Ranks of quadratic twists of an elliptic curve

by
Dongho Byeon (Seoul)

1. Introduction and statement of result. Let $E: y^{2}=x^{3}+a x+b$ be an elliptic curve over \mathbb{Q} and let $L(s, E)=\sum_{n=1}^{\infty} a(n) n^{-s}$ be its Hasse-Weil L-function. Let D be the fundamental discriminant of the quadratic field $\mathbb{Q}(\sqrt{D})$ and let $\chi_{D}=\left(\frac{D}{.}\right)$ denote the usual Kronecker character. Then the Hasse-Weil L-function of the quadratic twist $E_{D}: D y^{2}=x^{3}+a x+b$ of E is the twisted L-function $L\left(s, E_{D}\right)=\sum_{n=1}^{\infty} \chi_{D}(n) a(n) n^{-s}$. Goldfeld [2] conjectured that

$$
\begin{equation*}
\sum_{|D|<X} \operatorname{Ord}_{s=1} L\left(s, E_{D}\right) \sim \frac{1}{2} \sum_{|D|<X} 1 \tag{1}
\end{equation*}
$$

This conjecture implies the weaker statement

$$
\begin{equation*}
\sharp\left\{|D|<X \mid \operatorname{Ord}_{s=1} L\left(s, E_{D}\right)=r\right\} \gg X, \tag{2}
\end{equation*}
$$

where $r=0$ or 1 . For the case $r=0$, there are infinitely many special elliptic curves E satisfying the weaker statement (cf. [5], [12]) and the best known general result is due to Ono and Skinner [9], who showed that

$$
\sharp\left\{|D|<X \mid \operatorname{Ord}_{s=1} L\left(s, E_{D}\right)=0\right\} \gg X / \log X .
$$

For the case $r=1$, the best known general result is the following [10]:

$$
\sharp\left\{|D|<X \mid \operatorname{Ord}_{s=1} L\left(s, E_{D}\right)=1\right\}>_{\varepsilon} X^{1-\varepsilon} .
$$

However only one special elliptic curve $E=X_{0}(19)$ satisfying the weaker statement (2) is known, due to Vatsal [11]. We note that $X_{0}(19)$ is the unique modular curve $X_{0}(N)$ such that the genus of $X_{0}(N)$ is $1, N$ is prime, and 3 divides the number $n=(N-1) / m$, where $m=\operatorname{gcd}(12, N-1)$. The aim of this note is to provide another example satisfying the weaker statement (2) for the case $r=1$ and give an estimate of the lower bound which supports the Goldfeld conjecture (1).

[^0]Theorem 1.1. Let E be the elliptic curve 37C in Cremona's table with the equation

$$
E: \quad y^{2}+y=x^{3}+x^{2}-23 x-50
$$

Then for at least 40% of the positive fundamental discriminants D and at least 24% of the negative fundamental discriminants $D, \operatorname{Ord}_{s=1} L\left(s, E_{D}\right)=1$.

Remark. Let E be the elliptic curve 37 C and $E_{D}(\mathbb{Q})$ be the MordellWeil group of E_{D} over \mathbb{Q}. Then Theorem 1.1 together with a celebrated theorem of Kolyvagin implies that for at least 40% of the positive fundamental discriminants D and at least 24% of the negative fundamental discriminants D, the rank of $E_{D}(\mathbb{Q})$ is equal to 1 .

To prove Theorem 1.1, as in [11], we will use the result of Gross [3] on the non-triviality of Heegner points of Eisenstein curves, the results of Davenport-Heilbronn [1] and Nakagawa-Horie [8] on the 3-rank of the class groups of quadratic fields, and the Gross-Zagier theorem [4] on Heegner points and derivatives of L-series. A new ingredient in this note is the use of the fact that $X_{0}(37)$ is the unique modular curve $X_{0}(N)$ such that N is prime, and 3 divides the number $n=(N-1) / m$, and the minus part of its Jacobian is an elliptic curve.
2. Preliminaries. First we recall the result of Gross [3] on the nontriviality of Heegner points of Eisenstein curves. Let N be a prime number, $m=\operatorname{gcd}(12, N-1)$, and p be an odd prime factor of $n=(N-1) / m$. Let X be the modular curve $X_{0}(N)$ and J be the Jacobian of X. Let K be an imaginary quadratic fields of discriminant D_{K} in which the prime $(N)=\mathbf{n} \cdot \overline{\mathbf{n}}$ splits completely. Let w_{K} denote the number of roots of unity in K.

Theorem 2.1 (Gross). Let χ be the quadratic ring class character of K of conductor corresponding to the factorization

$$
c^{2} \cdot D_{K}=d \cdot d^{\prime},
$$

where $d>0$ is the fundamental discriminant of a real quadratic field k and $d^{\prime}<0$ is the fundamental discriminant of an imaginary quadratic field k^{\prime}. Let $L=k k^{\prime}$ and y_{χ} be the Heegner divisor in $J(L)$. Let h and h^{\prime} be the class numbers of k and k^{\prime} respectively. Assume $\chi(\mathbf{n})=-1$ and $\operatorname{ord}_{p}\left(h h^{\prime}\right)<$ $\operatorname{ord}_{p}(n)$. Then the projection $y_{\chi}^{(p)}$ of y_{χ} into the p-Eisenstein quotient $J^{(p)}(L)$ of $J(L)$ has infinite order.

Theorem 2.2 (Gross). Let $\chi=1$ and y_{χ} be the Heegner divisor in $J(K)$. Let $A=\mathcal{O}_{K}\left[N^{-1}\right]$ and h_{A} be the class number of A. Assume $\left(p, w_{K}\right)=1$ and $\operatorname{ord}_{p}\left(h_{A}\right)<\operatorname{ord}_{p}(n)$. Then the projection $y_{\chi}^{(p)}$ of y_{χ} into the p-Eisenstein quotient $J^{(p)}(K)$ of $J(K)$ has infinite order.

Now we recall the result of Nakagawa and Horie [8] which is a refinement of the result of Davenport and Heilbronn [1]. Let m and N be two positive integers satisfying the following condition:
(*) If an odd prime number p is a common divisor of m and N, then p^{2} divides N but not m. Further if N is even, then either (i) 4 divides N and $m \equiv 1(\bmod 4)$, or (ii) 16 divides N and $m \equiv 8$ or $12(\bmod 16)$.

For any positive real number $X>0$, we denote by $S_{+}(X)$ the set of positive fundamental discriminants $D<X$ and by $S_{-}(X)$ the set of negative fundamental discriminants $D>-X$, and put

$$
\begin{aligned}
& S_{+}(X, m, N):=\left\{D \in S_{+}(X) \mid D \equiv m(\bmod N)\right\} \\
& S_{-}(X, m, N):=\left\{D \in S_{-}(X) \mid D \equiv m(\bmod N)\right\}
\end{aligned}
$$

Theorem 2.3 (Nakagawa and Horie). Let D be a fundamental discriminant and $r_{3}(D)$ be the 3-rank of the quadratic field $\mathbb{Q}(\sqrt{D})$. Then for any two positive integers m, N satisfying $(*)$,

$$
\begin{aligned}
& \lim _{X \rightarrow \infty} \sum_{D \in S_{+}(X, m, N)} 3^{r_{3}(D)} / \sum_{D \in S_{+}(X, m, N)} 1=\frac{4}{3}, \\
& \lim _{X \rightarrow \infty} \sum_{D \in S_{-}(X, m, N)} 3^{r_{3}(D)} / \sum_{D \in S_{-}(X, m, N)} 1=2 .
\end{aligned}
$$

From Theorem 2.3 and the fact that

$$
\begin{array}{r}
\sum_{\substack{D \in S_{ \pm}(X, m, N) \\
r_{3}(D)=0}} 3^{r_{3}(D)}+3\left(\sum_{D \in S_{ \pm}(X, m, N)} 1-\sum_{\substack{D \in S_{ \pm}(X, m, N) \\
r_{3}(D)=0}} 3^{r_{3}(D)}\right) \\
\leq \sum_{D \in S_{ \pm}(X, m, N)} 3^{r_{3}(D)}
\end{array}
$$

we can easily obtain the following
Lemma 2.4. Let D be a fundamental discriminant and $h(D)$ the class number of the quadratic field $\mathbb{Q}(\sqrt{D})$. Then for any two positive integers m, N satisfying (*),

$$
\begin{aligned}
& \liminf _{X \rightarrow \infty} \frac{\sharp\left\{D \in S_{+}(X, m, N) \mid h(D) \not \equiv 0(\bmod 3)\right\}}{\sharp S_{+}(X, m, N)} \geq \frac{5}{6}, \\
& \liminf _{X \rightarrow \infty} \frac{\sharp\left\{D \in S_{-}(X, m, N) \mid h(D) \not \equiv 0(\bmod 3)\right\}}{\sharp S_{-}(X, m, N)} \geq \frac{1}{2} .
\end{aligned}
$$

3. Proof of Theorem 1.1. Let $N=37$. Then $m=12$ and $n=p=3$. In this case $X=X_{0}(37)$ is the modular curve with genus 2. Decomposing
$J=J_{0}(37)$ by means of the canonical involution w, we may consider the exact sequence

$$
0 \rightarrow J_{+} \rightarrow J \rightarrow J^{-} \rightarrow 0
$$

where $J_{+}=(1+w) J$. We note that $\operatorname{dim} J_{+}=\operatorname{dim} J^{-}=1$ (see [6, Table in Introduction]).

Proposition 3.1. J^{-}is the elliptic curve 37 C in Cremona's table with the equation

$$
E: \quad y^{2}+y=x^{3}+x^{2}-23 x-50
$$

Proof. See [7, Proposition 1 in $\S 5$].
Let \widetilde{J} be the Eisenstein quotient of J. We know that \widetilde{J} factors through J^{-}and the p-Eisenstein quotient $J^{(p)}$ of J is a quotient of \widetilde{J} (see [6, Chap. II, (10.4) and (17.10)]). Thus we have

Proposition 3.2. $J^{(p)}$ is a quotient of $J^{-}=E$.
Proposition 3.3. Let k be a real quadratic field where the prime 37 is inert. If the class number h of k is prime to 3 , then the projection of y_{χ} into $E(k)\left(=J^{-}(k)\right)$ has infinite order.

Proof. Let k be a real quadratic field of discriminant d where 37 is inert and whose class number h of k is prime to 3 . Let k^{\prime} be the imaginary quadratic field $\mathbb{Q}(\sqrt{-2})$ of discriminant -8 . Note that 37 is inert in k^{\prime} and the class number h^{\prime} of k^{\prime} is equal to 1 . Let K be a third field contained in the biquadratic extension $L=k k^{\prime}$. Then K is imaginary and 37 splits in K. Let D_{K} be the discriminant of K and χ be the quadratic ring class character of K of conductor c corresponding to the factoring of $c^{2} \cdot D_{K}=d \cdot(-8)$. Then from Theorem 2.1, we know that $y_{\chi}^{(p)}$ has infinite order in $J^{(p)}(L)$. Since $J^{(p)}$ is a quotient of $J^{-}=E$ by Proposition 3.2, the projection of y_{χ} to $E(L)$ has infinite order. We note that $E(L)=E(k) \oplus E\left(k^{\prime}\right)$ and $E\left(k^{\prime}\right)=E(\mathbb{Q})=\mathbb{Z} / 3 \mathbb{Z}$. Thus the projection of y_{χ} to $E(k)$ should have infinite order.

Proposition 3.4. Let $K(\neq \mathbb{Q}(\sqrt{-3}))$ be an imaginary quadratic field where the prime 37 is split. If the class number h of K is prime to 3 , then the projection of y_{χ} into $E(K)\left(=J^{-}(K)\right)$ has infinite order.

Proof. Let K be an imaginary quadratic field where 37 is split and whose class number h of K is prime to 3 . In this case, we note that h_{A} is simply the quotient of h_{K} by the order of \mathbf{n} in the class group of K. Then from Theorem 2.2, we know that $y_{\chi}^{(p)}$ has infinite order in $J^{(p)}(L)$. Since $J^{(p)}$ factors through $J^{-}=E$ by Proposition 3.2, the projection of y_{χ} to $E(K)$ should have infinite order.

Proof of Theorem 1.1. First we compute the number of quadratic fields k and K in Propositions 3.3 and 3.4. By a well known method in ana-
lytic number theory we have the following estimate on $S_{ \pm}(X, m, N)$ (see [8, Proposition 2]):

$$
\sharp S_{+}(X, m, N) \sim \sharp S_{-}(X, m, N) \sim \frac{3 X}{\pi^{2} \varphi(N)} \prod_{p \mid N} \frac{q}{p+1} \quad(X \rightarrow \infty),
$$

where $q=4$ or p according as $p=2$ or not. Thus from Lemma 2.4, we obtain the following estimates:

$$
\begin{aligned}
& \liminf _{X \rightarrow \infty} \sharp\left\{D \in S_{+}(X) \mid h(D) \not \equiv 0(\bmod 3) \text { and }\left(\frac{D}{37}\right)=-1\right\} \\
& \sharp S_{+}(X) \frac{5}{6} \cdot \frac{18}{37} \simeq 0.405, \\
& \liminf _{X \rightarrow \infty} \frac{\sharp\left\{D \in S_{-}(X) \mid h(D) \not \equiv 0(\bmod 3) \text { and }\left(\frac{D}{37}\right)=1\right\}}{\sharp S_{-}(X)} \geq \frac{1}{2} \cdot \frac{18}{37} \simeq 0.243 .
\end{aligned}
$$

Finally, Theorem 1.1 follows from Proposition 3.3, Proposition 3.4, and the Gross-Zagier Theorem [4] on Heegner points and derivatives of L-series.

Remark. Similarly we can obtain the following:
Let E be the elliptic curve $X_{0}(19)$ in [11]. Then for at least 39% of the positive fundamental discriminants D and at least 23% of the negative fundamental discriminants $D, \operatorname{Ord}_{s=1} L\left(s, E_{D}\right)=1$.

References

[1] H. Davenport and H. Heilbronn, On the density of discriminants of cubic fields II, Proc. Roy. Soc. London Ser. A 322 (1971), 405-420.
[2] D. Goldfeld, Conjectures on elliptic curves over quadratic fields, in: Number Theory, Lecture Notes in Math. 751, Springer, 1979, 108-118.
[3] B. Gross, Heegner points on $X_{0}(N)$, in: Modular Forms, R. Rankin (ed.), Horwood, Chichester, 1984, 87-105.
[4] B. Gross and D. Zagier, Heegner points and derivatives of L-series, Invent. Math. 84 (1986), 225-320.
[5] K. James, L-series with nonzero central critical value, J. Amer. Math. Soc. 11 (1998), 635-641.
[6] B. Mazur, Modular curves and the Eisenstein ideal, Inst. Hautes Études Sci. Publ. Math. 47 (1978), 33-186.
[7] B. Mazur and P. Swinnerton-Dyer, Arithmetic of Weil curves, Invent. Math. 25 (1974), 1-61.
[8] J. Nakagawa and K. Horie, Elliptic curves with no torsion points, Proc. Amer. Math. Soc. 104 (1988), 20-25.
[9] K. Ono and C. Skinner, Non-vanishing of quadratic twists of modular L-functions, Invent. Math. 134 (1998), 651-660.
[10] A. Perelli and J. Pomykała, Averages of twisted elliptic L-functions, Acta Arith. 80 (1997), 149-163.
[11] V. Vatsal, Rank-one twists of a certain elliptic curve, Math. Ann. 311 (1998), 791794.
[12] V. Vatsal, Canonical periods and congruence formulae, Duke Math. J. 98 (1999), 397-419.

Department of Mathematics
Seoul National University
Seoul, South Korea
E-mail: dhbyeon@math.snu.ac.kr

Received on 20.10.2003
and in revised form on 5.2.2004

[^0]: 2000 Mathematics Subject Classification: 11M, 11R.
 Key words and phrases: rank, quadratic twist, elliptic curve.
 This work was supported by grant No. R08-2003-000-10243-0 from the Basic Research Program of the Korea Science \& Engineering Foundation.

