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Generalization of two identities
in Ramanujan’s lost notebook

by

Youn-Seo Choi (Seoul)

1. Introduction. In his last letter to G. H. Hardy [3], S. Ramanujan
described a mock theta function to be a function f(q) defined by a q-series
which converges for |q| < 1 and which satisfies the following two conditions:

(0) For every root of unity ζ, there is a theta function θζ(q) such that
the difference f(q)− θζ(q) is bounded as q → ζ radially.

(1) There is no single theta function which works for all ζ: i.e., for every
theta function θ(q) there is some root of unity ζ for which f(q)−θ(q)
is unbounded as q → ζ radially.

He then provided a long list of “third order”, “fifth order”, and “seventh
order” mock theta functions together with identities satisfied by them. G. N.
Watson [11, 12] proved these mock theta function identities, and intro-
duced three new third order mock theta functions. Further identities can
be found in Ramanujan’s lost notebook [10]. Among them, G. E. Andrews
and F. G. Garvan [1] examined ten identities for Ramanujan’s fifth order
mock theta functions, and showed that the first five identities are equivalent
to each other, and the other five identities are also equivalent. They called
these “the mock theta conjectures”. Later, D. Hickerson [8] proved these
identities, and then [9] he provided two new results for the seventh order
mock theta functions which do not appear in Ramanujan’s letter. Recently,
the author [5, 6] proved certain tenth order mock theta function identities
from the lost notebook. There are two additional results related to Ramanu-
jan’s mock theta functions in the lost notebook.

In his lost notebook [10, p. 18], Ramanujan defined two functions

Ψ(q) :=
∞∑

n=0

q5n2

(q2; q5)n+1(q3; q5)n
, Φ(q) :=

∞∑

n=0

q5n2

(q; q5)n+1(q4; q5)n
,
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where (a; q)n :=
∏∞
m=0(1 − aqm)/

∏∞
m=0(1 − aqn+m) for an integer n and

complex numbers a, q with |q| < 1. These functions also appear in the mock
theta conjectures

f0(q) =
(q5; q5)∞(q5; q10)∞
(q; q5)∞(q4; q5)∞

+ 2− 2Φ(q2),

f1(q) =
(q5; q5)∞(q5; q10)∞
(q2; q5)∞(q3; q5)∞

+
2
q
− 2
q
Ψ(q2),

where (a; q)∞ :=
∏∞
m=0(1− aqm), and

f0(q) :=
∞∑

n=0

qn
2

(−q; q)n
, f1(q) :=

∞∑

n=0

qn
2+n

(−q; q)n

are fifth order mock theta functions. He also provided the following two
identities involving Ψ(q) and Φ(q) which have not heretofore been proved:

(1)
1
q

(Ψ(q3)− 1) +
(q5; q5)2

∞
(q15; q15)∞(q; q5)∞(q4; q5)∞

=
∞∑

n=0

q15n2

(q; q15)n+1(q14; q15)n
− 1 +

∞∑

n=0

q15n2

(q4; q15)n+1(q11; q15)n

and

(2) Φ(q3)− 1 +
∞∑

n=0

q15n2

(q2; q15)n+1(q13; q15)n

− 1
q2

( ∞∑

n=0

q15n2

(q7; q15)n+1(q8; q15)n
− 1
)

=
(q5; q5)2

∞
(q15; q15)∞(q2; q5)∞(q3; q5)∞

.

We will prove (1) and (2). We will moreover give seven identities which
are analogues of (1) and (2), and are also related to Ramanujan’s mock theta
functions.

Define

ψ(q) :=
∞∑

n=1

qn
2

(q; q2)n
, ω(q) :=

∞∑

n=0

q2n(n+1)

(q; q2)2
n+1

.

ψ(q) is a third order mock theta function which appears in Ramanujan’s
letter, and ω(q) is also a third order mock theta function which does not
appear in Ramanujan’s letter, but was introduced by Watson [11]. We will
prove two identities involving ψ(q) and ω(q), respectively, which are not
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established by Ramanujan:

(3) ψ(q3)+
∞∑

n=0

q12n2

(q; q12)n+1(q11; q12)n
− 1
q3

( ∞∑

n=0

q12n2

(q7; q12)n+1(q5; q12)n
−1
)

=
(q4; q4)2

∞
(q12; q12)∞(q; q4)∞(q3; q4)∞

and

q2ω(q3) +
(q2; q2)2

∞
(q6; q6)∞(q; q2)2∞

= 2
∞∑

n=0

q6n2

(q; q6)n+1(q5; q6)n
− 1.(4)

Define

ψ0(q) :=
∞∑

n=0

q7n2

(q; q7)n+1(q6; q7)n
, ψ1(q) :=

∞∑

n=0

q7n2

(q2; q7)n+1(q5; q7)n
,

ψ2(q) :=
∞∑

n=0

q7n2

(q3; q7)n+1(q4; q7)n
.

Hickerson [9] proved three of Ramanujan’s seventh order mock theta func-
tion identities which represent three seventh order mock theta functions by
theta functions and Lambert series. These identities are equivalent to the
following identities which involve ψ0(q), ψ1(q), and ψ2(q):

F0(q) = 2ψ0(q)− f(−q3,−q4)2

(q; q)∞
, F1(q) = 2ψ1(q) +

qf(−q,−q6)2

(q; q)∞
,

F2(q) = 2q−1(ψ2(q)− 1) +
f(−q2,−q5)2

(q; q)∞
,

where

F0(q) :=
∞∑

n=0

qn
2

(qn+1; q)n
, F1(q) :=

∞∑

n=1

qn
2

(qn; q)n
, F2(q) :=

∞∑

n=0

qn
2+n

(qn+1; q)n+1

are the seventh order mock theta functions which were defined by Ramanu-
jan in his letter. We will prove three new identities involving ψ0(q), ψ1(q),
and ψ2(q), respectively, which are not established by Ramanujan:

(5) ψ0(q3)− 1 +
∞∑

n=0

q21n2

(q4; q21)n+1(q17; q21)n

− 1
q3

( ∞∑

n=0

q21n2

(q10; q21)n+1(q11; q21)n
− 1
)

=
(q7; q7)2

∞
(q21; q21)∞(q3; q7)∞(q4; q7)∞

,
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(6) ψ1(q3)− 1 +
∞∑

n=0

q21n2

(q; q21)n+1(q20; q21)n

− 1
q

( ∞∑

n=0

q21n2

(q8; q21)n+1(q13; q21)n
− 1
)

=
(q7; q7)2

∞
(q21; q21)∞(q; q7)∞(q6; q7)∞

,

(7) ψ2(q3)− 1 +
(q7; q7)2

∞
(q21; q21)∞(q2; q7)∞(q5; q7)∞

=
∞∑

n=0

q21n2

(q2; q21)n+1(q19; q21)n
− 1 +

∞∑

n=0

q21n2

(q5; q21)n+1(q16; q21)n
.

Define

φ0(q) :=
∞∑

n=0

(−1)n(q5; q10)nq5n2

(q2; q10)n+1(q8; q10)n
, φ1(q) :=

∞∑

n=0

(−1)n(q5; q10)nq5n2

(q4; q10)n+1(q6; q10)n
.

The author [4] established two of Ramanujan’s tenth order mock theta func-
tion identities which represent tenth order mock theta functions by theta
functions and Lambert series. These identities are equivalent to the following
identities which involve φ0(q) and φ1(q):

X(q) = −(q5; q5)∞(q10; q10)∞f(−q2,−q3)
f(−q2,−q8)f(−q,−q4)

+ 2φ0(q),

χ(q) = 2 + q
(q5; q5)∞(q10; q10)∞f(−q,−q4)

f(−q4,−q6)f(−q2,−q3)
− 2φ1(q),

where

X(q) :=
∞∑

n=0

(−1)nqn
2

(−q; q)2n
, χ(q) :=

∞∑

n=0

(−1)nq(n+1)2

(−q; q)2n+1
.

These functions X(q) and χ(q) are the tenth order mock theta functions
which were defined by Ramanujan in his lost notebook. We will prove two
new identities involving φ0(q) and φ1(q), respectively, which were not estab-
lished by Ramanujan:

(8) φ0(q2)− 1
q4

( ∞∑

n=0

(−1)n(q10; q20)nq10n2

(q14; q20)n+1(q6; q20)n
− 1
)

=
(q10; q10)2

∞
(q4; q10)∞(q6; q10)∞f(q10, q30)

,
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(9) φ1(q2)− 1
q8

( ∞∑

n=0

(−1)n(q10; q20)nq10n2

(q18; q20)n+1(q2; q20)n
− 1
)

=
(q10; q10)2

∞
(q2; q10)∞(q8; q10)∞f(q10, q30)

.

In this paper, we obtain two theorems, which contain identities (1)–(9)
as special cases.

Theorem 1. For a complex number q with |q| < 1, and x neither 0 nor
an integral power of q,

(q; q)2
∞

(q3; q3)∞(x; q)∞(x−1q; q)∞
=
∞∑

n=0

q3n2

(x; q3)n+1(x−1q3; q3)n
− 1

−x−1
( ∞∑

n=0

q3n2

(xq; q3)n+1(x−1q2; q3)n
− 1
)

+
∞∑

n=0

q3n2

(x−1q; q3)n+1(xq2; q3)n
.

Theorem 2. For a complex number q with |q| < 1, and x neither 0 nor
an integral power of q,

(q2; q2)2
∞

f(q2, q6)(x; q2)∞(x−1q2; q2)∞
=
∞∑

n=0

(−1)n(q2; q4)nq2n2

(x; q4)n+1(x−1q4; q4)n

−x−1
( ∞∑

n=0

(−1)n(q2; q4)nq2n2

(xq2; q4)n+1(x−1q2; q4)n
− 1
)
.

The main purpose of this paper is to prove Theorem 1, Theorem 2, two
identities in Ramanujan’s lost notebook, and the seven new identities above.

In Section 2, we first prove Theorems 1 and 2 using the preliminary
results and transformation formulas for g(x, q), h(x, q), and the hypergeo-
metric series. In Section 3, using Theorem 1, we prove the identities (1) and
(2) from Ramanujan’s lost notebook. In Section 4, we prove the identities (3)
and (4) by using Theorem 1. In Section 5, we discuss the relation between
Ramanujan’s seventh order mock theta functions and the functions ψ0(q),
ψ1(q), and ψ2(q), and prove the identities (5)–(7) by using Theorem 1. In
Section 6, we discuss the relation between Ramanujan’s tenth order mock
theta functions and the two functions φ0(q) and φ1(q), and prove the two
identities (8) and (9) by using Theorem 2.

2. Proofs of Theorems 1 and 2. In this section, we prove the main
theorems of this paper. We need the following definitions, theorems, and
lemmas.
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Definition (Ramanujan’s general theta function). For complex num-
bers q, b, and c with |q| < 1 and |bc| < 1, and any integer n,

f(b, c) :=
∞∑

j=−∞
bj(j+1)/2cj(j−1)/2 = (−b; bc)∞(−c; bc)∞(bc; bc)∞.(10)

Recall that the second equation above is called the Jacobi triple product
identity.

Definition. Let q be any complex number with |q| < 1, and let x be
neither 0 nor an integral power of q. Define

g(x, q) := x−1
( ∞∑

n=0

qn
2

(x; q)n+1(x−1q; q)n
− 1
)
,

h(x, q) :=
∞∑

n=0

(−1)n(q1/2; q)nqn
2/2

(x; q)n+1(x−1q; q)n
.

Hickerson discussed g(x, q) in his paper [9]. Next, we give the transfor-
mation formula for g(x, q).

Theorem 3 ([8, Theorem 2.0, p. 649]). For a complex number q with
|q| < 1, and x neither 0 nor an integral power of q,

(q; q)∞g(x, q) =
∞∑

n=−∞

(−1)nq3n(n+1)/2

1− xqn .(11)

To derive the transformation formula for h(x, q), we need to use the
following theorem.

Theorem 4 (Watson’s transformation formula, [11, p. 63]). If q, a, b,
and c with |q| < 1 are complex numbers, and d, e, or f is of the form q−n,
where n is a positive integer , then

(12)
∞∑

n=0

(a; q)n(aq2; q2)n(b; q)n(c; q)n(d; q)n(e; q)n(f ; q)n
(q; q)n(a; q2)n(aq/b; q)n(aq/c; q)n(aq/d; q)n(aq/e; q)n(aq/f ; q)n

×
(
a2q2

bcdef

)n

=
(aq; q)∞(aq/de; q)∞(aq/df ; q)∞(aq/ef ; q)∞

(aq/d; q)∞(aq/e; q)∞(aq/f ; q)∞(aq/def ; q)∞

×
∞∑

n=0

(aq/bc; q)n(d; q)n(e; q)n(f ; q)n
(q; q)n(aq/b; q)n(aq/c; q)n(def/a; q)n

qn.

The proof of Theorem 5 is inspired by that of Theorem 3.
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Theorem 5. For a complex number q with |q| < 1, and x neither 0 nor
an integral power of q,

f(q1/2, q3/2)h(x, q) =
∞∑

n=−∞

qn(n+1/2)

1− xqn .(13)

Proof. If we replace a, b, c, and d by 1, x, x−1, and q1/2, respectively, in
(12), let e, f →∞ in (12), and use limα→∞ (α; q)n/αn = (−1)nqn(n−1)/2 for
any positive integer n, then we find that (12) becomes

(14) 1 +
∞∑

n=1

(1 + qn)(1− x)(1− x−1)
(1− xqn)(1− x−1qn)

qn
2+n/2

=
(q; q)∞

(q1/2; q)∞

∞∑

n=0

(q1/2; q)n(−1)nqn
2/2

(xq; q)n(x−1q; q)n
.

We now consider the left hand side of (14). By a straightforward calculation,
we find that the left hand side of (14) equals

(15) 1+
∞∑

n=1

(1+qn)qn
2−n/2

(
1− 1− qn

(1 + qn)(1− xqn)
− (1− qn)x−1qn

(1 + qn)(1− x−1qn)

)

= 1 +
∞∑

n=1

(1 + qn)qn
2−n/2−

∞∑

n=1

1− qn
1− xqn q

n2−n/2−
∞∑

n=1

(1− qn)x−1qn

1− x−1qn
qn

2−n/2.

By the definition of f(b, c),

1 +
∞∑

n=1

(1 + qn)qn
2−n/2 =

∞∑

n=−∞
qn

2+n/2 = f(q1/2, q3/2).(16)

Replacing n by −n in the second sum of the right hand side of (15), and
using the equation

1− q−n
1− xq−n

x−1qn

x−1qn
=

1− qn
1− x−1qn

x−1,

we find that
−∞∑

n=−1

1− q−n
1− xq−n q

n2+n/2 =
−∞∑

n=−1

1− qn
1− x−1qn

x−1qn
2+n/2.(17)

By (16) and (17), the right hand side of (15) is equal to

f(q1/2, q3/2)−
∑′ (1− qn)x−1

1− x−1qn
qn

2+n/2,(18)

where
∑′ means

∑∞
n=−∞, n6=0. Thus, multiplying both sides of (14) by

(q1/2; q)∞/(q; q)∞, combining the results (14), (15), and (18), replacing x
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by x−1, and using (10), we deduce that
∞∑

n=0

(q1/2; q)n(−1)nqn
2/2

(xq; q)n(x−1q; q)n
= 1− x

f(q1/2, q3/2)

∑′ 1− qn
1− xqn q

n2+n/2.(19)

We easily verify that

(20)
∑′ 1− qn

1− xqn q
n2+n/2

=
∑′ qn

2+n/2

1− xqn −
∑′

qn
2+n/2 − 1 +

∞∑

n=−∞
qn

2+n/2 −
∑′ qn

2+3n/2

1− xqn

=
∑′ qn

2+n/2

1− xqn (1− (1− xqn))− 1 + f(q1/2, q3/2)−
∑′ qn

2+3n/2

1− xqn

= −(1− x)
∑′ qn

2+3n/2

1− xqn − 1 + f(q1/2, q3/2)

= −(1− x)
∞∑

n=−∞

qn
2+3n/2

1− xqn + f(q1/2, q3/2)

and
∞∑

n=−∞

qn
2+3n/2

1− xqn =
∞∑

n=−∞

qn
2+3n/2 − x−1qn

2+n/2 + x−1qn
2+n/2

1− xqn(21)

= −x−1
∞∑

n=−∞
qn

2+n/2 + x−1
∞∑

n=−∞

qn
2+n/2

1− xqn

= −x−1f(q1/2, q3/2) + x−1
∞∑

n=−∞

qn
2+n/2

1− xqn .

Using (19)–(21), we find that

(22)
∞∑

n=0

(q1/2; q)n(−1)nqn
2/2

(xq; q)n(x−1q; q)n

= 1− x

f(q1/2, q3/2)

(
−(1− x)

∞∑

n=−∞

qn
2+3n/2

1− xqn + f(q1/2, q3/2)
)

= 1− x+
x(1− x)

f(q1/2, q3/2)

(
−x−1f(q1/2, q3/2) + x−1

∞∑

n=−∞

qn
2+n/2

1− xqn
)

=
1− x

f(q1/2, q3/2)

∞∑

n=−∞

qn
2+n/2

1− xqn .
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Dividing both sides of (22) by (1− x)/f(q1/2, q3/2), using the equation

(1− x)(xq; q)n = (x; q)n+1

for a nonnegative integer n, and using the definition of h(x, q), we verify
that

f(q1/2, q3/2)h(x, q)

= f(q1/2, q3/2)
∞∑

n=0

(q1/2; q)n(−1)nqn
2/2

(xq; q)n+1(x−1q; q)n
=

∞∑

n=−∞

qn
2+n/2

1− xqn .

To prove Lemmas 1 and 2, we need Ramanujan’s 1Ψ1 summation.

Theorem 6 (Ramanujan’s 1Ψ1 summation, [2, (17.6), p. 34]). For com-
plex numbers q, a, b, and z with |q| < 1 and |b/a| < |z| < 1,

∞∑

n=−∞

(a; q)n
(b; q)n

zn =
(q; q)∞(b/a; q)∞(az; q)∞(q/az; q)∞
(b; q)∞(q/a; q)∞(z; q)∞(b/az; q)∞

.(23)

Lemma 1. For a complex number q with |q| < 1, and x neither 0 nor an
integral power of q,

∞∑

n=−∞

(−1)nq(n2+3n)/2

1− xqn = x−1 (q; q)2
∞

(x; q)∞(x−1q; q)∞
.(24)

Proof. It is easy to verify that

(25)
∞∑

n=−∞

(−1)nq(n2+3n)/2

1− xqn

= the coefficient of z0 in
∞∑

n=−∞

zn

1− xqn
∞∑

n=−∞
(−1)nq(n2+3n)/2z−n.

Applying Ramanujan’s 1Ψ1 summation with a and b replaced by x and xq,
respectively, dividing both sides of (23) by 1− x, applying the Jacobi triple
product identity with b and c replaced by −zq−1 and −z−1q2, respectively,
and using f(−zq−1,−z−1q2) = (−zq−1)f(−z,−z−1q), we find that the right
hand side of (25) equals

(26) coeff. of z0 in
(q; q)2

∞f(−xz,−x−1z−1q)
(x; q)∞(x−1q; q)∞f(−z,−z−1q)

f(−zq−1,−z−1q2)

= −q−1 (q; q)2
∞

(x; q)∞(x−1q; q)∞
× (coeff. of z−1 in f(−xz,−x−1z−1q)).

Therefore, since f(−xz,−x−1z−1q) =
∑∞

n=−∞(−1)nq(n2−n)/2xnzn by the
definition of f(b, c), and the coefficient of z−1 in

∑∞
n=−∞(−1)nq(n2−n)/2xnzn
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is −x−1q, we find that
∞∑

n=−∞

(−1)nq(n2+3n)/2

1− xqn = −q−1 (q; q)2
∞

(x; q)∞(x−1q; q)∞
(−x−1q)

= x−1 (q; q)2
∞

(x; q)∞(x−1q; q)∞
.

Lemma 2. For a complex number q with |q| < 1, and x neither 0 nor an
integral power of q,

∞∑

n=−∞

(−1)nqn
2+n

1− xq2n =
(q2; q2)2

∞
(x; q2)∞(x−1q2; q2)∞

.(27)

Proof. It is easy to verify that

(28)
∞∑

n=−∞

(−1)nqn
2+n

1− xq2n

= the coefficient of z0 in
∞∑

n=−∞

zn

1− xq2n

∞∑

n=−∞
(−1)nqn

2+nz−n.

Applying Ramanujan’s 1Ψ1 summation with q, a, and b replaced by q2, x,
and xq2, respectively, dividing both sides of (23) by 1 − x, and applying
the Jacobi triple product identity with b and c replaced by −z and −z−1q2,
respectively, we find that the right hand side of (28) equals

(29) coeff. of z0 in
(q2; q2)2

∞f(−xz,−x−1z−1q2)
(x; q2)∞(x−1q2; q2)∞f(−z,−z−1q2)

f(−z,−z−1q2)

=
(q2; q2)2

∞
(x; q2)∞(x−1q2; q2)∞

× (coeff. of z0 in f(−xz,−x−1z−1q2)).

Therefore, since f(−xz,−x−1z−1q2) equals
∑∞

n=−∞(−1)nqn
2−nxnzn by the

definition of f(b, c), and the coefficient of z0 in
∑∞

n=−∞(−1)nqn
2−nxnzn is 1,

we deduce that
∞∑

n=−∞

(−1)nqn
2+n

1− xq2n =
(q2; q2)2

∞
(x; q2)∞(x−1q2; q2)∞

.

Note that Lemmas 1 and 2 are special cases of the following equation
which was obtained by R. J. Evans [7, eq. (3.1)]: for all x 6= 0,

(q; q)2
∞

(xq; q)∞(x−1q; q)∞
=

∞∑

n=−∞

(−1)nq(n2+n)/2(x− 1)
x− qn .

We are now ready to prove the main theorems of this paper.

Proof of Theorem 1. Separating the left hand side of (24) according to
the residue classes n ≡ 0 (mod 3), n ≡ 1 (mod 3), and n ≡ 2 (mod 3), and
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dividing both sides of (24) by x−1, we find that

(30)
(q; q)2

∞
(x; q)∞(x−1q; q)∞

= x

∞∑

n=−∞

(−1)nq(9n2+9n)/2

1− xq3n − x
∞∑

n=−∞

(−1)nq(9n2+15n+4)/2

1− xq3n+1

+ x

∞∑

n=−∞

(−1)nq(9n2+21n+10)/2

1− xq3n+2 .

Here, we need to modify the three sums of the right hand side of (30),
separately.

For the first sum of the right hand side of (30), applying Theorem 3
with q replaced by q3, multiplying both sides of (11) by x, and applying the
definition of g(x, q) with q replaced by q3, we find that

x

∞∑

n=−∞

(−1)nq(9n2+9n)/2

1− xq3n = x(q3; q3)∞g(x, q3)(31)

= (q3; q3)∞

( ∞∑

n=0

q3n2

(x; q3)n+1(x−1q3; q3)n
− 1
)
.

For the second sum of the right hand side of (30), we need the identity

(32) x

∞∑

n=−∞

(−1)nq(9n2+15n+4)/2

1− xq3n+1

=
∞∑

n=−∞

(−1)nq(9n2+9n)/2+1(xq3n+1 − 1)
1− xq3n+1 +

∞∑

n=−∞

(−1)nq(9n2+9n)/2+1

1− xq3n+1

= −
∞∑

n=−∞
(−1)nq(9n2+9n)/2+1 +

∞∑

n=−∞

(−1)nq(9n2+9n)/2+1

1− xq3n+1 .

Using the Jacobi triple product identity with b and c replaced by −q9 and
−1, respectively, and using the fact that (1; q9)∞ = 0, we find that the first
sum of the right hand side of (32) equals

qf(−q9,−1) = 0.(33)

Moreover, applying Theorem 3 with q and x replaced by q3 and xq, respec-
tively, multiplying both sides of (11) by q, and applying the definition of
g(x, q) with q and x replaced by q3 and xq, respectively, we find that the
second sum of the right hand side of (32) equals

x−1(q3; q3)∞

( ∞∑

n=0

q3n2

(xq; q3)n+1(x−1q2; q3)n
− 1
)
.(34)
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Thus, by (32)–(34), we find that the second sum of the right hand side of
(30) becomes (34).

For the third sum of the right hand side of (30), we need the following
identity:

(35) x

∞∑

n=−∞

(−1)nq(9n2+21n+10)/2

1− xq3n+2

=
∞∑

n=−∞

(−1)nq(9n2+15n)/2+3(xq3n+2 − 1)
1− xq3n+2 +

∞∑

n=−∞

(−1)nq(9n2+15n)/2+3

1− xq3n+2

= −
∞∑

n=−∞
(−1)nq(9n2+15n)/2+3 +

∞∑

n=−∞

(−1)nq(9n2+15n)/2+3

1− xq3n+2 .

Replacing n by −n− 1 in the first sum of the right hand side of (35), using
the Jacobi triple product identity with b and c replaced by −q6 and −q3,
respectively, and using the definition of f(b, c), we find that the first sum of
the right hand side of (35) equals

∞∑

n=−∞
(−1)n+1q(9n2+3n)/2 = −f(−q6,−q3) = −(q3; q3)∞.(36)

Moreover, replacing n by −n − 1 in the second sum of the right hand side
of (35), using

1
1− xq−3n−1 = − x−1q3n+1

1− x−1q3n+1 ,

and applying Theorem 3 with q and x replaced by q3 and x−1q, respectively,
and the definition of g(x, q) with q and x replaced by q3 and x−1q, respec-
tively, we find that the second sum of the right hand side of (35) equals

(37)
∞∑

n=−∞

(−1)n+1q(9n2+3n)/2

1− xq−3n−1 =
∞∑

n=−∞

(−1)nx−1q(9n2+9n)/2+1

1− x−1q3n+1

= x−1q(q3; q3)∞g(x−1q, q3)

= (q3; q3)∞

( ∞∑

n=0

q3n2

(x−1q; q3)n+1(xq2; q3)n
− 1
)
.

Therefore, by (35)–(37), the third sum of the right hand side of (30) becomes

(q3; q3)∞ + (q3; q3)∞

( ∞∑

n=0

q3n2

(x−1q; q3)n+1(xq2; q3)n
− 1
)
.(38)
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Dividing both sides of (30) by (q3; q3)∞, and combining the previous results
(30), (31), (34), and (38), we find that

(q; q)2
∞

(x; q)∞(x−1q; q)∞(q3; q3)∞

=
∞∑

n=0

q3n2

(x; q3)n+1(x−1q3; q3)n
− 1− x−1

( ∞∑

n=0

q3n2

(xq; q3)n+1(x−1q2; q3)n
− 1
)

+
∞∑

n=0

q3n2

(x−1q; q3)n+1(xq2; q3)n
.

Proof of Theorem 2. Separating the left hand side of (27) according to
the residue classes n ≡ 0 (mod 2) and n ≡ 1 (mod 2), and dividing both
sides of (27) by x−1, we find that

(q2; q2)2
∞

(x; q2)∞(x−1q2; q2)∞
=

∞∑

n=−∞

q4n2+2n

1− xq4n −
∞∑

n=−∞

q4n2+6n+2

1− xq4n+2 .(39)

Here, we need to modify the two sums of the right hand side of (39), sepa-
rately.

For the first sum of the right hand side of (39), applying Theorem 5
with q replaced by q4, multiplying both sides of (13) by x, and applying the
definition of h(x, q) with q replaced by q4, we find that

∞∑

n=−∞

q4n2+2n

1− xq4n = f(q2, q6)h(x, q4)(40)

= f(q2, q6)
∞∑

n=0

(−1)n(q2; q4)nq2n2

(x; q4)n+1(x−1q4; q4)n
.

For the second sum of the right hand side of (39), we need the identity

(41)
∞∑

n=−∞

q4n2+6n+2

1− xq4n+2

=
∞∑

n=−∞

q4n2+2nx−1(xq4n+2 − 1)
1− xq4n+2 +

∞∑

n=−∞

q4n2+2nx−1

1− xq4n+2

= −x−1
∞∑

n=−∞
q4n2+2n + x−1

∞∑

n=−∞

q4n2+2n

1− xq4n+2 .

Using the Jacobi triple product identity with b and c replaced by q6 and q2,
respectively, we find that the first sum of the right hand side of (41) equals

x−1f(q6, q2).(42)
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Moreover, applying Theorem 5 with q and x replaced by q4 and xq2, respec-
tively, multiplying both sides of (13) by x−1, and applying the definition of
h(x, q) with q and x replaced by q4 and xq2, respectively, we find that the
second sum of the right hand side of (41) equals

x−1f(q2, q6)
∞∑

n=0

(−1)n(q2; q4)nq2n2

(xq2; q4)n+1(x−1q2; q4)n
.(43)

Thus, by (41)–(43), we find that the second sum of the right hand side of
(39) becomes

−x−1f(q2, q6) + x−1f(q2, q6)
∞∑

n=0

(−1)n(q2; q4)nq2n2

(xq2; q4)n+1(x−1q2; q4)n
.(44)

Dividing both sides of (39) by f(q2, q6), and combining the previous results
(39), (40) and (44), we find that

(q2; q2)2
∞

f(q2, q6)(x; q2)∞(x−1q2; q2)∞

=
∞∑

n=0

(−1)n(q2; q4)nq2n2

(x; q4)n+1(x−1q4; q4)n
− x−1

( ∞∑

n=0

(−1)n(q2; q4)nq2n2

(xq2; q4)n+1(x−1q2; q4)n
− 1
)
.

3. Two identities in Ramanujan’s lost notebook. In this section,
we provide the proofs for two identities in Ramanujan’s lost notebook.

Theorem 7. For any complex number q with |q| < 1, let

Ψ(q) =
∞∑

n=0

q5n2

(q2; q5)n+1(q3; q5)n
, Φ(q) =

∞∑

n=0

q5n2

(q; q5)n+1(q4; q5)n
.

Then

(45)
1
q

(Ψ(q3)− 1) +
(q5; q5)2

∞
(q15; q15)∞(q; q5)∞(q4; q5)∞

=
∞∑

n=0

q15n2

(q; q15)n+1(q14; q15)n
− 1 +

∞∑

n=0

q15n2

(q4; q15)n+1(q11; q15)n
,

(46) Φ(q3)− 1 +
∞∑

n=0

q15n2

(q2; q15)n+1(q13; q15)n

− 1
q2

( ∞∑

n=0

q15n2

(q7; q15)n+1(q8; q15)n
− 1
)

=
(q5; q5)2

∞
(q15; q15)∞(q2; q5)∞(q3; q5)∞

.



Generalization of two identities 383

Proof. Applying Theorem 1 with q and x replaced by q5 and q, respec-
tively, we find that

(47)
(q5; q5)2

∞
(q15; q15)∞(q; q5)∞(q4; q5)∞

=
∞∑

n=0

q15n2

(q; q15)n+1(q14; q15)n
− 1

− q−1
( ∞∑

n=0

q15n2

(q6; q15)n+1(q9; q15)n
− 1
)

+
∞∑

n=0

q15n2

(q4; q15)n+1(q11; q15)n
.

Now applying the definition of Ψ(q), and rearranging sums in (47), we de-
rive (45).

Similarly, applying Theorem 1 with q and x replaced by q5 and q2, re-
spectively, we find that

(48)
(q5; q5)2

∞
(q15; q15)∞(q2; q5)∞(q3; q5)∞

=
∞∑

n=0

q15n2

(q2; q15)n+1(q13; q15)n
− 1

− q−2
( ∞∑

n=0

q15n2

(q7; q15)n+1(q8; q15)n
− 1
)

+
∞∑

n=0

q15n2

(q3; q15)n+1(q12; q15)n
.

Now using the definition of Φ(q), and rearranging sums in (48), we de-
duce (46).

4. Mock theta functions of third order. In this section, we intro-
duce two new identities for the third order mock theta functions ψ(q) and
ω(q) which are not stated by Ramanujan.

Theorem 8. For any complex number q with |q| < 1, let

ψ(q) =
∞∑

n=1

qn
2

(q; q2)n
, ω(q) =

∞∑

n=0

q2n(n+1)

(q; q2)2
n+1

.

Then

(49) ψ(q3)+
∞∑

n=0

q12n2

(q; q12)n+1(q11; q12)n
− 1
q3

( ∞∑

n=0

q12n2

(q7; q12)n+1(q5; q12)n
−1
)

=
(q4; q4)2

∞
(q12; q12)∞(q; q4)∞(q3; q4)∞

,

(50) q2ω(q3) +
(q2; q2)2

∞
(q6; q6)∞(q; q2)2∞

= 2
∞∑

n=0

q6n2

(q; q6)n+1(q5; q6)n
− 1.

Proof. In [11], Watson proved that Ramanujan’s third order mock theta
functions ψ(q) and ω(q) satisfy the identities

ψ(q) =
1

(q4; q4)∞

∞∑

n=−∞

(−1)nq6n(n+1)+1

1− q4n+1 ,(51)
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ω(q) =
1

(q2; q2)∞

∞∑

n=−∞

(−1)nq3n(n+1)

1− q2n+1 .(52)

Replacing q and x by q4 and q, respectively, in (11), dividing both sides of
(11) by (q4; q4)∞/q, and using (51) and the definition of g(x, q) with q and x
replaced by q4 and q, respectively, we find

ψ(q) =
∞∑

n=0

q4n2

(q; q4)n+1(q3; q4)n
− 1,(53)

and replacing q and x by q2 and q, respectively, in (11), dividing both sides
of (11) by (q2; q2)∞, and using (52) and the definition of g(x, q) with q and x
replaced by q2 and q, respectively, we find

ω(q) =
1
q

( ∞∑

n=0

q2n2

(q; q2)n+1(q; q2)n
− 1
)
.(54)

Applying Theorem 1 with q and x replaced by q4 and q3, respectively, we
have

(55)
(q4; q4)2

∞
(q12; q12)∞(q3; q4)∞(q; q4)∞

=
∞∑

n=0

q12n2

(q3; q12)n+1(q9; q12)n
− 1

− q−3
( ∞∑

n=0

q12n2

(q7; q12)n+1(q5; q12)n
− 1
)

+
∞∑

n=0

q12n2

(q; q12)n+1(q11; q12)n
.

Then, using (53) with q replaced by q3, and rearranging sums in (55), we
complete the proof of (49).

Applying Theorem 1 with q and x replaced by q2 and q, respectively, we
find that

(56)
(q2; q2)2

∞
(q6; q6)∞(q; q2)∞(q; q2)∞

=
∞∑

n=0

q6n2

(q; q6)n+1(q5; q6)n
− 1

− q−1
( ∞∑

n=0

q6n2

(q3; q6)n+1(q3; q6)n
− 1
)

+
∞∑

n=0

q6n2

(q; q6)n+1(q5; q6)n
.

Then, using (54) with q replaced by q3, and rearranging sums in (56), we
complete the proof of (50).

5. Mock theta functions of seventh order. In this section, we in-
troduce three identities related to Ramanujan’s seventh order mock theta
functions which are not given by Ramanujan.
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Theorem 9. For any complex number q with |q| < 1, let

ψ0(q) =
∞∑

n=0

q7n2

(q; q7)n+1(q6; q7)n
, ψ1(q) =

∞∑

n=0

q7n2

(q2; q7)n+1(q5; q7)n
,

ψ2(q) =
∞∑

n=0

q7n2

(q3; q7)n+1(q4; q7)n
.

Then

(57) ψ0(q3)− 1 +
∞∑

n=0

q21n2

(q4; q21)n+1(q17; q21)n

− 1
q3

( ∞∑

n=0

q21n2

(q10; q21)n+1(q11; q21)n
− 1
)

=
(q7; q7)2

∞
(q21; q21)∞(q3; q7)∞(q4; q7)∞

,

(58) ψ1(q3)− 1 +
∞∑

n=0

q21n2

(q; q21)n+1(q20; q21)n

− 1
q

( ∞∑

n=0

q21n2

(q8; q21)n+1(q13; q21)n
− 1
)

=
(q7; q7)2

∞
(q21; q21)∞(q; q7)∞(q6; q7)∞

,

(59) ψ2(q3)− 1 +
(q7; q7)2

∞
(q21; q21)∞(q2; q7)∞(q5; q7)∞

=
∞∑

n=0

q21n2

(q2; q21)n+1(q19; q21)n
− 1 +

∞∑

n=0

q21n2

(q5; q21)n+1(q16; q21)n
.

Recall that in [9], Hickerson proved that Ramanujan’s seventh order
mock theta functions F0(q), F1(q) and F2(q) satisfy the identities

F0(q) =
2q

(q7; q7)∞

∞∑

n=−∞

(−1)nq21n(n+1)/2

1− q7n+1 + 2− f(−q3,−q4)2

(q; q)∞
,

F1(q) =
2q2

(q7; q7)∞

∞∑

n=−∞

(−1)nq21n(n+1)/2

1− q7n+2 +
qf(−q,−q6)2

(q; q)∞
,

F2(q) =
2q2

(q7; q7)∞

∞∑

n=−∞

(−1)nq21n(n+1)/2

1− q7n+3 +
f(−q2,−q5)2

(q; q)∞
.

Applying Theorem 3 with q and x replaced by q7 and q, respectively, dividing
both sides of (11) by (q7; q7)∞, using the definition of g(x, q) with q and x
replaced by q7 and q, respectively, and the definition of ψ0(q), we deduce
that the identity for F0(q) above is equivalent to

F0(q) = 2ψ0(q)− f(−q3,−q4)2

(q; q)∞
.
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Applying Theorem 3 with q and x replaced by q7 and q2, respectively, di-
viding both sides of (11) by (q7; q7)∞, using the definition of g(x, q) with q
and x replaced by q7 and q2, respectively, and the definition of ψ1(q), we
deduce that the identity for F1(q) above is equivalent to

F1(q) = 2ψ1(q) +
qf(−q,−q6)2

(q; q)∞
.

Applying Theorem 3 with q and x replaced by q7 and q3, respectively, di-
viding both sides of (11) by (q7; q7)∞, using the definition of g(x, q) with q
and x replaced by q7 and q3, respectively, and the definition of ψ2(q), we
deduce that the identity for F2(q) above is equivalent to

F2(q) = 2q−1(ψ2(q)− 1) +
f(−q2,−q5)2

(q; q)∞
.

Proof of Theorem 9. Applying Theorem 1 with q and x replaced by q7

and q3, respectively, we find that

(60)
(q7; q7)2

∞
(q21; q21)∞(q3; q7)∞(q4; q7)∞

=
∞∑

n=0

q21n2

(q3; q21)n+1(q18; q21)n
− 1

− q−3
( ∞∑

n=0

q21n2

(q10; q21)n+1(q11; q21)n
− 1
)

+
∞∑

n=0

q21n2

(q4; q21)n+1(q17; q21)n
.

Then, using the definition of ψ0(q) with q replaced by q3, and rearranging
sums in (60), we find (57).

Applying Theorem 1 with q and x replaced by q7 and q, respectively, we
find that

(61)
(q7; q7)2

∞
(q21; q21)∞(q; q7)∞(q6; q7)∞

=
∞∑

n=0

q21n2

(q; q21)n+1(q20; q21)n
− 1

− q−1
( ∞∑

n=0

q21n2

(q8; q21)n+1(q13; q21)n
− 1
)

+
∞∑

n=0

q21n2

(q6; q21)n+1(q15; q21)n
.

Then, using the definition of ψ1(q) with q replaced by q3, and rearranging
sums in (61), we deduce (58).

Applying Theorem 1 with q and x replaced by q7 and q2, respectively,
we find that

(62)
(q7; q7)2

∞
(q21; q21)∞(q2; q7)∞(q5; q7)∞

=
∞∑

n=0

q21n2

(q2; q21)n+1(q19; q21)n
− 1

− q−2
( ∞∑

n=0

q21n2

(q9; q21)n+1(q12; q21)n
− 1
)

+
∞∑

n=0

q21n2

(q5; q21)n+1(q16; q21)n
.
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Using the definition of ψ2(q) with q replaced by q3, and rearranging sums
in (62), we verify (59).

6. Mock theta functions of tenth order. In this section, we intro-
duce two identities related to Ramanujan’s tenth order mock theta functions
which are not stated by Ramanujan.

Theorem 10. For any complex number q with |q| < 1, let

φ0(q) =
∞∑

n=0

(−1)n(q5; q10)nq5n2

(q2; q10)n+1(q8; q10)n
, φ1(q) =

∞∑

n=0

(−1)n(q5; q10)nq5n2

(q4; q10)n+1(q6; q10)n
.

Then

(63) φ0(q2)− 1
q4

( ∞∑

n=0

(−1)n(q10; q20)nq10n2

(q14; q20)n+1(q6; q20)n
− 1
)

=
(q10; q10)2

∞
(q4; q10)∞(q6; q10)∞f(q10, q30)

,

(64) φ1(q2)− 1
q8

( ∞∑

n=0

(−1)n(q10; q20)nq10n2

(q18; q20)n+1(q2; q20)n
− 1
)

=
(q10; q10)2

∞
(q2; q10)∞(q8; q10)∞f(q10, q30)

.

Recall that in [4], the author proved that Ramanujan’s tenth order mock
theta functions X(q) and χ(q) satisfy the identities

X(q) = −(q5; q5)∞(q10; q10)∞f(−q2,−q3)
f(−q2,−q8)f(−q,−q4)

+
2

f(q5, q15)

∞∑

n=−∞

q5n(2n+1)

1− q10n+2 ,

χ(q) = 2 + q
(q5; q5)∞(q10; q10)∞f(−q,−q4)

f(−q4,−q6)f(−q2,−q3)
− 2
f(q5, q15)

∞∑

n=−∞

q5n(2n+1)

1− q10n+4 .

Applying Theorem 5 with q and x replaced by q10 and q2, respectively,
dividing both sides of (13) by f(q5, q15), using the definition of h(x, q) with
q and x replaced by q10 and q2, respectively, and the definition of φ0(q), we
deduce that the identity for X(q) above is equivalent to

X(q) = −(q5; q5)∞(q10; q10)∞f(−q2,−q3)
f(−q2,−q8)f(−q,−q4)

+ 2φ0(q).

Applying Theorem 5 with q and x replaced by q10 and q4, respectively,
dividing both sides of (13) by f(q5, q15), using the definition of h(x, q) with
q and x replaced by q10 and q4, respectively, and the definition of φ1(q), we
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deduce that the identity for χ(q) above is equivalent to

χ(q) = 2 + q
(q5; q5)∞(q10; q10)∞f(−q,−q4)

f(−q4,−q6)f(−q2,−q3)
− 2φ1(q).

Proof of Theorem 10. Applying Theorem 2 with q and x replaced by q5

and q4, respectively, we find that

(65)
(q10; q10)2

∞
f(q10, q30)(q4; q10)∞(q6; q10)∞

=
∞∑

n=0

(−1)n(q10; q20)nq10n2

(q4; q20)n+1(q16; q20)n

− q−4
( ∞∑

n=0

(−1)n(q10; q20)nq10n2

(q14; q20)n+1(q6; q20)n
− 1
)
.

Then, using the definition of φ0(q) with q replaced by q2, and rearranging
sums in (65), we deduce (63).

Applying Theorem 2 with q and x replaced by q5 and q8, respectively,
we find that

(66)
(q10; q10)2

∞
f(q10, q30)(q8; q10)∞(q2; q10)∞

=
∞∑

n=0

(−1)n(q10; q20)nq10n2

(q8; q20)n+1(q12; q20)n

− q−8
( ∞∑

n=0

(−1)n(q10; q20)nq10n2

(q18; q20)n+1(q2; q20)n
− 1
)
.

Then, using the definition of φ1(q) with q replaced by q2, and rearranging
sums in (66), we verify (64).
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