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Ranks of quadratic twists of an elliptic curve

by

Dongho Byeon (Seoul)

1. Introduction and statement of result. Let E : y2 = x3+ax+b be
an elliptic curve over Q and let L(s,E) =

∑∞
n=1 a(n)n−s be its Hasse–Weil

L-function. Let D be the fundamental discriminant of the quadratic field
Q(
√
D) and let χD =

(
D
·
)

denote the usual Kronecker character. Then the
Hasse–Weil L-function of the quadratic twist ED : Dy2 = x3 + ax + b of
E is the twisted L-function L(s,ED) =

∑∞
n=1 χD(n)a(n)n−s. Goldfeld [2]

conjectured that
∑

|D|<X
Ords=1 L(s,ED) ∼ 1

2

∑

|D|<X
1.(1)

This conjecture implies the weaker statement

]{|D| < X | Ords=1 L(s,ED) = r} � X,(2)

where r = 0 or 1. For the case r = 0, there are infinitely many special elliptic
curves E satisfying the weaker statement (cf. [5], [12]) and the best known
general result is due to Ono and Skinner [9], who showed that

]{|D| < X | Ords=1 L(s,ED) = 0} � X/logX.

For the case r = 1, the best known general result is the following [10]:

]{|D| < X | Ords=1 L(s,ED) = 1} �ε X
1−ε.

However only one special elliptic curve E = X0(19) satisfying the weaker
statement (2) is known, due to Vatsal [11]. We note thatX0(19) is the unique
modular curve X0(N) such that the genus of X0(N) is 1, N is prime, and 3
divides the number n = (N − 1)/m, where m = gcd(12, N − 1). The aim of
this note is to provide another example satisfying the weaker statement (2)
for the case r = 1 and give an estimate of the lower bound which supports
the Goldfeld conjecture (1).
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Theorem 1.1. Let E be the elliptic curve 37C in Cremona’s table with
the equation

E : y2 + y = x3 + x2 − 23x− 50.

Then for at least 40% of the positive fundamental discriminants D and at
least 24% of the negative fundamental discriminants D, Ords=1 L(s,ED)=1.

Remark. Let E be the elliptic curve 37C and ED(Q) be the Mordell–
Weil group of ED over Q. Then Theorem 1.1 together with a celebrated
theorem of Kolyvagin implies that for at least 40% of the positive fun-
damental discriminants D and at least 24% of the negative fundamental
discriminants D, the rank of ED(Q) is equal to 1.

To prove Theorem 1.1, as in [11], we will use the result of Gross [3]
on the non-triviality of Heegner points of Eisenstein curves, the results of
Davenport–Heilbronn [1] and Nakagawa–Horie [8] on the 3-rank of the class
groups of quadratic fields, and the Gross–Zagier theorem [4] on Heegner
points and derivatives of L-series. A new ingredient in this note is the use
of the fact that X0(37) is the unique modular curve X0(N) such that N is
prime, and 3 divides the number n = (N − 1)/m, and the minus part of its
Jacobian is an elliptic curve.

2. Preliminaries. First we recall the result of Gross [3] on the non-
triviality of Heegner points of Eisenstein curves. Let N be a prime number,
m = gcd(12, N − 1), and p be an odd prime factor of n = (N − 1)/m. Let
X be the modular curve X0(N) and J be the Jacobian of X. Let K be an
imaginary quadratic fields of discriminantDK in which the prime (N) = n·n
splits completely. Let wK denote the number of roots of unity in K.

Theorem 2.1 (Gross). Let χ be the quadratic ring class character of K
of conductor c corresponding to the factorization

c2 ·DK = d · d′,
where d > 0 is the fundamental discriminant of a real quadratic field k and
d′ < 0 is the fundamental discriminant of an imaginary quadratic field k′.
Let L = kk′ and yχ be the Heegner divisor in J(L). Let h and h′ be the
class numbers of k and k′ respectively. Assume χ(n) = −1 and ordp(hh′) <

ordp(n). Then the projection y(p)
χ of yχ into the p-Eisenstein quotient J (p)(L)

of J(L) has infinite order.

Theorem 2.2 (Gross). Let χ=1 and yχ be the Heegner divisor in J(K).
Let A = OK [N−1] and hA be the class number of A. Assume (p,wK) = 1
and ordp(hA) < ordp(n). Then the projection y(p)

χ of yχ into the p-Eisenstein
quotient J (p)(K) of J(K) has infinite order.
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Now we recall the result of Nakagawa and Horie [8] which is a refinement
of the result of Davenport and Heilbronn [1]. Let m and N be two positive
integers satisfying the following condition:

(∗) If an odd prime number p is a common divisor of m and N , then p2

divides N but not m. Further if N is even, then either (i) 4 divides N
and m ≡ 1 (mod 4), or (ii) 16 divides N and m ≡ 8 or 12 (mod 16).

For any positive real number X > 0, we denote by S+(X) the set of pos-
itive fundamental discriminants D < X and by S−(X) the set of negative
fundamental discriminants D > −X, and put

S+(X,m,N) := {D ∈ S+(X) | D ≡ m (modN)},
S−(X,m,N) := {D ∈ S−(X) |D ≡ m (modN)}.

Theorem 2.3 (Nakagawa and Horie). Let D be a fundamental discrim-
inant and r3(D) be the 3-rank of the quadratic field Q(

√
D). Then for any

two positive integers m,N satisfying (∗),

lim
X→∞

∑

D∈S+(X,m,N)

3r3(D)/ ∑

D∈S+(X,m,N)

1 =
4
3
,

lim
X→∞

∑

D∈S−(X,m,N)

3r3(D)/ ∑

D∈S−(X,m,N)

1 = 2.

From Theorem 2.3 and the fact that∑

D∈S±(X,m,N)
r3(D)=0

3r3(D) + 3
( ∑

D∈S±(X,m,N)

1−
∑

D∈S±(X,m,N)
r3(D)=0

3r3(D)
)

≤
∑

D∈S±(X,m,N)

3r3(D),

we can easily obtain the following

Lemma 2.4. Let D be a fundamental discriminant and h(D) the class
number of the quadratic field Q(

√
D). Then for any two positive integers

m,N satisfying (∗),

lim inf
X→∞

]{D ∈ S+(X,m,N) | h(D) 6≡ 0 (mod 3)}
]S+(X,m,N)

≥ 5
6
,

lim inf
X→∞

]{D ∈ S−(X,m,N) | h(D) 6≡ 0 (mod 3)}
]S−(X,m,N)

≥ 1
2
.

3. Proof of Theorem 1.1. Let N = 37. Then m = 12 and n = p = 3.
In this case X = X0(37) is the modular curve with genus 2. Decomposing
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J = J0(37) by means of the canonical involution w, we may consider the
exact sequence

0→ J+ → J → J− → 0,

where J+ = (1 + w)J . We note that dimJ+ = dimJ− = 1 (see [6, Table in
Introduction]).

Proposition 3.1. J− is the elliptic curve 37C in Cremona’s table with
the equation

E : y2 + y = x3 + x2 − 23x− 50.

Proof. See [7, Proposition 1 in §5].

Let J̃ be the Eisenstein quotient of J . We know that J̃ factors through
J− and the p-Eisenstein quotient J (p) of J is a quotient of J̃ (see [6, Chap. II,
(10.4) and (17.10)]). Thus we have

Proposition 3.2. J (p) is a quotient of J− = E.

Proposition 3.3. Let k be a real quadratic field where the prime 37 is
inert. If the class number h of k is prime to 3, then the projection of yχ into
E(k) (= J−(k)) has infinite order.

Proof. Let k be a real quadratic field of discriminant d where 37 is inert
and whose class number h of k is prime to 3. Let k′ be the imaginary
quadratic field Q(

√
−2) of discriminant −8. Note that 37 is inert in k′ and

the class number h′ of k′ is equal to 1. Let K be a third field contained in the
biquadratic extension L = kk′. Then K is imaginary and 37 splits in K. Let
DK be the discriminant of K and χ be the quadratic ring class character of
K of conductor c corresponding to the factoring of c2 ·DK = d · (−8). Then
from Theorem 2.1, we know that y(p)

χ has infinite order in J (p)(L). Since J (p)

is a quotient of J− = E by Proposition 3.2, the projection of yχ to E(L) has
infinite order. We note that E(L) = E(k)⊕E(k′) and E(k′) = E(Q) = Z/3Z.
Thus the projection of yχ to E(k) should have infinite order.

Proposition 3.4. Let K (6= Q(
√
−3)) be an imaginary quadratic field

where the prime 37 is split. If the class number h of K is prime to 3, then
the projection of yχ into E(K) (= J−(K)) has infinite order.

Proof. Let K be an imaginary quadratic field where 37 is split and whose
class number h of K is prime to 3. In this case, we note that hA is simply
the quotient of hK by the order of n in the class group of K. Then from
Theorem 2.2, we know that y(p)

χ has infinite order in J (p)(L). Since J (p)

factors through J− = E by Proposition 3.2, the projection of yχ to E(K)
should have infinite order.

Proof of Theorem 1.1. First we compute the number of quadratic fields
k and K in Propositions 3.3 and 3.4. By a well known method in ana-
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lytic number theory we have the following estimate on S±(X,m,N) (see [8,
Proposition 2]):

]S+(X,m,N) ∼ ]S−(X,m,N) ∼ 3X
π2ϕ(N)

∏

p|N

q

p+ 1
(X →∞),

where q = 4 or p according as p = 2 or not. Thus from Lemma 2.4, we
obtain the following estimates:

lim inf
X→∞

]
{
D∈S+(X) | h(D) 6≡ 0 (mod 3) and

(
D
37

)
= −1

}

]S+(X)
≥ 5

6
· 18

37
' 0.405,

lim inf
X→∞

]
{
D∈S−(X) | h(D) 6≡ 0 (mod 3) and

(
D
37) = 1

}

]S−(X)
≥ 1

2
· 18

37
' 0.243.

Finally, Theorem 1.1 follows from Proposition 3.3, Proposition 3.4, and the
Gross–Zagier Theorem [4] on Heegner points and derivatives of L-series.

Remark. Similarly we can obtain the following:

Let E be the elliptic curve X0(19) in [11]. Then for at least 39% of
the positive fundamental discriminants D and at least 23% of the negative
fundamental discriminants D, Ords=1 L(s,ED) = 1.
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