Ranks of quadratic twists of an elliptic curve

by

DONGHO BYEON (Seoul)

1. Introduction and statement of result. Let \(E : y^2 = x^3 + ax + b \) be an elliptic curve over \(\mathbb{Q} \) and let \(L(s, E) = \sum_{n=1}^{\infty} a(n)n^{-s} \) be its Hasse–Weil \(L \)-function. Let \(D \) be the fundamental discriminant of the quadratic field \(\mathbb{Q}(\sqrt{D}) \) and let \(\chi_D = (\frac{D}{\cdot}) \) denote the usual Kronecker character. Then the Hasse–Weil \(L \)-function of the quadratic twist \(E_D : Dy^2 = x^3 + ax + b \) of \(E \) is the twisted \(L \)-function \(L(s, E_D) = \sum_{n=1}^{\infty} \chi_D(n)a(n)n^{-s} \). Goldfeld [2] conjectured that

\[
\sum_{|D| < X} \text{Ord}_{s=1} L(s, E_D) \sim \frac{1}{2} \sum_{|D| < X} 1.
\]

This conjecture implies the weaker statement

\[
\#\{|D| < X \mid \text{Ord}_{s=1} L(s, E_D) = r\} \gg X,
\]

where \(r = 0 \) or \(1 \). For the case \(r = 0 \), there are infinitely many special elliptic curves \(E \) satisfying the weaker statement (cf. [5], [12]) and the best known general result is due to Ono and Skinner [9], who showed that

\[
\#\{|D| < X \mid \text{Ord}_{s=1} L(s, E_D) = 0\} \gg X/\log X.
\]

For the case \(r = 1 \), the best known general result is the following [10]:

\[
\#\{|D| < X \mid \text{Ord}_{s=1} L(s, E_D) = 1\} \gg X^{1-\varepsilon}.
\]

However only one special elliptic curve \(E = X_0(19) \) satisfying the weaker statement (2) is known, due to Vatsal [11]. We note that \(X_0(19) \) is the unique modular curve \(X_0(N) \) such that the genus of \(X_0(N) \) is 1, \(N \) is prime, and 3 divides the number \(n = (N-1)/m \), where \(m = \gcd(12, N-1) \). The aim of this note is to provide another example satisfying the weaker statement (2) for the case \(r = 1 \) and give an estimate of the lower bound which supports the Goldfeld conjecture (1).

2000 Mathematics Subject Classification: 11M, 11R.

Key words and phrases: rank, quadratic twist, elliptic curve.

This work was supported by grant No. R08-2003-000-10243-0 from the Basic Research Program of the Korea Science & Engineering Foundation.

[391]
Theorem 1.1. Let E be the elliptic curve 37C in Cremona’s table with the equation
\[E : y^2 + y = x^3 + x^2 - 23x - 50. \]
Then for at least 40% of the positive fundamental discriminants D and at least 24% of the negative fundamental discriminants D, $\text{Ord}_{s=1} L(s, E_D) = 1$.

Remark. Let E be the elliptic curve 37C and $E_D(\mathbb{Q})$ be the Mordell–Weil group of E_D over \mathbb{Q}. Then Theorem 1.1 together with a celebrated theorem of Kolyvagin implies that for at least 40% of the positive fundamental discriminants D and at least 24% of the negative fundamental discriminants D, the rank of $E_D(\mathbb{Q})$ is equal to 1.

To prove Theorem 1.1, as in [11], we will use the result of Gross [3] on the non-triviality of Heegner points of Eisenstein curves, the results of Davenport–Heilbronn [1] and Nakagawa–Horie [8] on the 3-rank of the class groups of quadratic fields, and the Gross–Zagier theorem [4] on Heegner points and derivatives of L-series. A new ingredient in this note is the use of the fact that $X_0(37)$ is the unique modular curve $X_0(N)$ such that N is prime, and 3 divides the number $n = (N - 1)/m$, and the minus part of its Jacobian is an elliptic curve.

2. Preliminaries. First we recall the result of Gross [3] on the non-triviality of Heegner points of Eisenstein curves. Let N be a prime number, $m = \gcd(12, N - 1)$, and p be an odd prime factor of $n = (N - 1)/m$. Let X be the modular curve $X_0(N)$ and J be the Jacobian of X. Let K be an imaginary quadratic fields of discriminant D_K in which the prime $(N) = n \cdot \overline{n}$ splits completely. Let w_K denote the number of roots of unity in K.

Theorem 2.1 (Gross). Let χ be the quadratic ring class character of K of conductor c corresponding to the factorization
\[c^2 \cdot D_K = d \cdot d', \]
where $d > 0$ is the fundamental discriminant of a real quadratic field k and $d' < 0$ is the fundamental discriminant of an imaginary quadratic field k'. Let $L = kk'$ and y_χ be the Heegner divisor in $J(L)$. Let h and h' be the class numbers of k and k' respectively. Assume $\chi(n) = -1$ and $\text{ord}_p(hh') < \text{ord}_p(n)$. Then the projection $y_\chi^{(p)}$ of y_χ into the p-Eisenstein quotient $J^{(p)}(L)$ of $J(L)$ has infinite order.

Theorem 2.2 (Gross). Let $\chi = 1$ and y_χ be the Heegner divisor in $J(K)$. Let $A = \mathcal{O}_K[N^{-1}]$ and h_A be the class number of A. Assume $(p, w_K) = 1$ and $\text{ord}_p(h_A) < \text{ord}_p(n)$. Then the projection $y_\chi^{(p)}$ of y_χ into the p-Eisenstein quotient $J^{(p)}(K)$ of $J(K)$ has infinite order.
Now we recall the result of Nakagawa and Horie [8] which is a refinement of the result of Davenport and Heilbronn [1]. Let \(m \) and \(N \) be two positive integers satisfying the following condition:

\[
(*) \quad \text{If an odd prime number } p \text{ is a common divisor of } m \text{ and } N, \text{ then } p^2 \text{ divides } N \text{ but not } m. \text{ Further if } N \text{ is even, then either (i) } 4 \text{ divides } N \text{ and } m \equiv 1 \pmod{4}, \text{ or (ii) } 16 \text{ divides } N \text{ and } m \equiv 8 \text{ or } 12 \pmod{16}.
\]

For any positive real number \(X > 0 \), we denote by \(S_+(X) \) the set of positive fundamental discriminants \(D < X \) and by \(S_-(X) \) the set of negative fundamental discriminants \(D > X \), and put

\[
S_+(X, m, N) := \{ D \in S_+(X) \mid D \equiv m \pmod{N} \},
\]

\[
S_-(X, m, N) := \{ D \in S_-(X) \mid D \equiv m \pmod{N} \}.
\]

Theorem 2.3 (Nakagawa and Horie). Let \(D \) be a fundamental discriminant and \(r_3(D) \) be the 3-rank of the quadratic field \(\mathbb{Q}(\sqrt{D}) \). Then for any two positive integers \(m, N \) satisfying \((*)\),

\[
\lim_{X \to \infty} \sum_{D \in S_+(X, m, N)} 3^{r_3(D)} / \sum_{D \in S_+(X, m, N)} 1 = \frac{4}{3},
\]

\[
\lim_{X \to \infty} \sum_{D \in S_-(X, m, N)} 3^{r_3(D)} / \sum_{D \in S_-(X, m, N)} 1 = 2.
\]

From Theorem 2.3 and the fact that

\[
\sum_{D \in S_\pm(X, m, N)} 3^{r_3(D)} + 3 \left(\sum_{D \in S_\pm(X, m, N)} 1 - \sum_{D \in S_\pm(X, m, N)} 3^{r_3(D)} \right) \leq \sum_{D \in S_\pm(X, m, N)} 3^{r_3(D)},
\]

we can easily obtain the following

Lemma 2.4. Let \(D \) be a fundamental discriminant and \(h(D) \) the class number of the quadratic field \(\mathbb{Q}(\sqrt{D}) \). Then for any two positive integers \(m, N \) satisfying \((*)\),

\[
\liminf_{X \to \infty} \frac{\#\{ D \in S_+(X, m, N) \mid h(D) \not\equiv 0 \pmod{3} \}}{\#S_+(X, m, N)} \geq \frac{5}{6},
\]

\[
\liminf_{X \to \infty} \frac{\#\{ D \in S_-(X, m, N) \mid h(D) \not\equiv 0 \pmod{3} \}}{\#S_-(X, m, N)} \geq \frac{1}{2}.
\]

3. **Proof of Theorem 1.1.** Let \(N = 37 \). Then \(m = 12 \) and \(n = p = 3 \). In this case \(X = X_0(37) \) is the modular curve with genus 2. Decomposing
$J = J_0(37)$ by means of the canonical involution w, we may consider the exact sequence

$$0 \to J_+ \to J \to J^- \to 0,$$

where $J_+ = (1 + w)J$. We note that $\dim J_+ = \dim J^- = 1$ (see [6, Table in Introduction]).

Proposition 3.1. J^- is the elliptic curve $37C$ in Cremona’s table with the equation

$$E : \quad y^2 + y = x^3 + x^2 - 23x - 50.$$

Proof. See [7, Proposition 1 in §5].

Let \tilde{J} be the Eisenstein quotient of J. We know that \tilde{J} factors through J^- and the p-Eisenstein quotient $J^{(p)}$ of J is a quotient of \tilde{J} (see [6, Chap. II, (10.4) and (17.10)]). Thus we have

Proposition 3.2. $J^{(p)}$ is a quotient of $J^- = E$.

Proposition 3.3. Let k be a real quadratic field where the prime 37 is inert. If the class number h of k is prime to 3, then the projection of y_χ into $E(k) (= J^-(k))$ has infinite order.

Proof. Let k be a real quadratic field of discriminant d where 37 is inert and whose class number h of k is prime to 3. Let k' be the imaginary quadratic field $\mathbb{Q}(\sqrt{-2})$ of discriminant -8. Note that 37 is inert in k' and the class number h' of k' is equal to 1. Let K be a third field contained in the biquadratic extension $L = kk'$. Then K is imaginary and 37 splits in K. Let D_K be the discriminant of K and χ be the quadratic ring class character of K of conductor c corresponding to the factoring of $c^2 \cdot D_K = d \cdot (-8)$. Then from Theorem 2.1, we know that $y_\chi^{(p)}$ has infinite order in $J^{(p)}(L)$. Since $J^{(p)}$ is a quotient of $J^- = E$ by Proposition 3.2, the projection of y_χ to $E(L)$ has infinite order. We note that $E(L) = E(k) \oplus E(k')$ and $E(k') = E(\mathbb{Q}) = \mathbb{Z}/3\mathbb{Z}$. Thus the projection of y_χ to $E(k)$ should have infinite order.

Proposition 3.4. Let $K (\neq \mathbb{Q}(\sqrt{-3}))$ be an imaginary quadratic field where the prime 37 is split. If the class number h of K is prime to 3, then the projection of y_χ into $E(K) (= J^-(K))$ has infinite order.

Proof. Let K be an imaginary quadratic field where 37 is split and whose class number h of K is prime to 3. In this case, we note that h_A is simply the quotient of h_K by the order of n in the class group of K. Then from Theorem 2.2, we know that $y_\chi^{(p)}$ has infinite order in $J^{(p)}(L)$. Since $J^{(p)}$ factors through $J^- = E$ by Proposition 3.2, the projection of y_χ to $E(K)$ should have infinite order.

Proof of Theorem 1.1. First we compute the number of quadratic fields k and K in Propositions 3.3 and 3.4. By a well known method in ana-
lytic number theory we have the following estimate on $S_{\pm}(X, m, N)$ (see [8, Proposition 2]):

$$
\#S_{\pm}(X, m, N) \sim \#S_{\mp}(X, m, N) \sim \frac{3X}{\pi^2 \varphi(N)} \prod_{p \mid N} \frac{q}{p + 1} \quad (X \to \infty),
$$

where $q = 4$ or p according as $p = 2$ or not. Thus from Lemma 2.4, we obtain the following estimates:

$$
\liminf_{X \to \infty} \frac{\#\{D \in S_{+}(X) \mid h(D) \not\equiv 0 \pmod{3} \text{ and } \left(\frac{D}{37}\right) = -1\}}{\#S_{+}(X)} \geq \frac{5}{6} \cdot \frac{18}{37} \simeq 0.405,
$$

$$
\liminf_{X \to \infty} \frac{\#\{D \in S_{-}(X) \mid h(D) \not\equiv 0 \pmod{3} \text{ and } \left(\frac{D}{37}\right) = 1\}}{\#S_{-}(X)} \geq \frac{1}{2} \cdot \frac{18}{37} \simeq 0.243.
$$

Remark. Similarly we can obtain the following:

Let E be the elliptic curve $X_0(19)$ in [11]. Then for at least 39% of the positive fundamental discriminants D and at least 23% of the negative fundamental discriminants D, $\text{Ord}_{s=1} L(s, E_D) = 1$.

References

Department of Mathematics
Seoul National University
Seoul, South Korea
E-mail: dhbyeon@math.snu.ac.kr

Received on 20.10.2003
and in revised form on 5.2.2004