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Bad(s, t) is hyperplane absolute winning

by

Erez Nesharim (Tel Aviv) and David Simmons (Columbus, OH)

1. Statement of results. Throughout this paper, fix s, t ≥ 0 with
s+ t = 1. Let Bad(s, t) denote the set

Bad(s, t) =
{

(x, y) ∈ R2 : inf
q∈N

max(qs‖qx‖, qt‖qy‖) > 0
}
,

where ‖·‖ is the distance to the nearest integer. Schmidt’s conjecture, proven
in [BPV], states that Bad(1/3, 2/3)∩Bad(2/3, 1/3) is nonempty. A stronger
result was proven by J. An [An, Theorem 1.1], who showed that Bad(s, t)
is (34

√
2)−1-winning for Schmidt’s game. In particular this implies (cf. [Sc,

Theorem 2] and [Sc, Corollary 2 of Theorem 6]) that for any countable
collection of pairs (sn, tn)∞n=1, the intersection

⋂
n∈NBad(sn, tn) is nonempty

and in fact has full Hausdorff dimension in R2.

The object of this note is to give a proof of the following strengthening
of An’s theorem:

Theorem 1.1. The set Bad(s, t) is hyperplane absolute winning in the
sense of [BFKRW].

Theorem 1.1 is a generalization of An’s theorem since every hyperplane
absolute winning set is α-winning for Schmidt’s game for every 0 < α < 1/2
[BFKRW, Proposition 2.3(a)]. Moreover, the intersection of a hyperplane
absolute winning set with a hyperplane diffuse set (1) which is the support
of an Ahlfors regular measure has full dimension with respect to that set
[BFKRW, Theorems 4.7 and 5.3]. In particular hyperplane absolute winning
sets have full dimension intersection with many well-known fractals such
as the Sierpinski triangle and the von Koch snowflake curve. Finally, the
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(1) A set K ⊆ R2 is hyperplane diffuse if there exist ρK , β > 0 such that for any
0 < ρ ≤ ρK , x ∈ K, and any line L, there exists x′ ∈ K such that x′ ∈ B(x, ρ) \ L(βρ)

[BFKRW, Definition 4.2].
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class of hyperplane absolute winning sets is closed under countable intersec-
tions [BFKRW, Proposition 2.3(b)], and invariant under C1 diffeomorphisms
[BFKRW, Proposition 2.3(c)]. As a result we have the following:

Corollary 1.2. For any hyperplane diffuse set K ⊆ R2 which is the
support of an Ahlfors regular measure, for any countable collection of pairs
(sn, tn)∞n=1, and for any countable collection of C1 diffeomorphisms (fn)∞n=1

from R2 to itself, the intersection

K ∩
⋂
n∈N

fn (Bad(sn, tn))

has full dimension in K.

We remark that while the strategy for Schmidt’s game given in An’s
paper depends on König’s lemma (cf. [An, Proposition 2.2]), and therefore
is not constructive, the strategy which we give in the proof of Theorem 1.1
provides an algorithm for computing Alice’s next move; see also Remark 2.5.

Remark 1.3. The cases s = 0 and t = 0 of Theorem 1.1 are trivial
consequences of the fact that the set of badly approximable numbers is
absolute winning (see [Mc, Theorem 1.3] or [BFKRW, Theorem 2.5]) and
will be omitted. Throughout the proof we assume that s, t > 0.

Remark 1.4. Although the higher-dimensional analogue of Schmidt’s
conjecture has been established by V. V. Beresnevich [Be], it is still not
known, for example, whether Bad(s, t, u) is winning for all s, t, u ≥ 0 with
s+ t+ u = 1, where Bad(s, t, u) is defined appropriately.

2. Preliminaries. The proof of Theorem 1.1 will consist of combining
the main idea of [An] with the main idea of [FSU, Appendix C]. We therefore
begin by recalling these ideas.

2.1. The main lemma of [An]. For each P = (p/q, r/q) ∈ Q2 and
ε > 0, following [An] we let (2)

∆ε(P ) =
{

(x, y) ∈ R2 : |x− p/q| ≤ ε/q1+s and |y − r/q| ≤ ε/q1+t
}
,

so that

(2.1) Bad(s, t) =
⋃
ε>0

(
R2 \

⋃
P∈Q2

∆ε(P )
)
.

Let L denote the collection of lines (affine hyperplanes) in R2. If L ∈ L
and γ > 0, we let L(γ) denote the γ-thickening of L, i.e. the set

{(x, y) ∈ R2 : d((x, y), L) ≤ γ}.

(2) We remark that the c in [An] corresponds to our ε; our c corresponds to the c
in [FSU, Appendix C].
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Lemma 2.1 ([An, Lemma 4.2]). Fix R > 1 and l > 0. There exists ε > 0
and a partition

(2.2) Q2 =
2⋃
δ=1

∞⋃
n=1

n⋃
k=1

P(δ)
n,k

such that the following holds: For each m ≥ 0, let

Pm =
2⋃
δ=1

m⋃
k=1

P(δ)
m,k,

and let Bm denote the collection of balls B ⊆ R2 of radius R−ml/2 satisfying

(2.3) ∀m′ ≤ m, ∀P ∈ Pm′ , ∆ε(P ) ∩B = ∅.

Then for all n ≥ k ≥ 1, for all δ ∈ {1, 2}, and for all B ∈ Bn−k, there is a
line L = Ln,k,δ(B) ∈ L such that

(2.4) ∆ε(P ) ⊆ L(lR−n/3) ∀P ∈ P(δ)
n,k such that ∆ε(P ) ∩B 6= ∅.

Remark 2.2. The relation between Lemma 2.1 and [An] requires some
explanation. First of all, given R > 1 and l > 0, one can let ε > 0 be
defined by the equation [An, (3.2)]. Next, one can define the partition (2.2)
as in [An, pp. 5–6]. At this point [An, Lemma 4.2] can almost be read as
stated, except that An has fixed τ ∈ Sn−k instead of B ∈ Bn−k, and has

considered the set P(δ)
n,k(τ) = {P ∈ P(δ)

n,k : Φ(τ) ∩ ∆ε(P ) 6= ∅} in place of

the set {P ∈ P(δ)
n,k : ∆ε(P ) ∩ B 6= ∅}. But we observe that for τ ∈ Tn−k, we

have τ ∈ Sn−k if and only if Φ(τ) ∈ Bn−k (3). Moreover, the proof of [An,
Lemma 4.2] works equally well if Φ(τ) is replaced by an arbitrary element
of Bn−k. Thus the lemma holds just as well if Φ(τ) denotes an arbitrary
element of Bn−k rather than an arbitrary element of Φ(Sn−k).

2.2. Two variants of Schmidt’s game. We proceed to describe two
variants of Schmidt’s game, one introduced in [BFKRW] and the other in-
troduced in [FSU, Appendix C]. In this paper we will not deal directly with
the first game, but we will prove that Bad(s, t) is winning with respect to
the second game. Since the two games are equivalent (Lemma 2.4 below),
this proves that Bad(s, t) is also winning with respect to the first game, and
therefore has the large-dimension properties described in the Introduction.

(3) Here we ignore the distinction between balls and squares. The difference is impor-
tant only in calculating diameter; the diameter of a square with respect to the max norm
is equal to its side length, while the diameter of a ball is equal to twice its radius. This
is why we require balls in Bm to have radius R−ml/2, while if τ ∈ Sm, the side length of
Φ(τ) is R−ml.
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Definition 2.3. Given 0 < β < 1/3, Alice and Bob play the β-hyper-
plane absolute game as follows:

(1) Bob begins by choosing a ball B0 = B(z0, r0) ⊆ R2.

(2) On Alice’s nth turn, she chooses a set of the form L
(r̃n)
n with Ln ∈ L ,

0 < r̃n ≤ βrn, where rn is the radius of Bob’s nth move Bn =

B(zn, rn). We say that Alice deletes her choice L
(r̃n)
n .

(3) On Bob’s (n + 1)st turn, he chooses a ball Bn+1 = B(zn+1, rn+1)
satisfying

(2.5) rn+1 ≥ βrn and Bn+1 ⊆ Bn \ L(r̃n)
n ,

where Bn = B(zn, rn) was his nth move, and L
(r̃n)
n was Alice’s nth

move.
(4) If rn 9 0, then Alice wins by default. Otherwise, the balls (Bn)∞1

intersect at a unique point which we call the outcome of the game.

If Alice has a strategy guaranteeing that the outcome lies in a set S (or
that she wins by default), then the set S is called β-hyperplane absolute
winning. If a set S is β-hyperplane absolute winning for all 0 < β < 1/3,
then it is called hyperplane absolute winning.

By contrast, given β, c > 0, Alice and Bob play the (β, c)-hyperplane
potential game as follows:

(1) Bob begins by choosing a ball B(x0, r0) ⊆ R2.
(2) For each n, after Bob makes his nth move Bn = B(xn, rn), Alice will

make her nth move. She does this by choosing a countable collection

of sets of the form L
(ri,n)
i,n , with Li,n ∈ L and ri,n > 0 satisfying

(2.6)
∑
i

rci,n ≤ (βrn)c.

(3) After Alice makes her nth move, Bob will make his (n + 1)st move
by choosing a ball Bn+1 = B(xn+1, rn+1) satisfying

(2.7) rn+1 ≥ βrn and Bn+1 ⊆ Bn,
where Bn = B(xn, rn) was his nth move.

(4) If rn 9 0, then Alice wins by default. Otherwise, the balls (Bn)∞1
intersect at a unique point which we call the outcome of the game.

If the outcome is an element of any of the sets L
(ri,n)
i,n which Alice

chose during the course of the game, she wins by default.

If Alice has a strategy guaranteeing that the outcome lies in a set S (or
that she wins by default), then the set S is called (β, c)-hyperplane potential
winning. If a set is (β, c)-hyperplane potential winning for all β, c > 0, then
it is hyperplane potential winning.
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The following lemma is a special case of the main result of [FSU, Ap-
pendix C]:

Lemma 2.4 ([FSU, Theorem C.8]). A set is hyperplane potential winning
if and only if it is hyperplane absolute winning.

Proof. We sketch only the forward direction, as it is the one which we
use. Suppose that S ⊆ Rd is hyperplane potential winning. Let β > 0.
Fix β̃, c > 0 small to be determined, and consider a strategy of Alice
which is winning for the (β̃, c)-hyperplane potential game. Each time Bob

makes a move Bn = B(zn, rn), Alice chooses a collection of sets {L(ri,n)
i,n }Nni=1

(with Nn ∈ N ∪ {∞}) satisfying (2.6). Alice’s corresponding strategy in the

β-hyperplane absolute game will be to choose her set L
(βrn)
n ⊆ R2 so as to

maximize

(2.8) φ(Bn;L(βrn)
n ) :=

n∑
m=0

∑
i

L
(ri,m)

i,m ⊆L(βrn)
n

L
(ri,m)

i,m ∩Bn 6=∅

rci,m.

Suppose that Alice plays according to this strategy, and let (Bn)∞1 be
the sequence of Bob’s moves. For each n ∈ N, let

φ(Bn) =

n∑
m=0

∑
i

L
(ri,m)

i,m ∩Bn 6=∅

rci,m.

One demonstrates by induction on n (see [FSU, Appendix C] for details)

that if β̃ and c are chosen sufficiently small, then there exists ε > 0 such
that for all n ∈ N,

(2.9) φ(Bn) ≤ (εrn)c.

Intuitively, the reason for this is that Alice is “deleting the regions with high
φ-value”, and is therefore minimizing the φ-value of Bob’s balls. Thus she
is forcing φ(Bn) to be as small as possible.

Now suppose that rn → 0; otherwise Alice wins the β-hyperplane ab-
solute game by default. Then (2.9) implies that φ(Bn) → 0. In particular,
for each (i,m), rci,m > φ(Bn) for all sufficiently large n, which implies that

L
(ri,m)
i,m ∩ Bn = ∅. Thus the outcome of the game does not lie in L

(ri,m)
i,m

for any (i,m), so Alice does not win the (β̃, c)-hyperplane potential game
by default. Thus if she wins, then she must win by having the outcome
lie in S. Since the outcome is the same for the (β̃, c)-hyperplane potential
game and the β-hyperplane absolute game, this implies that she also wins
the β-hyperplane absolute game.
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Remark 2.5. Given a move Bn, Alice can calculate her response in a
finite amount of time as follows: Let F be a finite collection of hyperplanes
satisfying the conclusion of [FSU, Assumption C.6] for the ball B(z, r) = Bn.
This collection is just the image of a fixed finite collection under a similar-
ity (cf. [FSU, Observation C.7 and its proof]). For each L ∈ F , compute
φ(Bn;L(βrn)). This number can be computed with arbitrary accuracy since
the series defining it converges uniformly with respect to L(βrn). Then look
at the finite set {φ(Bn;L(βrn)) : L ∈ F}, and choose the largest number of

this set, say φ(Bn;L
(βrn)
max ). If two numbers are of comparable magnitudes,

it is acceptable to just pick one or the other rather than using more com-
putational power to figure out which one is actually larger. Finally, respond

to Bn with the move L
(βrn)
max . Although this strategy is not necessarily the

same as the one described in the proof of Lemma 2.4, the proof of Lem-
ma 2.4 can be modified to show that this new strategy is still winning for
the hyperplane absolute game.

3. Proof of Theorem 1.1. In this section we prove Theorem 1.1, which
states that Bad(s, t) is hyperplane absolute winning.

Proof of Theorem 1.1. By Lemma 2.4, it suffices to show that Bad(s, t)
is hyperplane potential winning. Fix β, c > 0, and we will show that it is
(β, c)-hyperplane potential winning. Let B(x0, r0) ⊆ R2 be Bob’s first move.
Fix R ≥ β−1 to be determined (depending on β and c), and let l = 2r0. Let
ε > 0 and the partition (2.2) be as in Lemma 2.1. Alice’s strategy will be
defined by infinitely many “triggers” as follows: For each m ≥ 0, Alice will
wait until Bob chooses a ball Bj = B(xj , rj) that satisfies rj ≤ R−mr0/2.
The first j for which this inequality holds will be denoted jm, with jm =∞
if it never holds. We observe that

(i) jm ≥ 1 for all m ≥ 0, since r0 > R−mr0/2, and
(ii) jm+1 ≥ jm + 1, since rjm ≥ βrjm−1 > βR−mr0/2 ≥ R−(m+1)r0/2

(using the fact that R ≥ β−1).

Fix m ≥ 0, and let j = jm. Let B̃j = B(xj , R
−mr0). On Alice’s jth turn,

her strategy will be as follows:

(1) If B̃j /∈ Bm, then she will do nothing.

(2) If B̃j ∈ Bm, then for each k ≥ 1 and δ ∈ {1, 2} she will apply

Lemma 2.1 to get a line Lk,δ = Lm+k,k,δ(B̃j) ∈ L , and she will

delete the hyperplane-neighborhood L
(3R−(m+k)r0)
k,δ .

The legality of this action is guaranteed by (ii), which shows that Alice
is not deleting multiple collections on the same turn, together with the
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inequality

2∑
δ=1

∞∑
k=1

(3R−(m+k)r0)
c = (3R−mr0)

c2
∞∑
k=1

R−ck

≤ (β2R−mr0/2)c (for R chosen large enough)

< (βrjm)c (since rjm ≥ βrjm−1 > βR−mr0/2).

To complete the proof, we must show that the strategy described above
guarantees a win for Alice. For contradiction, suppose that Bob can play in a
way so that Alice loses. By definition, this means that the radii of Bob’s balls
tend to zero, and that their intersection point x ∈ R2 is not in Bad(s, t) nor
in any of the hyperplane-neighborhoods which Alice deleted in the course
of the game. In particular, the radii tending to zero means that each of the
triggers happens eventually, i.e. jm <∞ for all m ≥ 0.

Claim 3.1. For all m ≥ 0, B̃jm := B(xjm , R
−mr0) ∈ Bm.

Proof. We proceed by strong induction and contradiction. Suppose the
claim holds for all 0 ≤ m < M , but does not hold for M . Then there exist
M ′ ≤ M and P ∈ PM ′ such that ∆ε(P ) ∩ B̃J 6= ∅, where J = jM . Write

P ∈ P(δ)
M ′,k for some 1 ≤ k ≤M ′ and δ ∈ {1, 2}. Let m = M ′ − k < M , and

let j = jm. We apply the induction hypothesis to see that B̃j ∈ Bm. Thus
on Alice’s jth turn, she must have deleted the hyperplane-neighborhood

A := L
(3R−(m+k)r0)
k,δ , where Lk,δ = Lm+k,k,δ(B̃j) is as in Lemma 2.1.

On the other hand, since J ≥ j, we have BJ ⊆ Bj ; thus d(xj ,xJ) ≤
rj ≤ R−mr0/2, and so B̃J ⊆ B̃j . Combining this with the contradiction

hypothesis gives ∆ε(P )∩B̃j 6= ∅. So by the definition of Lk,δ = Lm+k,k,δ(B̃j)
(cf. (2.4)), we have

∆ε(P ) ⊆ L( 2
3
R−(m+k)r0)

k,δ .

Since
2
3R
−(m+k)r0 + 2R−Mr0 ≤ 3R−(m+k)r0,

this implies (∆ε(P ))(2R
−Mr0) ⊆ A. In particular, since ∆ε(P ) ∩ B̃J 6= ∅, we

have

x ∈ BJ ⊆ B̃J ⊆ (∆ε(P ))(2R
−Mr0) ⊆ A.

This demonstrates that Alice won by default, contradicting our hypothesis. /

Now for all P ∈ Q2, we have P ∈ Pm for some m ≥ 1. Let j = jm.
Applying Claim 3.1, we see that ∆ε(P ) ∩ B̃j = ∅. But x ∈ Bj ⊆ B̃j , so
x /∈ ∆ε(P ). By (2.1), this means x ∈ Bad(s, t). So Alice won, contradicting
our hypothesis.
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