ACTA ARITHMETICA
114.4 (2004)

Ranks of quadratic twists of an elliptic curve
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1. Introduction and statement of result. Let E : y> = 234+-ax+b be
an elliptic curve over Q and let L(s, E) = > >, a(n)n™* be its Hasse-Weil
L-function. Let D be the fundamental discriminant of the quadratic field
Q(v/D) and let xp = (2) denote the usual Kronecker character. Then the
Hasse-Weil L-function of the quadratic twist Ep : Dy? = 23 + ax + b of
E is the twisted L-function L(s, Ep) = Y o xp(n)a(n)n™*. Goldfeld [2]
conjectured that

(1) 3 Ordesy L(s,ED)N% S

|D|<X |D|<X
This conjecture implies the weaker statement
(2) 8{|D| < X | Ords=1 L(s, Ep) = r} > X,
where r = 0 or 1. For the case r = 0, there are infinitely many special elliptic

curves E satisfying the weaker statement (cf. [5], [12]) and the best known
general result is due to Ono and Skinner [9], who showed that

#{|D| < X | Ords=1 L(s, Ep) = 0} > X/log X.
For the case r = 1, the best known general result is the following [10]:
#{|D| < X | Ords=y1 L(s, Ep) = 1} >. X'~

However only one special elliptic curve E = X(19) satisfying the weaker
statement (2) is known, due to Vatsal [11]. We note that X(19) is the unique
modular curve Xo(N) such that the genus of X((V) is 1, NV is prime, and 3
divides the number n = (N — 1)/m, where m = ged(12, N — 1). The aim of
this note is to provide another example satisfying the weaker statement (2)
for the case r = 1 and give an estimate of the lower bound which supports
the Goldfeld conjecture (1).
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THEOREM 1.1. Let E be the elliptic curve 37C in Cremona’s table with
the equation

E: y*+y=2%+2%—23z—50.

Then for at least 40% of the positive fundamental discriminants D and at
least 24% of the negative fundamental discriminants D, Ords—1 L(s, Ep)=1.

REMARK. Let E be the elliptic curve 37C and Ep(Q) be the Mordell-
Weil group of Ep over Q. Then Theorem 1.1 together with a celebrated
theorem of Kolyvagin implies that for at least 40% of the positive fun-
damental discriminants D and at least 24% of the negative fundamental
discriminants D, the rank of Ep(Q) is equal to 1.

To prove Theorem 1.1, as in [11], we will use the result of Gross [3]
on the non-triviality of Heegner points of Eisenstein curves, the results of
Davenport—Heilbronn [1] and Nakagawa-Horie [8] on the 3-rank of the class
groups of quadratic fields, and the Gross—Zagier theorem [4] on Heegner
points and derivatives of L-series. A new ingredient in this note is the use
of the fact that X¢(37) is the unique modular curve Xo(NV) such that N is
prime, and 3 divides the number n = (N — 1)/m, and the minus part of its
Jacobian is an elliptic curve.

2. Preliminaries. First we recall the result of Gross [3] on the non-
triviality of Heegner points of Eisenstein curves. Let N be a prime number,
m = ged(12, N — 1), and p be an odd prime factor of n = (N — 1)/m. Let
X be the modular curve Xo(N) and J be the Jacobian of X. Let K be an
imaginary quadratic fields of discriminant Dy in which the prime (N) = n-nn
splits completely. Let wgx denote the number of roots of unity in K.

THEOREM 2.1 (Gross). Let x be the quadratic ring class character of K
of conductor ¢ corresponding to the factorization

- Dg=d-d,

where d > 0 is the fundamental discriminant of a real quadratic field k and
d' < 0 is the fundamental discriminant of an imaginary quadratic field k'.
Let L = kk' and y, be the Heegner diwisor in J(L). Let h and h' be the
class numbers of k and k' respectively. Assume x(n) = —1 and ord,(hh') <

ord,(n). Then the projection y>(<p) of yy into the p-Eisenstein quotient J®)(L)
of J(L) has infinite order.

THEOREM 2.2 (Gross). Let x=1 and y,, be the Heegner divisor in J(K).

Let A = Og[N~1] and hy be the class number of A. Assume (p,wg) = 1

and ord,(ha) < ord,(n). Then the projection y;p) of yy into the p-Eisenstein

quotient JP)(K) of J(K) has infinite order.
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Now we recall the result of Nakagawa and Horie [8] which is a refinement
of the result of Davenport and Heilbronn [1]. Let m and N be two positive
integers satisfying the following condition:

(¥) If an odd prime number p is a common divisor of m and N, then p?
divides N but not m. Further if NV is even, then either (i) 4 divides N
and m =1 (mod4), or (ii) 16 divides N and m = 8 or 12 (mod 16).

For any positive real number X > 0, we denote by S;(X) the set of pos-
itive fundamental discriminants D < X and by S_(X) the set of negative
fundamental discriminants D > —X, and put

S(X,m,N):={D e Sy(X)|D=m (modN)},
S_(X,m,N):={DeS_(X)|D=m (modN)}.

THEOREM 2.3 (Nakagawa and Horie). Let D be a fundamental discrim-
inant and r3(D) be the 3-rank of the quadratic field Q(v/D). Then for any

two positive integers m, N satisfying (*),

)}i_r)noo Z 3T3(D)/ Z 1= %’

DES+(X,T)’L,N) DES+(X,m,N)
; r3(D) _
PR SRS S
DeS_(X,m,N) DeS_(X,m,N)

From Theorem 2.3 and the fact that

PO SR D DI C DR )

DeS+(X,m,N) DeS+(X,m,N) DeS+(X,m,N)
r3(D)=0 r3(D)=0

< Y o,
DeS4 (X,m,N)
we can easily obtain the following
LEMMA 2.4. Let D be a fundamental discriminant and h(D) the class
number of the quadratic field Q(\/l_?) Then for any two positive integers
m, N satisfying (*),
LD €S, (X,m,N) | (D) £0 (mod3)}
X—00 ﬁs-‘r(vaaN)
i i TP € S-(X,m, N) [ h(D) # 0 (mod 3)}
X—o0 ﬁS_(X,m,N)

Vv

)

5
6

v

1
5"

3. Proof of Theorem 1.1. Let N =37. Then m =12 and n =p = 3.
In this case X = X(37) is the modular curve with genus 2. Decomposing
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J = Jp(37) by means of the canonical involution w, we may consider the
exact sequence
O0—-Jy—J—J —0,

where J; = (14 w)J. We note that dim Jy = dimJ~ =1 (see [6, Table in
Introduction]).

PROPOSITION 3.1. J~ is the elliptic curve 37C in Cremona’s table with
the equation
E: y?+y=2a®+2%—23z—50.

Proof. See [7, Proposition 1 in §5]. m

Let J be the Eisenstein quotient of J. We know that NJN factors through
J~ and the p-Eisenstein quotient J®) of .J is a quotient of .J (see [6, Chap. II,
(10.4) and (17.10)]). Thus we have

PROPOSITION 3.2. J) is a quotient of J~ = E.

PROPOSITION 3.3. Let k be a real quadratic field where the prime 37 is

inert. If the class number h of k is prime to 3, then the projection of y, into
E(k) (= J~(k)) has infinite order.

Proof. Let k be a real quadratic field of discriminant d where 37 is inert
and whose class number h of k is prime to 3. Let &’ be the imaginary
quadratic field Q(v/—2) of discriminant —8. Note that 37 is inert in &’ and
the class number i’ of k" is equal to 1. Let K be a third field contained in the
biquadratic extension L = kk’. Then K is imaginary and 37 splits in K. Let
Dp be the discriminant of K and x be the quadratic ring class character of
K of conductor ¢ corresponding to the factoring of ¢? - Dy = d - (—8). Then

from Theorem 2.1, we know that y>(<p ) has infinite order in .J (#)(L). Since J @)
is a quotient of J~ = E by Proposition 3.2, the projection of y, to E(L) has
infinite order. We note that E(L) = E(k)®E(k’) and E(k') = E(Q) = Z/3Z.
Thus the projection of y, to E(k) should have infinite order. w

PROPOSITION 3.4. Let K (# Q(+v/—3)) be an imaginary quadratic field
where the prime 37 is split. If the class number h of K is prime to 3, then
the projection of y, into E(K) (= J~(K)) has infinite order.

Proof. Let K be an imaginary quadratic field where 37 is split and whose
class number h of K is prime to 3. In this case, we note that h 4 is simply
the quotient of hx by the order of n in the class group of K. Then from
Theorem 2.2, we know that y>(<p ) has infinite order in J (P)(L). Since J®)
factors through J~ = E by Proposition 3.2, the projection of y, to E(K)
should have infinite order.

Proof of Theorem 1.1. First we compute the number of quadratic fields
k and K in Propositions 3.3 and 3.4. By a well known method in ana-
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lytic number theory we have the following estimate on S1 (X, m, N) (see [8,
Proposition 2]):
3X q

20(N 1
me(N) NPt

1S (X, m,N) ~45_(X,m,N) ~

(X - OO)?

where ¢ = 4 or p according as p = 2 or not. Thus from Lemma 2.4, we
obtain the following estimates:

. H{DeSH(X) | h(D) #0 (mod3) and (g7) =1} 5 18 _
lgri)loréf 15.(X) 3 > 5 37> 0.405,
. #{DeS_(X) | h(D) £0 (mod3) and (5) =1} _ 1 18 _
lin inf 25 () 37 > 537 = 0.243.

Finally, Theorem 1.1 follows from Proposition 3.3, Proposition 3.4, and the
Gross—Zagier Theorem [4] on Heegner points and derivatives of L-series. m

REMARK. Similarly we can obtain the following:

Let E be the elliptic curve Xo(19) in [11]. Then for at least 39% of
the positive fundamental discriminants D and at least 23% of the negative
fundamental discriminants D, Ords—1 L(s, Ep) = 1.
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