 1,
$$

where $H_{n}=\sum_{v} H_{n, v}$ and Π_{n} is the natural product map.
Proof. The Poitou-Tate exact sequence ([7, VIII, 8.6.13]) for the number field F gives an exact sequence

$$
H^{2}\left(G_{F}, \mu_{n}^{\otimes 2}\right) \xrightarrow{\beta_{n}} \coprod_{v} H^{2}\left(G_{v}, \mu_{n}^{\otimes 2}\right) \xrightarrow{P_{n}} H^{0}\left(G_{F},\left(\mu_{n}^{\otimes 2}\right)^{\prime}\right)^{\#}
$$

where the map β_{n} is induced from the restriction maps $H^{2}\left(G_{F}, \mu_{n}^{\otimes 2}\right) \rightarrow$ $H^{2}\left(G_{v}, \mu_{n}^{\otimes 2}\right)$ and P_{n} is induced from the duals of the natural maps

$$
H^{0}\left(G_{F},\left(\mu_{n}^{\otimes 2}\right)^{\prime}\right) \rightarrow H^{0}\left(G_{v},\left(\mu_{n}^{\otimes 2}\right)^{\prime}\right) \xrightarrow{\sim} H^{2}\left(G_{v}, \mu_{n}^{\otimes 2}\right)^{\#}
$$

It follows by Theorem 6.5 that we have a commutative (up to sign) diagram:

Here $\gamma_{F, n}$ is an isomorphism by [11] and θ_{n} is an isomorphism by Lemma 6.4 above. Thus the top row is exact as required.

Thus, the Hilbert symbols $H_{v, n}$ satisfy the reciprocity laws, $\prod_{v} H_{v, n}(a, b)$ $=1\left(\operatorname{in}\left(\mu_{n}\right)_{G_{F}}\right)$ for all $a, b \in F$.

Now let $\amalg_{n}^{2}(F)=\amalg^{2}\left(F, \mu_{n}^{\otimes 2}\right):=\operatorname{ker}\left(\beta_{n}\right)$. By Poitou-Tate duality,

$$
\amalg_{n}^{2}(F) \cong \amalg^{1}\left(F,\left(\mu_{n}^{\otimes 2}\right)^{\prime}\right)^{\#}=\amalg^{1}\left(F, \mu_{n}^{\#}\right)^{\#}
$$

Now $\mu_{n}^{\#} \cong \mu_{n}$ (non-canonically) as G_{F}-modules. By the Hasse principle for the G_{F}-module μ_{n},

$$
\amalg^{1}\left(F, \mu_{n}\right)= \begin{cases}\mathbb{Z} / 2 & \text { if } F \text { is special and } n \text { is large enough, } \\ 0 & \text { otherwise. }\end{cases}
$$

Here, F is special if $\operatorname{Gal}\left(F\left(\mu_{2^{m}}\right) / F\right)$ is non-cyclic for all sufficiently large m (i.e. F is exceptional) and every dyadic prime of F decomposes in $F\left(\mu_{2^{m}}\right)$ for any sufficiently large m. It follows that $\amalg_{n}^{2}(F)=\amalg^{1}\left(F, \mu_{n}\right)$.

For a number field F, let $\amalg^{2}(F)$ denote the limiting value of $\amalg_{n}^{2}(F)$ for large n ("large" means divisible by a sufficiently large power of 2).

Corollary 10.2. For all n there is an exact sequence

$$
0 \rightarrow \amalg_{n}^{2}(F) \rightarrow K_{2} F / n \rightarrow \coprod_{v}\left(\mu_{n}\right)_{G_{v}} \rightarrow\left(\mu_{n}\right)_{G_{F}} \rightarrow 1
$$

Let $\mu_{v}=\mu\left(F_{v}\right)$ for any place v and let $m_{v}=\left|\mu_{v}\right|$. Recall that the wild kernel, $W K_{2} F$, of the number field F is the kernel of the map H : $K_{2} F \rightarrow \coprod_{v} \mu_{v}, x \mapsto\left(H_{v, m_{v}}(x)\right)_{v}$. Let $K_{2}^{\infty} F=\bigcap_{n \in \mathbb{N}}\left(K_{2} F\right)^{n}$ be the group of infinitely divisible elements of $K_{2} F$.

Theorem 10.3. There is a natural short exact sequence

$$
1 \rightarrow K_{2}^{\infty} F \rightarrow W K_{2} F \rightarrow \amalg^{2}(F) \rightarrow 1
$$

Proof. Let $k_{n}(F)=K_{2} F /\left(\left(K_{2} F\right)^{n} . \amalg_{n}^{2}(F)\right)$. If $n \mid m$ the identity map on $K_{2} F$ induces a surjection $p_{n, m}: k_{m}(F) \rightarrow k_{n}(F)$ which fits into a map of short exact sequences,

Thus, taking a limit over the set \mathbb{N} (ordered by divisibility) we obtain a short exact sequence

$$
1 \rightarrow \lim k_{n}(F) \rightarrow \lim \coprod_{v}\left(\mu_{n}\right)_{G_{v}} \rightarrow \lim \left(\mu_{n}\right)_{G_{F}} \rightarrow 1
$$

Observe that when $K=F$ or $K=F_{v}$ for some v the diagram

$$
\begin{aligned}
& \left(\mu_{n}\right)_{G_{K}} \longrightarrow \mu_{n}(K):=\mu_{s} \\
& \uparrow m / n \quad r / s \uparrow \\
& \left(\mu_{m}\right)_{G_{K}} \longrightarrow \mu_{m}(K):=\mu_{r}
\end{aligned}
$$

commutes for any $n \mid m$. It follows that $\lim \left(\mu_{n}\right)_{G_{K}} \cong \mu_{K}$ via $\left(\bar{\zeta}_{n}\right)_{n} \rightarrow \zeta_{N}^{N / m_{K}}$ for sufficiently large N. Furthermore, by Corollary 2.2 above, the diagrams

$$
K_{2} F / n \xrightarrow{H_{v, n}}\left(\mu_{n}\right)_{G_{v}}
$$

commute for all v and n.
Observe that the natural map

$$
i: \coprod_{v} \mu_{v} \cong \coprod_{v} \lim \left(\mu_{n}\right)_{G_{v}} \rightarrow \lim \coprod_{v}\left(\mu_{n}\right)_{G_{v}}
$$

is injective.
Putting all this together, we obtain a commutative diagram

where $\pi\left(\left(\zeta_{v}\right)_{v}\right)=\prod \zeta_{v}^{m_{v} / m_{F}}$ (in fact, the top row is exact by Moore's reciprocity uniqueness theorem).

Since i is injective, $W K_{2} F=\operatorname{ker}(H)=\operatorname{ker}(j)$. Observe also that $K_{2}^{\infty} F$ is the kernel of the natural map $K_{2} F \rightarrow \lim K_{2} F / n$. The result now follows by applying the snake lemma to the diagram

Note that $\amalg^{2}(F) \subset K_{2} F / n$ for sufficiently large n, and thus $\amalg^{2}(F) \subset$ image (J).

Thus $K_{2}^{\infty} F=W K_{2} F$ when F is not special and $K_{2}^{\infty} F$ has index 2 in $W K_{2} F$ otherwise.

Note that this confirms and clarifies Corollary 4.5 of [4].

References

[1] A. Bak and U. Rehmann, K_{2}-analogues of Hasse's norm theorems, Comment. Math. Helv. 59 (1984), 1-11.
[2] K. S. Brown, Cohomology of Groups, Grad. Texts in Math. 87, Springer, New York, 1982.
[3] G. Habdank, Funktorielle Eigenschaften von Normrestsymbolen, Diplomarbeit, Bielefeld, 1981.
[4] K. Hutchinson, The 2-Sylow subgroup of the wild kernel of exceptional number fields, J. Number Theory 87 (2001), 222-238.
[5] M. Kolster and A. Movahhedi, Bi-quadratic number fields with trivial 2-primary Hilbert kernels, Proc. London Math. Soc. (3) 87 (2003), 109-136.
[6] J. Neukirch, Algebraic Number Theory, Grundlehren Math. Wiss. 322, Springer, Berlin, 2000.
[7] J. Neukirch, A. Schmidt and K. Wingberg, Cohomology of Number Fields, Grundlehren Math. Wiss. 323, Springer, Berlin, 2000.
[8] D. Ryan, Galois co-descent for wild kernels, PhD thesis, N.U.I.D., 2002.
[9] J.-P. Serre, Local Fields, Springer, New York, 1979.
[10] V. Srinivas, Algebraic K-theory, 2nd ed., Progr. Math. 90, Birkhäuser Boston, Boston, MA, 1996.
[11] J. Tate, Relations between K_{2} and Galois cohomology, Invent. Math. 36 (1976), 257-274.

Department of Mathematics
University College Dublin
Belfield, Dublin 4, Ireland
E-mail: Kevin.Hutchinson@ucd.ie
Dermot.W.Ryan@ucd.ie

Received on 22.7.2003
and in revised form on 23.2.2004

[^0]: 2000 Mathematics Subject Classification: 19F15, 11S25.
 Key words and phrases: K-theory, Hilbert symbol, Galois cohomology.

