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Hilbert symbols as maps of functors
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Kevin Hutchinson and Dermot Ryan (Dublin)

1. Introduction. The Hilbert symbol on a local field, F , gives a homo-
morphism HF : K2F → µ(F ). It is natural to ask how this behaves under
extension of fields; that is, if E/F is a finite extension of local fields, what
map µ(F )→ µ(E) (if any) makes the diagram

K2E // µ(E)

K2F //

OO

µ(F )

OO

commute? The first thing to observe is that the inclusion map µ(F )→ µ(E)
does not usually work. In other words if we interpret the assignment F →
µ(F ) as a functor in the obvious way, the Hilbert symbol is not a morphism
of functors. In fact, it is more naturally a map of contravariant functors, in
the sense that the diagram

K2E

transfer

��

// µ(E)

��
K2F // µ(F )

will commute, where the right hand vertical arrow is the appropriate sur-
jective power map; see [1, Proposition 2] and [3]. (Indeed, if we use this
fact in conjunction with properties of the K-theory transfer, we can arrive
at an answer to the question above. This gives us, in an ad hoc manner, a
formula for a map µ(F )→ µ(E) which will make the diagram commute; see
[8, Lemma 1.3.3] or [5]. But we are seeking a more conceptual answer to the
question in this paper.)

Of course it is well known to K-theorists and number theorists that when
the nth roots of unity are contained in a local field F , then the Hilbert
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symbol of order n on F is essentially equal to the Galois symbol

ΓF,n : K2F → H2(GF , µ
⊗2
n ).

The primary reference for this last fact is [9, Chapter XIV, 2, Proposition 5].
The Galois symbols, ΓF,n, are naturally maps of functors on the category of
finite extensions of a given local field. Our question however involves compar-
ing Hilbert symbols of (possibly) different orders. The Galois symbol is less
obviously a map of functors of the second variable “n” (that is, the underly-
ing category is the set of natural numbers partially ordered by divisibility).
In order to make this work, the domain functor is K2F/n = K2F ⊗ Z/nZ
and, when n divides m, the map H2(GF , µ

⊗2
n ) → H2(GE , µ

⊗2
m ) is induced

by a homomorphism of coefficient modules µn⊗µn → µm⊗µm, but not by
the natural map obtained by tensoring the inclusion µn → µm with itself.

In this note, we give a natural generalization of the Hilbert symbol of
order n to the situation where the nth roots of unity do not belong to the
local field F . The target functor can then be identified as the group, (µn)GF ,
of GF -coinvariants of µn, which is naturally a functor of both F and n. This
(slightly) generalized Hilbert symbol HF : K2F/n → (µn)GF is a map of
functors. In fact it is a map of functors with transfers. In order to prove
this, we show that our generalized Hilbert symbol is essentially equal to
the Galois symbol, via Tate duality. The subtlety of this result derives from
the fact that the Hilbert symbols are naturally defined in terms of Tate
cohomology, which behaves poorly as a functor, while the Galois symbols
involve Galois cohomology. This having been proven, our original question
has a natural answer (see Corollary 2.3).

In a final section, as an application of the functorial behaviour of Hilbert
symbols, we identify the quotient WK2F/K

∞
2 F , where WK2F is the wild

kernel of the number field F and K∞2 F =
⋂
n(K2F )n, as the well known

Tate–Shafarevich group X1(F, µN) (for N sufficiently large).
This note arose from the desire to give a short conceptual answer to

the question: why is the wild kernel of a number field a functor? Recall
that if F is a number field then each place v of F yields a Hilbert symbol
Hv : K2F → µ(Fv) and the wild kernel is the intersection of the kernels of
all these symbols. One would like to say that each Hv is a map of functors
(so that ker(Hv) and hence

⋂
v ker(Hv) is also a functor). Although this

statement is not true as it stands, we have shown how to modify it to make
it correct.

2. Hilbert symbols as maps of functors. Our goal is to interpret the
classical Hilbert symbol of order n on a local field F as a map of functors:

K2F/n→ (µn)GF .
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We make this statement precise as follows. Fix a field k. The domain category
for these functors is the category Ck whose objects are pairs (F, n), where F
is a finite field extension of k, and n is a positive integer which is relatively
prime to char k if char k > 0. There are no morphisms (F, n) → (E,m) if
n -m; otherwise the morphisms (F, n) → (E,m) are the k-algebra homo-
morphisms F → E. The functors (F, n)→ K2F/n and (F, n)→ (µn)GF are
functors with transfers on this category with values in the category of finite
abelian groups; thus, given σ : (F, n) → (E,m) (where n divides m) there
are maps

m

n
K2(σ) : K2F/n→ K2E/m, NE/F : (µn)GF → (µm)GE ,

and maps

K2E/m→ K2F/n, x 7→ trE/F (x), (µm)GE → (µn)GF , ζ 7→ σ̃−1(ζm/n),

which make these into covariant and contravariant functors. (Here σ̃ is any
extension of σ to a field isomorphism σ̃ : Fsep → Esep. Moreover, σ̃ induces
an embedding GE → GF , τ 7→ σ̃−1τ σ̃, with respect to which NE/F is
defined. For simplicity we will always assume that σ is an inclusion and σ̃
is the identity.) Furthermore the composites K2F/n → K2E/m → K2F/n
and (µn)GF → (µm)GE → (µn)GF are just multiplication by (m/n)[E : F ].

Our main result is the following:

Theorem 2.1. For k a local field and (F, n) ∈ Obj Ck, there is a group
homomorphism

HF,n : K2F/n→ (µn)GF

such that

(1) if µn ⊂ F , the composite

F ∗ × F ∗ → K2F/n→ µn = (µn)GF

is the classical Hilbert symbol ,
(2) HF,n is a map of functors with transfers.

Theorem 2.1(1) is a consequence of Lemma 4.1 below, while Theorem
2.1(2) follows from Theorem 6.5, Lemma 7.1 and Lemma 7.2 below.

Corollary 2.2. Let k be a non-archimedean local field and (F,m) ∈
Obj Ck, suppose that µm(F ) = µn and suppose that r = m/n. Then (µm)GF∼= µn by ζ 7→ ζr. The composite

F ∗ × F ∗ → K2F/m
HF,m // (µm)GF

∼→µn

is the Hilbert symbol of order n.
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Proof. The morphism (F, n) → (F,m) gives the following diagram of
contravariant functors:

K2F // K2F/m //

����

(µm)GF

( )r

��
K2F // K2F/n // µn

hence the result.

Observe, by contrast, that the diagram of covariant functors correspond-
ing to the morphism (F, n)→ (F,m) gives

K2F // K2F/m // (µm)GF
∼ // µn

K2F //

m/n

OO

K2F/n //

m/n

OO

µn

OO

// µn

m/n

OO

Corollary 2.3. Let E/F be an extension of non-archimedean local
fields. Let m ∈ N be such that charE -m and µm ⊂ µ(E). Suppose that
µm(F ) = µn and let r = m/n. Then the diagram

K2E // µm

K2F //

OO

µn

N

OO

commutes, where the horizontal arrows are the Hilbert symbols of the appro-
priate order and N(ζ) = NE/F (ζ1/r).

Proof. The following diagram commutes:

K2E // K2E/m // µm = (µm)GE

K2F //

OO

K2F/m //

OO

����

(µm)GF

NE/F

OO

( )r

��
K2F // K2F/n // µn

hence the claim.

3. Some background. Let F be a local field, let Fsep denote the sep-
arable closure of F and let GF = Gal(Fsep/F ) be the absolute Galois group
of F . In this situation:

(i) There is a canonical isomorphism

invF : H2(GF , F
∗
sep)→ I(F ) ⊂ Q/Z,
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where

I(F ) =





Q/Z, F a p-adic local field,

Q/Z(p)′ =
⋃

n - p

1

n
Z/Z, F a local field of characteristic p > 0,

1

2
Z/Z, F = R,

0, F = C.

(ii) If L/F is a finite Galois extension of degree n, where n is relatively
prime to charF if charF > 0, then the inflation homomorphism

infL/F : H2(Gal(L/F ), L∗)→ H2(GF , F
∗
sep)

is injective and invL/F = invF ◦ infL/F maps H2(Gal(L/F ), L∗) isomorphi-
cally onto the subgroup (1/n)Z/Z of I(F ).

(iii) Thus there is a canonical element uL/F ∈ H2(Gal(L/F ), L∗) such
that invL/F (uL/F ) = 1/n. Cup-product with uL/F induces isomorphisms of
Tate cohomology groups

Ĥ i(Gal(L/F ),Z)
∼→ Ĥ i+2(Gal(L/F ), L∗)

for all i ∈ Z. In particular, when i = −2 this gives an isomorphism

Gal(L/F )ab = Ĥ−2(Gal(L/F ),Z)
∼→ Ĥ0(Gal(L/F ), L∗).

The inverse isomorphism

%L/F : F ∗/NL/F (L∗) = Ĥ0(Gal(L/F ), L∗)→ Gal(L/F )ab

is the reciprocity isomorphism.

4. The Hilbert symbol. Let k be a local field and let (F, n) ∈ Obj Ck
be such that F contains the group, µn, of all nth roots of unity for some
integer n > 1. Let Fn = F (n

√
F ∗). By Kummer theory, Fn/F is the maximal

abelian extension of F of exponent n. Let Gn = Gal(Fn/F ). Associated to
the short exact sequence of Gn-modules

1→ µn → F ∗n
( )n−→ (F ∗n)n → 1

there is a long exact cohomology sequence with connecting homomorphisms
denoted by δF,n or simply δn:

· · · → H0(Gn, F
∗
n)→ H0(Gn, (F

∗
n)n)

δn−→ H1(Gn, µn)→ H1(Gn, F
∗
n)→ · · · .

Since H0(Gn, F
∗
n) = H0(Gn, (F

∗
n)n) = F ∗ and since H1(Gn, F

∗
n) = {1}, by

Hilbert’s Theorem 90, there is a surjective homomorphism

δn : F ∗ → H1(Gn, µn) = Hom(Gn, µn)
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with kernel (F ∗)n. Let %n = %Fn/F denote the reciprocity map

%n : F ∗ → Ĥ−2(Gn,Z) = Gab
n = Gn.

The Hilbert symbol of order n on F is the composite

λF,n = λn : F ∗ × F ∗ %n×δn// Gn × Hom(Gn, µn)→ µn,

that is,

λn(a, b) = δn(b)(%n(a)) ∈ µn.
This pairing can be interpreted as a cup-product of Tate cohomology groups
and thus generalized to all (F, n) ∈ Obj Ck as follows. Let Fn = F (n

√
F ∗).

If µn 6⊂ F then Fn/F is a finite Galois extension but no longer necessarily

abelian. A surjective homomorphism δn : F ∗ → Ĥ1(Gn, µn) can be con-

structed as above, although Ĥ1(Gn, µn) can no longer be identified with
Hom(Gn, µn). Furthermore, there is a reciprocity map %n : F ∗ → Gab

n but
it is not in general true that Gn = Gab

n .
Thus, for any (F, n) ∈ Obj Ck we define a pairing

λ′F,n = λ′n : F ∗ × F ∗ → Ĥ−1(Gn, µn), λ′n(a, b) 7→ %n(a) ∪ δn(b).

Observe that Ĥ−1(Gn, µn) = Ĥ0(Gn, µn) = (µn)Gn = (µn)GF .

Lemma 4.1. If µn ⊂ F then Ĥ−1(Gn, µn) is naturally identified with µn.
With this identification, λ′n = λn.

Proof. In general, for a finite group G and a G-module M , Ĥ−i(G,M) =

Ĥi−1(G,M) for i ≥ 1 (cf. [2, VI, 4]). Thus Ĥ−1(Gn, µn) = Ĥ0(Gn, µn) = µn
and Ĥ−2(Gn,Z) = Ĥ1(Gn,Z) = Gab

n . With these identifications, the cup-
product

Ĥ−2(Gn,Z)× Ĥ1(Gn, µn)→ Ĥ−1(Gn, µn)

corresponds to the cap-product

H1(Gn,Z)×H1(Gn, µn)→ µn,

which is just the natural evaluation map [2, V, 3.10].

Thus we may call λ′n the Hilbert symbol of order n on F for any (F, n) ∈
Obj Ck and we will denote it λn.

The generalized Hilbert symbol can be described in a similar way to the
classical symbol (cf. [6, V, 3.1]).

Lemma 4.2. Let a, b ∈ F ∗. Let %̃n(a) denote any lifting of %n(a) to
Gal(Fn/F ) = Gn. Suppose that

%̃n(a)(
n
√
b) = ζ

n
√
b for ζ ∈ µn.

Then λn(a, b) = ζ ∈ (µn)GF .
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Proof. δn(b) ∈ H1(Gn, µn) is represented by the cocycle

fb(σ) =
σ(n
√
b)

n
√
b
.

By [2, V, 3.10], the cap-product H1(Gn,Z) ×H1(Gn, µn) → H0(Gn, µn) is
induced by the evaluation of cocyles.

Example 4.3. Let F = Q3 and n = 4. Take a = 3, b = −1. Then
F ( 4
√
b) = Q3(ζ8), which is an unramified quadratic extension (since, e.g.,√

−2 ∈ Q3). The non-trivial element of the Galois group Gal(Q3(ζ8)/Q3)
sends ζ8 to ζ3

8 = ζ4ζ8. Thus,

λ4(3,−1) = %̃4(3)(ζ8)ζ−1
8 = %4(3)(ζ8)ζ−1

8 = ζ3
8ζ
−1
8 = ζ4 ∈ (µ4)GQ3

(compare with Corollary 2.2 above).

Other standard properties of the Hilbert symbol can easily be deduced
from Lemma 4.2 by adapting the classical arguments [6, V, 3]:

Corollary 4.4. (i) Let m = |µn(F )|. Then λn(a, b) = 1 if and only if

a is a norm from F (m
√
b)/F .

(ii) λn(a, 1− a) = 1 for all a ∈ F ∗ − {1}.

5. The Galois symbol. In order to prove Theorem 2.1(2) we first
introduce another symbol which can be defined on any field. Let k be any
field and let (F, n) ∈ Obj Ck. There is a short exact sequence of GF -modules

1→ µn → F ∗sep
( )n−→ F ∗sep → 1

and we denote by dF,n, or just dn, the associated surjective connecting ho-
momorphism

dn : H0(GF , F
∗
sep)→ H1(GF , µn)

with kernel (F ∗)n. The Galois symbol of order n on F , γF,n = γn, is the
composite,

F ∗ × F ∗ dn×dn// H1(GF , µn)×H1(GF , µn)
∪→H2(GF , µ

⊗2
n ).

That is γn(a, b) = dn(a) ∪ dn(b). It can be shown (see [11, Theorem 3.1])
that γn(a, 1 − a) = 1 for a 6= 0, 1 and, since γn is clearly bimultiplicative,
it is a Steinberg symbol on F . Thus γn induces a map on K2F/n which we
will denote by ΓF,n or Γn, that is,

Γn : K2F/n→ H2(GF , µ
⊗2
n ).

We will also refer to Γn as the Galois symbol of order n on F .
We prove Theorem 2.1(2) by proving that when F is a local field then

the Galois symbol is a map of functors with transfers and furthermore that
the Hilbert symbol can be essentially identified with the Galois symbol.
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6. Comparing the symbols. We wish to compare the Hilbert symbol
λF,n and the Galois symbol γF,n when F is a local field.

Remark 6.1. If F = C, or F = R and n is odd, the Hilbert symbol and
the Galois symbol are both trivial. If F = R and n is even, a straightforward
calculation shows that γR,n : R∗ × R∗ → H2(GF , µ

⊗2
n ) is equivalent to the

Hilbert symbol λR,2 which is given by

λR,2(a, b) = (−1)((sign(a)−1)/2)((sign(b)−1)/2).

For a (non-archimedean) local field k, and (F, n) ∈ Obj Ck, Tate duality
identifies H2(GF , µ

⊗2
n ), the target of λn, with H0(GF , µn), the target of γn.

We will show that with this identification the two symbols agree up to sign.
Let µ be the group of all roots of unity in F ∗sep. Then

H2(GF , µ) = H2(GF , F
∗
sep)tors = H2(GF , F

∗
sep)

so that invF induces an isomorphism H2(GF , µ)→ Q/Z.
For a finite abelian group A let A# = Hom(A,Q/Z) be the Pontryagin

dual. If A has exponent n then A# = Hom(A, (1/n)Z/Z). If A is a G-module
for some group G then so is A# via (σ(χ))(a) = χ(σ−1(a)) for all a ∈ A,
χ ∈ A# and σ ∈ G.

Likewise for a finite abelian group A let A′ denote the group Hom(A,µ).
If A has exponent n then A′ = Hom(A,µn) and if A is a G-module then
A′ is a G-module via (σ(χ))(a) = σ(χ(σ−1(a))) for all a ∈ A, χ ∈ A′ and
σ ∈ G. For an abelian group A and n ∈ N let A[n] = {a ∈ A | na = 0}.

Theorem 6.2 (Tate). If F is a local field and if A is a finite GF -module,
then for 0 ≤ i ≤ 2, cup-product induces a natural duality pairing

H i(GF , A
′)×H2−i(GF , A)→ H2(GF , µ)→ I(F ) ⊂ Q/Z,

(f, g) 7→ invF (f ∪ g).

Thus, H i(GF , A
′) ∼= H2−i(GF , A)#.

For the proof see [7, VII, 7.2.6].
In the particular case A = µ⊗2

n , there is a natural pairing of GF -modules

µ#
n × µ⊗2

n → µn, (χ, ζ ⊗ η) 7→ ηnχ(ζ) = ζnχ(η).

This pairing identifies µ#
n with (µ⊗2

n )′ as GF -modules. Since H2(GF , µn) =
H2(GF , F

∗
sep)[n], invF induces an isomorphism H2(GF , µn) ∼= (1/n)Z/Z. So

Tate’s duality theorem implies:

Lemma 6.3. For k a local field and (F, n) ∈ Obj Ck there is a natural
duality pairing

H2(GF , µ
⊗2
n )×H0(GF , µ

#
n )→ 1

n
Z/Z,
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given by (x, χ) 7→ invF (x ∪ χ) where the cup-product is defined with respect

to the pairing µ⊗2
n × µ#

n → µn described above.

Note that H0(GF , µ
#
n ) = HomGF (µn,Q/Z) is also naturally dual to

H0(GF , µn) = (µn)GF via the evaluation map

H0(GF , µn)⊗H0(GF , µ
#
n )→ Q/Z, ζ ⊗ χ 7→ χ(ζ).

Putting all this together we get:

Lemma 6.4. For k a local field and (F, n) ∈ Obj Ck, there is a unique
isomorphism of groups

θF,n = θn : H2(GF , µ
⊗2
n )→ (µn)GF ,

determined by
invF (x ∪ χ) = χ(θn(x))

for all x ∈ H2(GF , µ
⊗2
n ) and χ ∈ H0(GF , µ

#
n ).

We will eventually prove:

Theorem 6.5. For k a non-archimedean local field and (F, n) ∈ Obj Ck,
θF,n ◦ γF,n = −λF,n as maps F ∗ × F ∗ → (µn)GF .

Remark 6.1 and Theorem 6.5 imply that for a local field k and for
(F, n) ∈ Obj Ck, λF,n(a, 1− a) = 1 for a 6= 0, 1 and thus λF,n is a Steinberg
symbol on F . We denote by HF,n or Hn the map induced by λF,n on K2F/n,
that is,

Hn : K2F/n→ (µn)GF

and we will also refer to Hn as the Hilbert symbol of order n on F . Note
that we have proved Theorem 2.1(1).

In view of Remark 6.1 and Theorem 6.5, it only remains to show that
the maps ΓF,n and θF,n are maps of functors with transfers to complete the
proof of Theorem 2.1. We shall do this in the next section; the proof of
Theorem 6.5 will be given in Sections 8 and 9.

7. H2(GF , µ
⊗2
n ) as a functor with transfers. If n |m, let πn = πn,m :

µm → µn be given by ζ 7→ ζm/n and j = jn,m : µn → µm be the natural
inclusion. Thus π⊗ id : µm⊗µn → µn⊗µn is an isomorphism. Let J : µn⊗
µn → µm⊗µm be the map J = (id⊗j)◦ (π⊗ id)−1, so that J(ζ⊗η) = ζ⊗η′
where η′ ∈ µm satisfies (η′)n/m = η.

Whenever (F, n) → (E,m) is a morphism, then there are homomor-
phisms

res ◦ J∗ : H2(GF , µ
⊗2
n )→ H2(GE , µ

⊗2
m )

and
(π ⊗ π)∗ ◦ cores : H2(GE, µ

⊗2
m )→ H2(GF , µ

⊗2
n )
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which make H2(GF , µ
⊗2
n ) into a covariant and contravariant functor. Fur-

thermore, the composite of these two homomorphisms is

(π ⊗ π)∗ ◦ cores ◦ res ◦ J∗ = ((π ⊗ π) ◦ J)∗[E : F ] =
m

n
[E : F ]

since (π ⊗ π) ◦ J is the map ζ ⊗ η 7→ (ζ ⊗ η)m/n. Thus H2(GF , µ
⊗2
n ) is a

functor with transfers.

Lemma 7.1. For any field k and (F, n) ∈ Obj Ck, ΓF,n : K2F/n →
H2(GF , µ

⊗2
n ) is a map of functors with transfers.

Proof. Suppose that n divides m. Given a morphism (F, n) → (E,m)
we can factor it as (F, n) → (F,m) → (E,m) and we prove the result for
the morphisms (F, n)→ (F,m) and (F,m)→ (E,m) separately.

Note that the following:

1 // µm //

π

��

F ∗sep
m //

π

��

F ∗sep
//

id
��

1

1 // µn //

j

OO

F ∗sep
n //

id

OO

F ∗sep
//

m/n

OO

1

is a commutative diagram of GF -modules. Hence j∗(dn(x)) = dm(xm/n) and
π∗(dm(y)) = dn(y) for x and y ∈ F ∗. Then the diagram

K2F/m
ΓF,m // H2(GF , µ

⊗2
m )

K2F/n
ΓF,n //

m/n

OO

H2(GF , µ
⊗2
n )

J∗

OO

commutes. For,

(π ⊗ id)∗(dm(a) ∪ dn(b)) = dn(a) ∪ dn(b)

and so

J∗(ΓF,n({a, b})) = (id⊗j)∗ ◦ (π ⊗ id)−1
∗ (dn(a) ∪ dn(b))

= (id⊗j)∗(dm(a) ∪ dn(b)) = dm(a) ∪ dm(bm/n) = ΓF,m({a, b})m/n.
In the other direction,

K2F/m
ΓF,m //

��

H2(GF , µ
⊗2
m )

(π⊗π)∗
��

K2F/n
ΓF,n // H2(GF , µ

⊗2
n )

commutes. For, given x = {a, b} ∈ K2F/m,
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(π ⊗ π)∗(ΓF,m({a, b})) = (π ⊗ π)∗(dm(a) ∪ dm(b))

= π∗(dm(a)) ∪ π∗(dm(b)) = dn(a) ∪ dn(b) = Γn({a, b}).
Now (F,m)→ (E,m) is a morphism. Then

K2E/m
ΓE,m // H2(GE , µ

⊗2
m )

K2F/m
ΓF,m //

OO

H2(GF , µ
⊗2
m )

res

OO

commutes, since

res(dF,m(a) ∪ dF,m(b)) = (res(dF,m(a)) ∪ res(dF,m(b))) = dE,m(a) ∪ dE,m(b).

Finally the diagram

K2E/m
ΓE,m //

trE/F
��

H2(GE , µ
⊗2
m )

cores

��
K2F/m

ΓF,n // H2(GF , µ
⊗2
m )

commutes (see for example [10, Chapter 8, Lemma 8.7]).

Lemma 7.2. For any local field k and (F, n) ∈ Obj Ck the map θF,n :
H2(GF , µ

⊗2
n )→ H0(GF , µn) is a map of functors with transfers.

Proof. Suppose there is a morphism (F, n)→ (E,m). We begin by show-
ing that the following diagram commutes:

H2(GF , µ
⊗2
n )

θF,n //

J∗
��

H0(GF , µn)

j∗
��

H2(GF , µ
⊗2
m )

θF,m // H0(GF , µm)

By definition of θ this amounts to showing, for all x ∈ H2(GF , µ
⊗2
n ) and

χ ∈ HomGF (µm,Q/Z), that invF (J∗x ∪ χ) = invF (x ∪ (χ|µn)), that is,
J∗x∪ χ = x∪ (χ|µn). But J∗x∪ χ = x∪ χ ◦ J (by definition of J∗). Now for

ζ ⊗ η ∈ µn ⊗ µn, χ(J(ζ ⊗ η)) = χ(ζ ⊗ η′) = ζmχ(η′) = ζnχ(η) = χ|µn(ζ ⊗ η).
Next, the diagram

H2(GF , µ
⊗2
m )

θF,m //

res

��

H0(GF , µm)

NE/F
��

H2(GE , µ
⊗2
m )

θE,m // H0(GE , µm)
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commutes. For, given x ∈ H2(GF , µ
⊗2) and χ ∈ H0(GE , µm),

χ(θE,m(res(x))) = invE(res(x) ∪ χ) = invE(res(x ∪ cores(χ)))

= invF (x ∪ cores(χ)) (since invE ◦res = invF )

= cores(χ)(θF,m(x)) = χ(NE/F (θF,m(x))).

These two diagrams together show that θF,n is a map of covariant functors.
In the other direction, the diagram

H2(GE , µ
⊗2
m )

θE,m //

cores

��

H0(GE , µm)

��
H2(GF , µ

⊗2
m )

θF,m // H0(GF , µm)

commutes. For, given x ∈ H2(GE, µ
⊗2
m ) and χ ∈ H0(GF , µm) we have

χ(θF,m(cores(x))) = invF (cores(x) ∪ χ) = invE(res(cores(x) ∪ χ))

= invE(x ∪ res(χ)) = res(χ)(θE,m) = χ(θE,m(x))

and hence θF,m(cores(x)) = θE,m(x).
Finally the diagram

H2(GF , µ
⊗2
m )

θE,m //

(π⊗π)∗
��

H0(GF , µm)

m/n

��
H2(GF , µ

⊗2
n )

θF,n // H0(GF , µn)

commutes: for x ∈ H2(GF , µ
⊗2
m ) and χ ∈ H0(GF , µn) it is enough to prove

that (π⊗ π)∗(x)∪ χ = x∪ (χ ◦ (m/n)). This is true since (π⊗ π)∗(x)∪ χ =
x ∪ χ ◦ (π ⊗ π) and for ζ ⊗ η ∈ µm ⊗ µm,

χ((π ⊗ π)(ζ ⊗ η)) = χ(ζm/n ⊗ ηm/n) = (ζm/n)nχ(ηm/n)

= ζmχ(ηm/n) = χ ◦ (m/n)(ζ ⊗ η).

Thus we have proven Theorem 2.1(2). If F = R or F = C then the result
follows from Remark 6.1 and Lemma 7.1. For F a non-archimedean local
field it is a consequence of Lemmas 7.1 and 7.2 together with Theorem 6.5.

8. Main results. Finally we prove Theorem 6.5. We need a few pre-
liminary results. Fix n ∈ N. Let

Dn : Ĥ i

(
Gn,

1

n
Z/Z

)
→ Ĥ i+1(Gn,Z)
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be the connecting homomorphism associated to the exact sequence of Gn-
modules

0→ Z→ 1

n
Z→ 1

n
Z/Z→ 0.

The crucial part of the comparison of the symbols λF,n and γF,n is to relate
the connecting homomorphisms Dn and δn. The following lemma shows us
how to do that.

Lemma 8.1. Let a ∈ F ∗, χ ∈ H1(Gn, (1/n)Z/Z). Let β : µn⊗ (1/n)Z/Z
→ F ∗n be the map ζ ⊗ (r/n) 7→ ζr. Then

β∗(δn(a) ∪ χ) = −a ∪Dnχ

in H2(Gn, F
∗
n).

The lemma is a special case of the following technical lemma.

Lemma 8.2. Let G be a finite group and A a G-module. Let n ∈ N. Let
D and d, respectively , be the connecting homomorphisms associated to the
sequences of G-modules

0→ Z→ 1

n
Z→ 1

n
Z/Z→ 0 and 0→ A[n]→ A→ nA→ 0.

Let x ∈ H i(G,nA), y ∈ Hj(G, (1/n)Z/Z). Let α be the inclusion nA → A
and let β be the map A[n]⊗ (1/n)Z/Z→ A, a⊗ (r/n) 7→ ra. Then

(−1)i(α∗x ∪Dy) + β∗(dx ∪ y) = 0 in H i+j+1(G,A).

Corollary 8.3. Let a, β and χ be as in Lemma 8.1. Then

Dn(%n(a) ∪ χ) = −In(β∗(δn(a) ∪ χ)) in Ĥ0(Gn,Z),

where In : Ĥ2(Gn, F
∗
n) → Ĥ0(Gn,Z) is the inverse of the isomorphism

induced by the cup-product with un = uFn/F .

Proof.

un ∪ (Dn(%n(a) ∪ χ)) = un ∪ (%n(a) ∪Dn(χ)) = (un ∪ %n(a)) ∪Dnχ

= a ∪Dnχ (by definition of %n)

= a ∪Dnχ

= −β∗(δn(a) ∪ χ) (by Lemma 8.1).

For any Gn-module A and any i ≥ 0 let res denote the natural map

res : H i(Gn, A)→ H i(GF , A).

Corollary 8.4. For F a local field and n relatively prime to charF the
following diagram anti-commutes for any n ∈ N:
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Ĥ−2(Gn,Z)× Ĥ1(Gn, (1/n)Z/Z)
∪ //

res

��

Ĥ−1(Gn, (1/n)Z/Z)

F ∗

%n

OO

dn
��

(1/n)Z/Z

H1(GF , µn)× Ĥ1(GF , (1/n)Z/Z)
∪ // H2(GF , µn)

invF

OO

where the cup-product at the bottom is taken with respect to the map

µn ⊗
1

n
Z/Z→ µn, ζ ⊗ r

n
7→ ζr.

Proof. Let N = [Fn : F ] = |Gn| and invn = invF ◦ infFn/F : H2(Gn, F
∗
n)

→ Q/Z. Observe that the connecting homomorphism

DN :
1

N
Z/Z = Ĥ−1

(
Gn,

1

N
Z/Z

)
→ Ĥ0(Gn,Z) ∼= Z/|Gn|Z = Z/NZ

is an isomorphism and invn(x) = D−1
N (In(x)) for all x ∈ Ĥ2(Gn, F

∗
n). (For,

DN (1/N) = 1, so D−1
N (In(un)) = D−1

N (In(un ∪ 1)) = D−1
N (1) = 1/N =

invn(un).)

Hence for any a ∈ F ∗, and χ ∈ Ĥ1(Gn, (1/n)Z/Z), we have

invF (dn(a) ∪ res(χ)) = invF (β∗(dn(a) ∪ res(χ)))

= invF (β∗(res(δn(a)) ∪ res(χ)))

= invF (β∗(res(δn(a) ∪ χ)))

= invF (infFn/F (β∗(δn(a) ∪ χ)))

= D−1
N (In(β∗(δn(a) ∪ χ)))

= −D−1
N (Dn(%n(a) ∪ χ)) (by Corollary 8.3)

= −%n(a) ∪ χ

since D−1
N ◦Dn : (1/n)Z/Z→ (1/N)Z/Z is the natural inclusion.

Remark 8.5. A closely related diagram for the case µn ⊂ F occurs in
[7, VII, Prop. 7.2.13], but a proof is not given there. The essential point is
to relate the reciprocity map %n to the connecting homomorphism δn; that
is, our Corollary 8.3.

We are now in a position to prove Theorem 6.5. For, suppose that F
is a non-archimedean local field and let a, b ∈ F ∗. For some n ≥ 1 let
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χ ∈ H0(GF , µ
#
n ) = Ĥ0(Gn, µ

#
n ). Then

invF (γn(a, b) ∪ χ) = invF ((dn(a) ∪ dn(b)) ∪ χ)

= invF (β∗(dn(a) ∪ (dn(b) ∪ χ)))

= invF (β∗(dn(a) ∪ res(δn(b) ∪ χ)))

= −%n(a) ∪ (δn(b) ∪ χ) (by Corollary 8.4)

= χ(−λn(a, b))

since the map Ĥ−1(GF , µn)×H0(GF , µ
#
n )→ H0(GF ,Q/Z) induced by the

cup-product is identical to the evaluation map H0(GF , µn)×H0(GF , µ
#
n )→

Q/Z. Since this equation holds for all χ ∈ H0(GF , µ
#
n ), it follows that

−λn({a, b}) = θn(γn({a, b}))
by definition of θn.

9. Proof of Lemma 8.2. Finally we give the proof of Lemma 8.2. This
proof was suggested by Serre’s proof of [9, Chapter XIV, 2, Proposition 5].

We begin by recalling the formula for the cup-product of cocycles in
terms of the bar resolution: if x ∈ H i(G,M) and y ∈ Hj(G,N) are repre-
sented by f ∈ Ci(G,M) and g ∈ Cj(G,N) then x ∪ y is represented by the
cocycle f ∪ g ∈ Ci+j(G,M ⊗N) given by

f ∪ g(σ1, . . . , σi+j) = f(σ1, . . . , σj)⊗ σ1 · · ·σjg(σj+1, . . . , σi+j).

Next recall that if
0→ X → Y → Z → 0

is a short exact sequence of G-modules then the associated connecting ho-
momorphism, δ, is described as follows: if z ∈ Hk(G,Z) is represented by the
cocycle h ∈ Ck(G,Z) then δz ∈ Hk+1(G,X) is represented by the cocycle
δh ∈ Ck+1(G,X) defined by

δh(σ1, . . . , σk+1) = σ1l(h(σ2, . . . , σk+1))

+
k∑

r=1

(−1)rl(h(σ1, . . . , σrσr+1, . . . , σk+1)) + (−1)k+1l(h(σ1, . . . , σk))

where l : Z → Y is any set-theoretic section of the surjective map Y → Z.
Thus, let t : (1/n)Z/Z → (1/n)Z and s : nA → A be fixed set-theoretic

sections of the maps (1/n)Z→ (1/n)Z/Z and A→ nA. Observe:

(1) If ai ∈ A are such that a =
∑
ai ∈ A[n] and if b ∈ (1/n)Z/Z then

β(a⊗ b) = a · nt(b) =
∑

i

aint(b) ∈ A.

(2) If a ∈ nA and bj ∈ (1/n)Z are such that
∑

j bj ∈ Z, then a(
∑

j bj) =∑
j s(a) · (nbj) in A.
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Suppose now that the elements x ∈ H i(G,nA) and y ∈ Hj(G, (1/n)Z/Z)
are represented by the cocycles f ∈ C i(G,nA) and g ∈ Cj(G, (1/n)Z/Z).
Then α∗x is represented by α∗f = α ◦ f ∈ Ci(G,A). Thus α∗x ∪ Dy is
represented by α∗f ∪Dg ∈ Ci+j+1(G,A) where

(α∗f ∪Dg)(σ1, . . . , σi+j+1)

= f(σ1, . . . , σi) ·
[
t(g(σi+2, . . . , σi+j+1))

+

j∑

r=1

(−1)rt(g(. . . , σi+rσi+r+1, . . .)) + (−1)j+1t(g(σi+1, . . . , σi+j))
]

= s(f(σ1, . . . , σi)) · nt(g(σi+2, . . . , σi+j+1))

+ s(f(σ1, . . . , σi)) ·
(∑

(−1)rnt(g(. . . , σi+rσi+r+1, . . .))
)

+ (−1)j+1s(f(σ1, . . . , σi)) · nt(g(σi+1, . . . , σi+j)),

by (2) above. Similarly, β∗(dx∪ y) is represented by the cocycle β∗(df ∪ g)∈
Ci+j+1(G,A) where

β∗(df ∪ g)(σ1, . . . , σi+j+1)

= β
([
σ1s(f(σ2, . . . , σi+1)) +

i∑

k=1

(−1)ks(f(. . . , σkσk+1, . . .))

+ (−1)i+1s(f(σ1, . . . , σi))
]
⊗ g(σi+2, . . . , σi+j+1)

)

= σ1s(f(σ2, . . . , σi+1)) · nt(g(σi+1, . . . , σi+j+1))

+

i∑

k=1

(−1)ks(f(. . . , σkσk+1, . . .)) · nt(g(σi+2, . . . , σi+j+1))

+ (−1)i+1s(f(σ1, . . . , σi)) · nt(g(σi+2, . . . , σi+j+1)),

by (1) above.
Hence the term s(f(σ1, . . . , σi)) ·nt(g(σi+2, . . . , σi+j+1)) occurs twice but

with opposite signs in the expression (−1)j(α∗f ∪Dg) + β∗(df ∪ g). So this
expression becomes

(−1)j(α∗f ∪Dg) + β∗(df ∪ g)

= σ1s(f(σ2, . . . , σi+1)) · nt(g(σi+1, . . . , σi+j+1))

+
i∑

k=1

(−1)ks(f(. . . , σkσk+1, . . .)) · nt(g(σi+2, . . . , σi+j+1))
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+

i+j∑

k=i+1

(−1)ks(f(σ1, . . . , σi)) · nt(g(. . . , σkσk+1, . . .))

+ (−1)i+j+1s(f(σ1, . . . , σi)) · nt(g(σi+1, . . . , σi+j)).

But this is just the coboundary of the cocycle h ∈ C i+j(G,A) defined by

h(σ1, . . . , σi+j) = s(f(σ1, . . . , σi)) · nt(g(σi+1, . . . , σi+j)).

10. An application to the wild kernel. Let F be a number field.
For any n ∈ N and any (finite or infinite) place, v, of F the Hilbert symbol
of order n on Fv induces a map

Hv,n : K2F → (µn)Gv .

Lemma 10.1. For any number field F and any n ∈ N there is an exact
sequence

K2F/n
Hn−→

∐

v finite or
real infinite

(µn)Gv
Πn−→ (µn)GF → 1,

where Hn =
∑

vHn,v and Πn is the natural product map.

Proof. The Poitou–Tate exact sequence ([7, VIII, 8.6.13]) for the number
field F gives an exact sequence

H2(GF , µ
⊗2
n )

βn−→
∐

v

H2(Gv, µ
⊗2
n )

Pn−→ H0(GF , (µ
⊗2
n )′)#,

where the map βn is induced from the restriction maps H2(GF , µ
⊗2
n ) →

H2(Gv, µ
⊗2
n ) and Pn is induced from the duals of the natural maps

H0(GF , (µ
⊗2
n )′)→ H0(Gv, (µ

⊗2
n )′) ∼→ H2(Gv, µ

⊗2
n )#.

It follows by Theorem 6.5 that we have a commutative (up to sign) diagram:

K2F/n
Hn //

γF,n

��

∐
v(µn)Gv // (µn)GF

// 1

H2(GF , µ
⊗2
n ) // ∐

vH
2(Gv, µ

⊗2
n ) //

θn=
∐
θv,n

OO

H0(GF , (µ
⊗2
n )′)# //

o
OO

1

Here γF,n is an isomorphism by [11] and θn is an isomorphism by Lemma
6.4 above. Thus the top row is exact as required.

Thus, the Hilbert symbols Hv,n satisfy the reciprocity laws,
∏
vHv,n(a, b)

= 1 (in (µn)GF ) for all a, b ∈ F .

Now let X2
n(F ) = X2(F, µ⊗2

n ) := ker(βn). By Poitou–Tate duality,

X2
n(F ) ∼= X1(F, (µ⊗2

n )′)# = X1(F, µ#
n )#.
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Now µ#
n
∼= µn (non-canonically) as GF -modules. By the Hasse principle for

the GF -module µn,

X1(F, µn) =

{
Z/2 if F is special and n is large enough,

0 otherwise.

Here, F is special if Gal(F (µ2m)/F ) is non-cyclic for all sufficiently large m
(i.e. F is exceptional) and every dyadic prime of F decomposes in F (µ2m)
for any sufficiently large m. It follows that X2

n(F ) = X1(F, µn).
For a number field F , let X2(F ) denote the limiting value of X2

n(F ) for
large n (“large” means divisible by a sufficiently large power of 2).

Corollary 10.2. For all n there is an exact sequence

0→X2
n(F )→ K2F/n→

∐

v

(µn)Gv → (µn)GF → 1.

Let µv = µ(Fv) for any place v and let mv = |µv|. Recall that the
wild kernel, WK2F , of the number field F is the kernel of the map H :
K2F →

∐
v µv, x 7→ (Hv,mv(x))v. Let K∞2 F =

⋂
n∈N(K2F )n be the group

of infinitely divisible elements of K2F .

Theorem 10.3. There is a natural short exact sequence

1→ K∞2 F →WK2F →X2(F )→ 1.

Proof. Let kn(F ) = K2F/((K2F )n.X2
n(F )). If n |m the identity map

on K2F induces a surjection pn,m : km(F ) → kn(F ) which fits into a map
of short exact sequences,

1 // kn(F )
Hn //

∐
v(µn)Gv // (µn)GF

// 1

1 // km(F ) //

pn,m

OO

∐
v(µm)Gv //

m/n

OO

(µm)GF

m/n

OO

// 1

Thus, taking a limit over the set N (ordered by divisibility) we obtain a
short exact sequence

1→ lim kn(F )→ lim
∐

v

(µn)Gv → lim (µn)GF → 1.

Observe that when K = F or K = Fv for some v the diagram

(µn)GK
// µn(K) := µs

(µm)GK
//

m/n

OO

µm(K) := µr

r/s

OO



Hilbert symbols as maps of functors 367

commutes for any n |m. It follows that lim (µn)GK
∼= µK via (ζ̄n)n → ζ

N/mK

N
for sufficiently large N . Furthermore, by Corollary 2.2 above, the diagrams

K2F/n
Hv,n //

Hv,s &&NNNNNNNNNNN
(µn)Gv

o
��

µn(Fv) = µs

commute for all v and n.
Observe that the natural map

i :
∐

v

µv ∼=
∐

v

lim (µn)Gv → lim
∐

v

(µn)Gv

is injective.
Putting all this together, we obtain a commutative diagram

K2F
H //

j

��

∐
v µv

π //

i
��

µF //

��

1

1 // lim kn(F ) // lim
∐
v(µn)Gv // lim (µn)GF

// 1

where π((ζv)v) =
∏
ζ
mv/mF
v (in fact, the top row is exact by Moore’s reci-

procity uniqueness theorem).
Since i is injective, WK2F = ker(H) = ker(j). Observe also that K∞2 F

is the kernel of the natural map K2F → limK2F/n. The result now follows
by applying the snake lemma to the diagram

K2F

J
��

K2F

j
��

1 // X2(F ) // limK2F/n // lim kn(F ) // 1

Note that X2(F ) ⊂ K2F/n for sufficiently large n, and thus X2(F ) ⊂
image(J).

Thus K∞2 F = WK2F when F is not special and K∞2 F has index 2 in
WK2F otherwise.

Note that this confirms and clarifies Corollary 4.5 of [4].
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