ACTA ARITHMETICA
115.2 (2004)

Subfields of the function field of the Deligne—Lusztig
curve of Ree type

by

EMRAH CAKGAK and FERRUH OZBUDAK (Ankara)

1. Introduction. Let F' be an algebraic function field over a finite field
F,. The number N of rational places of F' is bounded by the Hasse-Weil
bound

IN — (¢ +1)| < 29¢"/2,

where ¢ is the genus of F'. For ¢ a square, I is said to be a mazimal function
field if N reaches the Hasse- Weil upper bound, i.e. N = g+ 1+2¢gqY/2. If F
is a maximal function field over Iy, then all subfields F, C £ C F are also
maximal over F, (see [La]). Maximal function fields are also of interest in
coding theory ([T-V], [St], [N-X]).

Let X be a Deligne-Lusztig curve of Ree type defined over Fy, ¢ = 32+l
s > 1, and F be its function field. Then F'/F, is isomorphic to Fy(z,y1, y2)
defined by

(1.1) vl —y1 = 2% (27 — z),
(1.2) Y —yo = 2’0 (27 — z),
where ¢y = 3°. The function field F' has the following properties which
uniquely determine it ([H-P]):
e ['/F, has genus g = %qg(q —1)(q + +_1)
e The automorphisms in G = Aut(FF,/F,) are Fs-rational and G is a
Ree group of order ¢3(q — 1)(¢* + 1).
e ['/F, has e +1 [F,-rational places on which G acts as a permutation
group.
From now on F' will denote Fy(z,y1,y2) defined by (1.1), (1.2) and G its
automorphism group Aut(F/F,). F is itself optimal (it has as many F,-

rational places as possible) and any constant field extension FFm, m =
6 mod 12, is maximal ([P]). Let H < G be a subgroup of G. We denote by
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FH its fixed subfield
FHl = {;cF|loz=zforall z€ H}.

In this paper we construct a large family of subfields F, C F'=F HcF
using many subgroups H < G and we determine their genera. FEvery such
subfield F is maximal over any constant field extension FFsm, m =
6 mod 12.

This work is inspired by a recent paper of Garcia, Stichtenoth, and
Xing ([G-S-X]), where the subfields of the Hermitian function fields (which
are also function fields of Deligne-Lusztig curves associated to the groups
PSU(3,q)) are constructed. The case of Deligne-Lusztig curves of Suzuki
type is considered by Giulietti, Korchmaros, and Torres in [G-K-T]. Here
we note that, together with Ree type studied here, these three families of
curves constitute all the curves which are known as Deligne—Lusztig curves.

This paper is organized as follows. In Section 2 we recall the properties
of Ree groups that will be needed later. Section 3 deals with the ramification
structure of the places of F in the extension F//F®. The maximal subgroups
of G are known (see [L-N]). In Section 4 we consider various subgroups H of
maximal subgroups of G and we compute the genera of their fixed subfields
FH In our computations, we use the properties of Ree groups viewing them
as permutation groups acting on the rational places of F' in their usual
2-transitive representation.

2. Properties of Ree groups. In this section, we collect some ba-
sic properties of Ree groups. For that purpose, let G denote a Ree group
Ree(q) = 2Ga(q), ¢ = 3q3, go = 3%, s > 1; it is known that the group G is
simple of order ¢*(q — 1)(¢® +1). Since the integer ¢*(q — 1)(¢® + 1) has the
following relatively prime factorization:

qg—1 qg+1
o=+ ) = @) (50 ) (50 )+ 300+ Do - 300+ 1),
G has 3-Sylow subgroups of order ¢* and 2-Sylow subgroups of order 8. In
addition to these, it is known that there are Hall subgroups in GG correspond-
—1 g+1

ing to the remaining factors: qT, T q+3q0+1, ¢g—3qo+ 1. First we recall

the basic properties of Hall subgroups. The details can be found in [Ro].

Hall subgroups. A Hall subgroup A of a finite group H is a subgroup
with (JA], |G : A]) = 1.

THEOREM 2.1 (Wielandt). Let the finite group H possess a nilpotent
Hall subgroup A. Then every subgroup of order dividing |A| is contained
in a conjugate of A. In particular, all Hall subgroups of order |A| of H are
conjugate.
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REMARK 2.2. Any Hall subgroup A (with (3,|A|) = 1) of the Ree group
is Abelian. So by Theorem 2.1 any subgroup of G of order dividing |A] is
contained in a conjugate of A.

We give some properties of subgroups of GG. One can get the details from
[L-N] and [W].

PROPOSITION 2.3. For subgroups of G, the following properties hold:

(1) A 2-Sylow subgroup of G is a self-centralizing elementary Abelian
subgroup of order 8 and its index in the normalizer is 21.

(2) 2-subgroups of equal order are conjugate in G, in particular all in-
volutions of G are conjugate.

(3) The centralizer of an involution in G is isomorphic to Zo xPSL(2, q).

(4) In G, for each subgroup E of order 4 there exists a cyclic Hall
subgroup Ay of order (¢ + 1)/4 and an element w of order 6 such
that N(E) = N(Al) =FEx (A1 X (w>) and C(Al) =F X Al.

(5) G has a cyclic Hall subgroup Ay of order (¢ — 1)/2. The group
N(Ap) is dihedral of order 2(q —1).

(6) G has cyclic Hall subgroups Ay and As of order ¢ — 3qo + 1 and
q+3qo+1 respectively. As and As are respectively the centralizers of
their nonidentity elements and are disjoint from their conjugates.
The normalizer N(A;), i = 2,3, is a Frobenius group with kernel
A; and a cyclic noninvariant factor of order 6.

(7) If U is a 3-Sylow subgroup of G, U has order ¢® and is disjoint
from its conjugates. Its center Z(U) is elementary Abelian of or-
der q, U 1is of class 3, and U contains a normal elementary Abelian
subgroup Uy of order q* containing Z(U) which is both the derived
group and the Frattini subgroup of U. The members of U —U; have
order 9, their cubes forming Z(U) — (1).

(8) The normalizer N(U) is UT, where T is cyclic of order g —1. If k
is the involution of T, then Cy (k) = Cy, (k) is elementary Abelian
of order q and Cy(k) N Z(U) = (1). If 7 is an element of T of
(odd) order (g —1)/2, then Cy(7%) = (1) for all 7% # 1.

(9) Let A be one of the groups U, Ay, A1, Aa, As and H be a nontrivial
subgroup of A, then N(H) < N(A).

(10) The permutation representation of G on the left cosets of N(U)
represents G faithfully as a 2-transitive permutation group in such
a way that the subgroup fizing three letters has order 2. In what
follows, this representation will be called the usual 2-transitive per-
mutation representation of G.

The maximal subgroups of G are described by V. M. Levchuk and Ya.
N. Nuzhin in [L-NJ:
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THEOREM 2.4. Mazimal subgroups of G are exhausted, up to conjugacy,
by the following:

(i) N(U), the normalizer of a 3-Sylow subgroup:;

(ii) C(k), the centralizer of an involution k;

(iii) N(A;), the normalizer of the subgroup A;, i = 1,2,3, where A; are
cyclic Hall subgroups of order (¢ + 1)/4,q — 3q0 + 1,9 + 3q0 + 1,
respectively;

(iv) Ree(m), ¢ = mP, p being a prime.

It follows from Proposition 2.3(10) that G can be represented faithfully
as a 2-transitive permutation group on a set {2 of cardinality ¢® + 1. Let P
and @ be distinct points in 2. Denote by G'p and G pg the subgroups of G
fixing the point P and the points P and () respectively.

PROPOSITION 2.5. In its usual 2-transitive permutation representation
on §2, G has the following properties:

(i) Gpg =T, where T is cyclic of order ¢ — 1. In particular, G has a
unique involution firing two points of 2.

(ii) If a nonidentity element k € Gpq fizes more than two points then
K 1s the involution of T.

(iii) Any involution of G fizes ¢ + 1 points of (2.

(iv) Gp is the normalizer N(U) (which is of order ¢*(q—1)) of a 3-Sylow
subgroup U of G. Moreover, U acts transitively on the set 2—{P}.

(v) The 3-Sylow subgroups are in one-to-one correspondence with the
points in {2.

Proof. For (i)—(iii) we refer to [K-O-S] and [Re]. Since the action of G on
(2 is 2-transitive, we have |Gp| = |G|/|92| = ¢(¢ — 1). Note that |N(U)| =
¢*(g—1) for any 3-Sylow subgroup U of G. Hence, using Theorem 2.4, we find
that Gp is the normalizer of a 3-Sylow subgroup U of G. If U is not transitive
on {2 — {P} then some element 7 of U should fix some point Q) € 2 — {P}.
This implies 7 € G pg, which contradicts (i) because ¢ is relatively prime
to ¢ — 1. This also shows that each point of {2 is fixed by a unique 3-Sylow
subgroup of G, which establishes (v) (since G acts transitively on {2 and
3-Sylow subgroups are conjugate in G). =

Now, we look at the action of G on {2 more closely and obtain some
more properties which we need later.

THEOREM 2.6. Let 1 # o0 € G.

(i) If 3| |o| then o € Ng(U) for some 3-Sylow subgroup, U, of G, and
o fizes a unique point of (2.

(ii) If |o||g—1 and |o| # 2 then o is contained in some cyclic subgroup
of G, of order q — 1, and o fizes exactly two points of f2.
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(iii) If |o| = 2 then o fizes exactly g+ 1 points of {2.
In particular, o fives a point of 2 if and only if |o||¢3(q¢ — 1).
For the proof of the theorem we need the following:

LEMMA 2.7. Let 3||o|. Then o € Ng(U) for some 3-Sylow subgroup, U,
of G.

Proof. Write the order of o as || = 3/m with (3,m) = 1. Let 09 = o™
and 19 = o3’ Then log| = 37, 09 € U for some 3-Sylow subgroup U of G,
|70] = m and o = og7p. Since oy commutes with 79, we have

ToohTy L =op  for all i

This implies 790 € Ng({(09)) and by Proposition 2.3(9), Ng({(c0)) C N¢(U).
So 10 € Ng(U) and we get 0 = 0919 € Ng(U). =

LEMMA 2.8. Let 1 # o € G with |o||q—1. Then o is contained in some
cyclic subgroup of G, of order q — 1, and o fizes (at least) two points of (2.

Proof. If |o| = 2 then the result follows from Proposition 2.5. So we
assume that |o||¢— 1 and |o| # 2.

Now, let T be the cyclic subgroup of G of order ¢ — 1, fixing two distinct
points P, Q € §2 (cf. Proposition 2.5) and T be the subgroup of T' of order
(g —1)/2. As |o|| g — 1 and |o| # 2, we have 0% # 1 and |0?|| (¢ — 1)/2. So
o2 is contained in a cyclic Hall subgroup of order (¢ — 1)/2, which should
be a conjugate of T (by Remark 2.2). In other words, there is an element
a € G such that 02 € aTha™t. Obviously o € Ng({c?)) and by Proposi-
tion 2.3(9), 0 € Ng(aTea™t). Observe that Ng(aTea™!) = aNg(Tp)a ™ .
The group Ng(T5) (and therefore any of its conjugates) is a dihedral group
of order 2(q—1) by Proposition 2.3(5). A dihedral group, D, of order 2(¢—1)
has a unique cyclic subgroup of order ¢ — 1, Tp, and any cyclic subgroup C
of D with |C| # 2 is contained in Tpp. Therefore o € aTa ™!, which is cyclic
of order ¢ — 1, and o fixes both a(P) and a(Q), where a(P) # a(Q). =

We are now ready to prove Theorem 2.6.

Proof of Theorem 2.6. Let 1 # o € G. Assume first that 3| |o|. Then by
Lemma 2.7, 0 € Ng(U) for some 3-Sylow subgroup, U, of G, and by Propo-
sition 2.5, o fixes a point of £2. Since (3,¢—1) = 1, again by Proposition 2.5,
o cannot fix two distinct points of {2. So we proved (i).

Now, any nonidentity element of G which fixes more than two points of
2 should be an involution, and any involution of G fixes ¢ + 1 points (cf.
Proposition 2.5). So (ii) and (iii) follow from Lemma 2.8.

The necessity part of the last assertion of the theorem follows from
Proposition 2.5. For the sufficiency, assume |o| | ¢3(¢ — 1). Then either 3| |o|
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or |o]|q — 1. Therefore, (i)—(iii) (proved above) imply that o should fix a
point of {2. m

We are now going to show that the representation of the Ree group
G = Aut(F/F,) on the set of rational places of F' has the same properties
as the usual 2-transitive permutation representation of the Ree group G. In
fact, we show that these two representations are the same.

PROPOSITION 2.9. Let G be a finite group of order mn. Let £2 and 2 be
two sets of equal cardinality |2| = |£2'| = n. Assume that G acts as a tran-
sitive permutation group on each of 2 and §2'. Assume also that subgroups
of order m of G are conjugate to each other. Then the actions of G on {2
and 2 are the same up to relabelling.

Proof. Denote the points of {2 by Py, ..., P,—1. We will label the points
of 2" as Pj,...,P,_; in such a way that for each 7 € G and each i =
0,...,n—1,

T(Pl) = Pj = T(Pi/) = P],
This will prove the proposition.

Let H = Gp, be the subgroup of G fixing the point Py in (2. Then
|H| = m. Observe that H fixes a point P’ of 2. Consider a point Q' € '
and the subgroup G fixing Q. Then |G| = m and by assumption Gy is
a conjugate of H. So H = aGQ/a_l for some a € G. This implies that H
fixes a(Q'). We set

Py =a(Q).
So any element of H fixes Py in 2 and Fj in (2. Since G acts transitively
on {2, there are o1,...,0,-1 € G — H such that

oi(P)=P, i=1,...,n—1
As the elements of each of the cosets o; H map Py to P;, we have
(2.1) i#j = oHNojH = 0.
We label the remaining points of the set (2’ as
P =o0i(P), i=1,...,n—1.

1
For i # j, P/ # P} because otherwise we have 0;(F)) = 0;(F), which
implies o; 'oj(P}) = P} and o; 'o; € H, contradicting (2.1). Therefore we
have ' ={P},...,P,_}.

Now, let 7 € G, i € {0,...,n— 1}, and assume that 7(P;) = P; for some
j=0,...,n—1. As 0;(Fy) = P; and 0;(Fy) = P;, we have O'j_lTO'Z‘(P()) = P,.
So aj_lrai € H and aj_lrai(Pé) = P}, which implies 70;(P}) = 0;(F}). Since
0i(FPy) = P} and 0;(F) = P}, we get 7(P}) = Pj. u

COROLLARY 2.10. If the Ree group G acts transitively on a set of cardi-
nality ¢ + 1, then this action is unique up to relabelling. In particular, the
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representation of G = Aut(F/F,) on the set of rational places of F is the
usual 2-transitive representation of G.

Proof. The order of G is ¢*(q — 1)(¢® + 1). Let H be a subgroup of G
of order ¢®(q — 1). By Theorem 2.4, H is the normalizer N(U) of a 3-Sylow
subgroup U of G. Also for any two 3-Sylow subgroups U and U’ of G, N(U)
and N (U’) are conjugate in G. Therefore the result follows from Proposition
2.9 and the fact that F has ¢ + 1 rational places on which G = Aut(F/F,)
acts as a transitive permutation group. =

3. The ramification structure. In this section, we find the ramified
places of F' and the associated ramification groups in the extension F/F&,
where F' = F,(z,y1,y2) (defined by (1.1) and (1.2)) and G = Aut(F/F,).

We first recall the definition of ramification groups of a place P of F' in
the extension F/FH  where H is any subgroup of G. Let vp be the discrete
valuation of P and Op be the valuation ring associated to vp. For each
1 > —1, the ramification groups of P are defined as

H;(P)={o € H|vp(o(z) —z) >i+1 for each z € Op}.
The different exponent of P in the extension F/FH is

dp = Z(|Hi(P)| -1)
i>0
(see for example [St, I11.8.8]). If g and gy are the genera of F' and F
respectively, then the Riemann—Hurwitz formula states that

29-2=|H|295 —2)+ Y,  dpdeg(P).
Pisaplaceof F

The group G acts on the rational places of F' as a transitive permutation
group, therefore each rational place is wildly ramified in the extension F'/F G
with ramification index |G|/(¢3+1) = ¢*(¢—1). Moreover if P and Q are two
rational places of F', then for each ¢ > —1 the ramification groups G;(P) and
Gi(Q) are conjugate in G. The decomposition group G_1(P) and the inertia
group Go(P) of a rational place P are equal and their order is ¢3(¢—1). The
ramification groups for a rational place are computed in [H-P]:

THEOREM 3.1. Let P be a rational place of F' and G; = G;(P) be the
ramification groups of P for the extension F/FC. Let vy =0, vy = 1, vy =
30+ 1 andvs=q+3q0+ 1. Then:

(i) Go = Gy, = N(U), where U is a 3-Sylow subgroup of G and N(U)
its mormalizer in G,
(i) G1 = Gy, = U with |U| = ¢,
(iii) G; = Uy, where Uy is the derived group of U and |Uy| = ¢* for
v1 +1<1i< s,
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(iv) Gy = Z(U), the center of U, which is of order q for vo+1 < i < v3,
(v) Gi =(1) fori>wv3+1.

Now in order to find the other ramified places, we first consider the
extension F//FY where F = FF,, the constant field extension of F/F, with
the algebraic closure Fq of Fy,.

We fix the following notation. For any positive integer m, by an Fgm-
rational place of F we mean a place extending a degree 1 place of F' = FFym
in the constant field extension F//F’. If m and n are positive integers with
n|m then by an Fym \ Fyn-rational place we mean an Fgm-rational place
which is not F n-rational. For any subgroup H of G and any place P of F,
the H-orbit of P will be the set

H.P={o(P)|ocecH}.

Now, we will use the Riemann—Hurwitz formula to determine the non-
[Fg-rational places of F’ ramified in F'/ FG&. The ramification groups at an Fq-
rational place () of F' are given by Theorem 3.1, so the different exponent
of Q is

do = (¢’(a=1) = 1)+ (¢* = 1) +3q0(¢° = 1) +q(g - 1).
The genus of FY is zero (because F¢ C F,(z)) and we know that the genus
g of I'is
9=35q0(q—1)(g+q +1).
Since all the F,-rational places of F have the same different exponent, the
Riemann-Hurwitz formula applied to the extension F'/ FG& gives

29 — 2= =2|G| + (¢* + 1)dg + R,

where R is the degree of the part of the different arising from the ramifica-
tions at non-F,-rational places of F'. Computing R, we get

R=¢(¢—1)(+1—(¢+1)(g+3q +1)).

Let B = G_1(Q) be the subgroup of G fixing an F,-rational place Q. The
order of this group is ¢3(¢ — 1) and the orbit of it at any non-F-rational
place has ¢3(¢ — 1) elements ([P]). Therefore any non-F,-rational place of F
is unramified in F/FB. Let Py be a non-F,-rational place of F' ramified in
F/FC. Let PP and PY be the restrictions of P; to the fields F? and F¢
respectively. Let P, ..., PP be the places of FP lying over P%in FB/FC,
and let e; = e(PiB]PG), i = 1,...,t, be the corresponding ramification
indices. The diagram in Figure 1 summarizes these definitions and notations.

The extension FP/F is not Galois. On the other hand, if P is a place
of F extending P, then the ramification index e(P|P%) of P over P¢ is
equal to e(P;|P%) since F/F¢ is Galois. Also if PP is the restriction of P
to F'P then the ramification indices e(P|P?), e(P1|PP) of P and P; over
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9 (a-1) q3 (a-1) 9% (@-1)
1 I 1 I 1
F P P
1
4% @-1) \ / \ / \/
—B B
F P pB pB
1 i t
q3+1 e N\ e;
— G
F

Fig. 1

PP and PP respectively are both 1. As
e(P|PY) = e(P|PP)e(PP|PY),  e(P1|PY) = e(P1|PY)e(P{|PY),

we get

e(PP|PY) = e(PP|PT).
In other words the ramification indices e, ..., e; are all equal. So let e =
e; = --- = e;. We have

et:q3+1,

¢ + 1 being the degree of the extension FB/FC. In particular e (which is
also the ramification index of P; over P%) divides ¢®> + 1 and P is tamely
ramified in F/F%. So the different exponent of P; over P% is e — 1 and
the contribution of all the places of F extending P¢ to the degree of the
different of F/FC is ¢3(q — 1)t(e — 1) = ¢*(¢ — 1)(¢® + 1 — t). Comparing
this number with R, we see that there is only one ramified place of F¢
which has a non-F,-rational extension in F. As ¢® + 1 factorizes as ¢> + 1 =
(g+1)(g+3q0+1)(¢—3gq0+1) and t = (g+1)(g+3qo+1), we get e = ¢g—3qp+1.
We summarize the discussion above in the proposition:

PROPOSITION 3.2. The number of non-F4-rational places of F ramified
over F¢ s (g —1)(q+1)(q+ 3qo + 1). These places all lie over a single
place of FC and their ramification index over that place is ¢ — 3go + 1.

Now we show that the non-F,-rational p_laces of F ramified over F&
are exactly the F \ Fg-rational places of F. In [P] the number N, of
[F,m-rational places of Fis

N =q¢™ + 1 —qoq™?*(q — D[(q + 3q0 + 1) cosmm /2 + 2(q + 1) cos 5mm /6].
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So the numbers of F2-, F s- and Fs-rational places of F are

No=¢*+1, N3=¢"+1,
No=¢*+1+¢(¢—1)(g+1)(g+3q +1)
respectively. As the number N; of Fy-rational places of F is ¢° + 1, F' has
no Fp2 \ Fg- and F,3 \ Fy-rational place. Moreover the number of Fe \ IF,-
rational places is equal to the number of non-IF-rational places of F' ramified
over F&. Now if P is an F ¢ \Fg-rational place, every place in the orbit G.P
will be so (because the automorphism group G = Aut(F'/F,) is F,-rational,

i.e. every element of G restricts to an automorphism of F'/IF, which will map
a degree 6 place of F' to a degree 6 place). So we have

[G.P| < Ns — (¢’ +1) < |G,
where |G.P| is the number of elements in the G-orbit of an F \ IFs-rational

place P. Therefore every IF ¢ \ F-rational place is ramified in the extension
F/FS. We arrive at the following proposition:

PROPOSITION 3.3. The non-F4-rational places of F ramified in the ex-
tension F/FC are exactly the F46 \ Fy-rational places of F'. Moreover none
of these places is Fy2- or Fs-rational.

We find the inertia group of an IFS \ F,-rational place in F/F¢.

LEMMA 3.4. Let Py be an F6 \ Fy-rational place of F. Then:

(i) Go(P1) = M, where M is a cyclic Hall subgroup of G with |[M| =
q—3qo+ 1.

(i) M fives exactly siz F o \ Fy-rational places Py, ..., Ps which are the
elements of the N(M)-orbit of P;.

Proof. The order of the group Go(P;) is equal to the ramification index

of P, in F/F¢:

|Go(P1)| = ¢ —3q0 + 1.

Since G contains Hall subgroups of order ¢ — 3qo + 1, Go(P1) is one of them,
say M. Consider the N(M)-orbit, {21, of P;. Since M <1 N(M), any place
in 2 is fixed by M. The index of M in N(M) is 6, so M has 6 distinct
left cosets in N(M): o1 M,09M, ..., 06M, 0; € N(M) and o1 = 1. Clearly
{21 has at most 6 elements (corresponding to each coset). Let P; = o;(P1),
i=2,...,6.1f P, = P; with i # j then o, '0;(P1) = P implying o; 'o; €
Go(P1) = M, which is a contradiction because o; M and ;M are distinct.
So 1 ={P,...,Ps} and M fixes the elements of {2;.

Let P be an F 6 \ Fy-rational place fixed by M. Since all the F s \ Fy-
rational places are in the same G-orbit, P = ¢(P;) for some o € G. But then
oMo~! also fixes P. As |Go(P)| = [M| = |cMo~!|, we have M = oMo ™1,
which implies 0 € N(M). Therefore P € (21.
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Now, we will use the results above to find the ramification groups of
nonrational places of F/F, ramified in F/F®. First note that the field F'¢
is equal to the compositum FYF, (since G is F,-rational). So F/F and
FC/F& are constant field extensions and they are unramified. Therefore the
ramified places of F over FC are exactly the degree 1 places and the degree 6
places. In addition, the ramification index of a degree 6 place of F in F/F¢
is ¢ — 3q0 + 1. We have

THEOREM 3.5. The nonrational places of F ramified in the extension
F/FG are the degree 6 places of F' and they all lie over a single degree 1
place of FC. For any degree 6 place P of F, let G_1(P) and Go(P) denote
its decomposition and inertia groups in F/ FC. Then:

(i) Go(P) = M, a cyclic Hall subgroup of order ¢ — 3qo + 1 of G,
(i) G_1(P) = N(M), the normalizer of M in G, with

[N(M)| = 6(q — 30 +1).

Moreover the degree 6 places of F' are in one-to-one correspondence with the
Hall subgroups of order ¢ — 3qp + 1 of G.

Proof. Let P be a degree 6 place of F and P, ..., Ps its extensions in F.
Let Go(P;) and Go(P) denote the inertia groups of P; and P in F/F¢ and
F/F% respectively. Since Op C Op, and F/F is unramified, for any o € G
and z € Op we have

vp(o(z) —2)>1 = wvp(o(z) —z) > 1.
So Go(P;) < Go(P), but their orders are equal; hence
(3.1) Go(P) =Go(FP), i=1,...,6.

Set M = Go(P), which is a cyclic Hall subgroup of order ¢ — 3gg + 1 of G.
By (3.1) and Lemma 3.4, the places Pi,. .., % are in the N(M)-orbit of P,
in F'. So N(M), as a subgroup of Aut(F/F%), fixes P:

N(M) <G-1(P).

As Go(P)<dG_1(P) and N (M) is the largest subgroup of G with M <1 N (M),
we get G_1(P) = N(M).

Let P denote the restriction of P to F&. The index |G_1(P) : Go(P)| =
6 is equal to the relative degree of P over P9, which implies that P is of
degree 1 in F¢. The fact that all degree 6 places of F lie over a single place
of F€ follows from Proposition 3.2. The last assertion of the theorem follows
from:

e Go(P) does not fix any other degree 6 place (this follows from (3.1)
and Lemma 3.4),
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e the inertia groups of degree 6 places are conjugate to each other and
any conjugate of Go(P) is the inertia group of a degree 6 place (since
the G-orbit of P is the set of degree 6 places in F),

e the Hall subgroups of order ¢ — 3gg + 1 are conjugate in G.

4. Subfields of F. Every subgroup H of G is contained in a maximal
subgroup M of G. The maximal subgroups of GG are given in Theorem 2.4.
In this section, for many subgroups H of G we determine the genera of the
fixed subfields FH of F.

The ramification groups in F/F G are given in Section 3. For any sub-
group H < G, the ramification groups in F//F'* can be calculated using the
following theorem (see, for example, [Se, Chapter IV, §1]).

THEOREM 4.1. Let P be a place of F. For eachi > —1, let G;(P) be the
ramification groups of P in the extension F/FY and H;(P) the ramification
groups of P in F/FH. Then

H;(P)=G;(P)NH foranyi> —1.

The following theorem gives criteria for membership in the inertia groups
Go(P) of the ramified places P of F in the extension F/F¢:

THEOREM 4.2. Let o be a nonidentity element of G. Then o is in the
inertia group Go(P) of some place P of F if and only if exactly one of the
following holds:

(1) lollg*(q —1),
(2) lo||q —3q0 + 1.

Moreover, if |o||qg —3q0 + 1 and 0 € Go(P), then P is a degree 6 place
of F, o is in some cyclic Hall subgroup of G of order ¢ — 3qo + 1 and o is
not contained in the inertia group of any other place of F.

In the case |o||¢*(q — 1) and 0 € Go(P), P is a degree 1 place of F,
o € Ng(U) for some 3-Sylow subgroup U of G and:

(i) if 3||o| then o is not contained in the inertia group of any other
place of F;

(ii) if |o]|q — 1 and |o| # 2 then o is in some cyclic subgroup of G of
order ¢ — 1, and o is in the inertia group of exactly two places of F
which are degree 1 places;

(iii) if |o| = 2 then o is in the inertia group of exactly q + 1 places, all
of them being degree 1 places.

Proof. For a place P of F, Go(P) # (1) if and only if P is ramified

in F/F%. By Theorems 3.1 and 3.5, the ramified places of F in F/F¢ are

exactly the degree 1 places and degree 6 places of F. The inertia group of
a degree 1 place P is the normalizer N(U) of the corresponding 3-Sylow
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subgroup U of G and |N(U)| = ¢3*(¢ — 1) (cf. Theorem 3.1, Proposition
2.5, and Proposition 2.3(8)). The inertia group of a degree 6 place P is the
corresponding Hall subgroup M of order ¢ — 3¢qp + 1 (cf. Theorem 3.5).
Conversely, assume first that |o| | g —3go + 1. By Remark 2.2, 0 € M for
a Hall subgroup M of order g — 3o + 1. Since (¢ — 3qo + 1,¢%(¢ — 1)) = 1,
o cannot fix a degree 1 place.
For the case |o||¢3(q — 1), the proof follows from Theorem 2.6. =

In the rest of this section, {2 will denote the set of degree 1 places
Py, ..., Pps of F. The elements of {2 will be referred to as points and G
is considered with its usual (faithful, 2-transitive) action on {2 (cf. Corollary
2.10). For two distinct points P;, P; € {2, Gp, will denote the subgroup of
G fixing P;, and Gp,p; the subgroup of G fixing both P; and P;. Also, for
H < G and P € §2, H.P will denote the H-orbit of P, which is the set
{o(P)|oceH} C 1

In Subsection 4.1 we find genera of all subfields of F' fixed by a subgroup
of the centralizer C'(k) of an involution k in G.

4.1. Centralizer of an involution. Let x be an involution of G and L =
C(k) be its centralizer. By Proposition 2.3(3), we have

(4.1) L= 7y x PSL(2, q)

and |L] = ¢(g —1)(¢ + 1).

First observe that the Zs component in (4.1) is equal to (k), since oth-
erwise I would centralize two distinct commuting involutions and should
be contained in the normalizer of a subgroup of order 4, which is not the
case (see Proposition 2.3(4)). Let us now see that L has a unique subgroup
isomorphic to PSL(2, ¢). Denote by L’ the PSL(2, ¢) component in (4.1) and
by L” any subgroup of L isomorphic to PSL(2, ¢). Then the order of L' N L”
should be at least |PSL(2,¢q)|/2. But by the well known subgroup struc-
ture of PSL(2, q) (see for example Theorem 4.11 below), the only subgroup
of order > |PSL(2,q)|/2 of PSL(2,q) is PSL(2, q) itself, which shows that
L' = L”. From now on let L' be the subgroup of L which is isomorphic to
PSL(2,q); we have L = (k) x L' = L' x (k).

By Proposition 2.5, x fixes exactly ¢ + 1 points, say Py,...,P;. Let T
be the subgroup G'p,p, fixing Py and P;. By Proposition 2.5, T is cyclic of
order ¢ — 1 and & is the unique involution of T'. Let T be the subgroup of
T of order (¢ — 1)/2.

We first show that L acts on Fy, ..., P, as a permutation group.

LEMMA 4.3. Any element of G which commutes with k permutes the
fized points of k.

Proof. Let 0 € G be such an element, and P; be a fixed point of k. Then
ko (P;) = ok(P;) = o(F;). So k fixes o(F;). =
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For involutions of G, we have a kind of converse of Lemma, 4.3.

LEMMA 4.4. Any involution of G that permutes any two fized points of
Kk commutes with k.

Proof. Without loss of generality assume that 6 is an involution of G
that maps Py to P;. The group 0756 fixes both Py and P; and [0T20| = |T>|.
Therefore 0750 = T and hence § € N(1%). By Proposition 2.3(5), N(T3)
is a dihedral group of order 2(q — 1). Since T is cyclic, T' C N(T3) as
well. Moreover 6 ¢ T since 6 does not fix neither Py nor P;. Therefore
N(Ty) = (8, T). Let 7 be a generator of T. Then 7 = 7~ 16. As x = 7(4-1/2
and (7@1)/2)=1 = 7(6=D/2 e get Ok = k6. =

The following two lemmata will be essential in the genus calculations.

LEMMA 4.5. Let 0 be a nonidentity element of L fixing some point QQ &
{Po,...,P;}. Then:

(i) o does not fix any of Py, ..., Py,

(ii) |o| = 2.

Proof. Let 1 # o € L and 0(Q) = Q for some Q & {P, ..., P,}. Let [ be
a prime dividing m = |o|. Assume that o(P;) = P; for some i = 0,1,...,q.
We have

o"(P) =P, o"(Q)=Q. |o"=1
As o™/! fixes two points (Q and P;), by Proposition 2.5 we have [|q — 1.
Moreover 0”/! cannot fix P;j for any j # i. Otherwise o™/ fixes three distinct
points and ¢™/! should be an involution, indeed it should be & since there is
a unique involution fixing P; and P; (cf. Proposition 2.5). However x does
not fix Q & {P,...,P,}, which is a contradiction. Hence by Lemma 4.3,
o™/ permutes ¢ points ({Pp,..., P} — {P;}) without fixing any of them.

Asl = ]am/ l| is prime, this implies [| ¢, which is a contradiction because
llg—1and (¢g,qg—1)=1.
Therefore o cannot fix any of Py, ..., P;. The same is true for o™/t Then

by Lemma 4.3, (6™/!) acts without fixed point on ¢ + 1 points, so [ |q + 1.
As o fixes the point Q, |o| | ¢*(¢ — 1) = |Gg| (by Proposition 2.5), which
implies 1| ¢3(q¢ — 1). Since (g +1,¢%(¢ — 1)) = 2, we have [ = 2, but 2 is the
greatest power of 2 dividing ¢*>(q — 1), so |o| = 2. =
LEMMA 4.6. Let k1 # ko be two involutions of G. Then:
(i) If k1 commutes with ko then they cannot fix the same point of §2.
(ii) Assume there is an involution distinct from k1 and ko which com-
mutes with both k1 and ko. Then k1 and Ko cannot fix the same
point.
Proof. Assume r1ky = koki. Then |(k1, k2)| = 4. But |Gp| = ¢*(¢ — 1)
for any P € {2 and 41¢>(q — 1), which proves (i).
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To show (ii), let k be the involution with k1 # k # ke commuting with
both k1 and k2. Suppose £1(Q) = Q = k2(Q) for some @ € (2. Then

kik(Q) = kri(Q) = k(Q) fori=1,2.

So k1 and ks fixes both @ and x(Q). As k commutes with x; (and k2), by
(i), k(@) # Q. Recall that G has a unique involution fixing two distinct
points (Proposition 2.5); this implies k1 = k2, which is not the case. =

To identify the ramification groups in the extension F/FT, we also use
the following lemma:

LEMMA 4.7. Let P # @ be two points of (2. Then G has an involution
0 with 6(P) = Q.

Proof. As G acts 2-transitively on (2, there is an element § € G such
that 0(P) = Q and 6(Q) = P. We will show that 6 is indeed an involution
of G.

Now, 62 fixes both P and Q and by Proposition 2.5, we have

‘02”q_17

implying |6] | 2(¢g—1) = 4(%). If |0t q—1 then 4| ||, but there is no element
of order 4 in G, since 2-Sylow subgroups of G are elementary Abelian (by
Proposition 2.3(1)). So ||| ¢ — 1 and by Theorem 2.6, 6 fixes (at least) two
points P’ and Q. As 6 does not fix P and Q, {P,Q} N{P',Q'} = 0. This
implies that 6? fixes four distinct points: P,Q, P’,Q’. So by Proposition 2.5,
6? is either an involution or the identity of G. If #? is an involution then
|0 = 4, which is not possible. Therefore #? = 1 and 6 is an involution. =

PROPOSITION 4.8. The group L has exactly g+1 3-Sylow subgroups each
fizing one of Py, ..., Py.

Proof. Let V' be a 3-Sylow subgroup of L. Then V fixes P; for some
j=0,1,...,q. We will construct ¢ + 1 conjugates (in L) of V', each fixing
one of Iy, ..., P, and so the list of 3-Sylow subgroups in L will be exhausted
(there may be at most g+ 1 3-Sylow subgroups in L). Let P, € {F, ..., P,}
be distinct from P; and 6 be an involution in G with 8(P;) = Pj. The
existence of 0 is justified by Lemma 4.7, and § € L by Lemma 4.4.

Now by Proposition 2.5, any 3-Sylow subgroup of G either fixes a point
or maps it to ¢ distinct points. Also, by Lemma 4.3, V should permute the
points Fy, ..., P;. Therefore the V-orbits of P; and P}, are

V.P;={Pj}, V.Py={R,...,P,}—{P;}.

In other words, the elements o, ¢ € V, maps P; to ¢ distinct points
{Py,...,P;} — {P;}. Hence the groups c0V0o =1, o € V, are ¢ distinct con-
jugates of V' each fixing one of the points in the set {Py,...,P;} —{P;}. =
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Let V be the 3-Sylow subgroup of L fixing Py and let 6 be an involution
mapping Py to P;. Consider the set

L=VTUVOVT,

where VI' = {o7 |c € V, 7 € T} and VOVT = |,y 00VT. It is clear that
[VT| =q(q—1) and |00VT| = q(qg—1) for any o € V. Let 01 and o3 be two
distinct elements of V. Then
019<P0) = Ul(Pl) 7é O'Q(Pl) = UQH(P()).
Any element of VT fixes Py, so the elements of o10V'T map Py to 010(Py) =
o1(Pr) and those of 020VT map Py to 0260(FPy) = o2(Py). This implies
c10VT Noa0VT = 0.

Also, for any 0 € V, 00(Py) = o(P1) # Py and VT NoOV'T = (). Therefore,
the number of elements in £ is ¢(¢ — 1)(¢ + 1), which equals the order of L.
Hence

(4.2) L=VTUVeVT.
In particular, the subgroup of L fixing Py is VT Since VT = V'Ty x (k), the
subgroup of L’ fixing Py is V5.

We are now ready to find the ramification groups of a place fixed by x
in the extension F/F¥:

THEOREM 4.9. Let P be a place fixed by k, and V the 3-Sylow subgroup
of L fizing P. Then the ramification groups in the extension F/F* are:
(i) Lo(P) = Nr(V) = VT, where T is a subgroup of L of order ¢ — 1
fixing P and any one of the remaining places fized by «. The order
of Lo(P) is q(q —1).
(ii) Li(P) =V with |L;(P)| = q for 1 <i<3q+ 1.
(iii) L;i(P) = (1) fori > 3qo + 2.
Proof. Let U be the 3-Sylow subgroup of G fixing P, N(U) = UT its
normalizer, Uy its derived group and Z(U) its center. Then by Theorem 3.1
the ramification groups of P in the extension F//F¢ are:

Go(P)=N(U), Gi(P)=U,
U, for2<i<3g+1,
(4.3) Gipy=1{ b ==
Z(U) for3qo+2<i<q+3q+1.
By Theorem 4.1, L;(P) = L N G;(P). As V is a 3-Sylow subgroup of L,
Li(P) = V. By Proposition 2.3(8), VNU; =V (since Cy (k) = Cy, (k)) and
VNZU)= (1) (since Cy(k) N Z(U) = (1)), so that

Vo oforl<i<3qy+1,
(4.4) Li(P) = .
(1) for i > 3qo + 2.
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The subgroup of L fixing P is VT from the discussion preceding the theorem.
So Lo(P) = VT. From the properties of ramification groups (cf. [St, Chap.
III]) L1 (P) <1 Lo(P), so by Proposition 2.3(9), N.(V) < UT. Since LNUT =
VT, we get No,(V)=VT. u

COROLLARY 4.10. Let P be a place fized by k and H be a subgroup of L.
Then the ramification groups H; = H;(P) of P in the extension F/FH are
H;=L;(P)NH,i>0. In particular H; = Hy for2 <i<3qy+1, H; = (1)
fori > 3qo + 2, and the different exponent of P in F/FH is given by

dp = (|Ho| — 1) + (|H1| — 1) + 3qo(|H1| — 1).

4.1.1. The subgroups of L. The subgroups of PSL(2,q) are well known
by what is commonly called Dickson’s Hauptsatz (see [V-M] for a proof
involving the ramifications in subfields of the rational function field). When
g =325t s> 1, this theorem becomes:

THEOREM 4.11 (L. E. Dickson). PSL(2,q), ¢ = 32**', s > 1, has only
the following subgroups:

(1) elementary Abelian 3-groups of order 37 with f < 2s + 1;

(2) cyclic groups of order n with n|(q+1)/2;

(3) dihedral groups of order 2n with n|(q £1)/2;

(4) A4, alternating group on four letters;

(5) semidirect products of elementary Abelian 3-groups of order 37 with
cyclic groups of order n with f < 2s+1,n|3f —1 and n|(q—1)/2;
(6) PSL(2,37) with f|2s+ 1.

REMARK 4.12. Let H < L be a subgroup with x ¢ H and H £ L'. Then
the following isomorphism @ maps H into L": #(a) = « for each « € HN L'
and @(5) = k3 for each f € H\ (HNL'). So H is a subgroup of L which
does not contain k£ and which is isomorphic to a subgroup of PSL(2,¢). In
the subsections below, where we calculate the genera of subfields fixed by
subgroups of L', it is easily seen that this property is enough to carry out
the calculations. Therefore the genus of F is equal to the genus F®H),
So for our purposes, it is enough to consider the subgroups of L’ (listed in
Theorem 4.11) and their direct products with (k).

In each subsection below we will find the genera of the subfields of F
corresponding to a distinct (type of) subgroup listed in Theorem 4.11, and
its direct product by x. First observe that since (|L|,q—3qo+1) = 1, if P is
a ramified place of F' in the extension F'/ FH of any subgroup H < L, then
P should be a degree 1 place by Theorem 4.2.

Elementary Abelian 3-groups. Let V' be a 3-group in L’ of order 37, f <
2s+1 and V be the 3-Sylow subgroup of L containing V’. Since the 3-Sylow
subgroups are disjoint, only one place P of F' is ramified in the extension
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F/FY', which is one of the places fixed by x (see Proposition 4.8). By
Theorem 4.9 and Corollary 4.10, the different exponent of this place in
F/FV is
dp= (3" —1)+ (3" — 1) +3¢3 - 1).
If we let gy be the genus of FV' then the Riemann-Hurwitz formula applied
to the extension F/FY" gives
29 — 2= 3729y — 2) + 30 + 2)(3" - 1),
where g = %qo(q —1)(g+ qo + 1) is the genus of F' and gy is computed as
gy = 2377 (3¢0¢* + ¢* — q) — 3q0).

Let H = k x V' and gy be the genus of FH. As k fixes the place P,
k € Ho(P) (the inertia group of P in F/F™), so Hy(P) = H and the
different exponent, dg ,of P in F/ FH becomes

df =237 1)+ 3/ —1)+3¢37 —-1).
Any element ¢ € H with 3| |o| can fix only one place (cf. Theorem 2.6),
which should be P (because Ho(P) = H). The group H does not contain
any involution other than . Also H — {x} has no element of order dividing
q — 1. So by Theorem 2.6, the remaining ramified places of F' in F/FH
are the ¢ other places fixed by k, each with ramification index 2. So the
Riemann—Hurwitz formula states that
29 —2=2(3") (291 — 2) + (23") = 1) + (3g0 + 1)(37 — 1) + ¢
and we have
g = 1377 (3q0¢* + ¢* — 29) — 3q0 + 1].

In the particular case where V/ =V, the genus gy of FV is

gv =3B +1)(g—1)
V' equals

gwv = 1(3q0 +1)(g — 1).

Cyclic groups of order dividing (q + 1)/2. Let CT be a subgroup of L'

of order n | (¢+1)/2. Assume first that 2¢n. Then C* does not contain any

involution and any element of order 3. Also (n,q — 1) = 1, which implies
C*t N Lo(P) = (1) for all P. So the extension F/FC" is unramified and

29 — 2 = n(2gcr — 2),
where go+ (the genus of F C+) is computed as

1
go+ =5~ (Bgo(¢ —1)(¢+q+1)—2) + 1.

(k)X

and the genus of F'

If 2|n then CT (being a cyclic group) contains only one involution. So
F/ FC" is ramified at q + 1 places with ramification index 2. Applying the
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Riemann—Hurwitz formula 2g — 2 = n(2gc+ — 2) + ¢ + 1, we get
1
gor =5 (3a0(g—1(g+g+1)—¢-3)+1L

Consider now the subgroup H* = (k) x C* of L. Again we have two
cases. If 24n, then H* contains only one involution so that
29 —2=2n2gy+ —2)+q+1
where gg+ is the genus of 'Y +, computed as
gir+ = 7 (Baoa— g+ +1) —g—3) +1
If 2|n then H* has 3 distinct involutions. Since (by Lemma 4.6) distinct

involutions of L fix disjoint set of points, F/FH " is ramified at 3(g+1)
places of F. In this case, g+ is computed as

1
g+ = - Baola = 1)(g+a0 +1) =3¢ —5) + 1.

We consider the following particular cases: if |[CT| = (¢+1)/4, then the
genera, of FC" and FR*CT are

go+ = 6qoq +2q — 690 — 3, guct+ = 3909 +q — 3q0 — 2,

respectively, and if |CT| = (¢ + 1)/2, then
go+ =304 +q =300 — 2, guot+ = 3(3¢0q + ¢ —3q0 —5) + 1.
Cyclic groups of order dividing (¢ — 1)/2. Let C~ < L' with n = |C™|

dividing (¢ — 1)/2. Note that the extension F/F¢" is tame because 3{n. Let
T be the cyclic subgroup of G of order g—1, fixing Py and P;. By Remark 2.2,
C~ is conjugate to a subgroup of T'. So without loss of generality we assume
C~ < T. Therefore, the inertia groups of Py and P, in the extension F'/F o,
are

Cy(Po)=WInC™ =C", CyP)=WTInC =C",
where V and V; are the 3-Sylow subgroups of L fixing Py and P; respectively.
As 2f(q —1)/2, C~ does not contain any involution, so F//F¢" is ramified
only at the places Py and Py. If go— is the genus of F¢™ | we have

29 —-2=n(29c- —2)+2(n—1)

and

SRS

3
_ = —_ — —1 1 .
go 5 qo(q —1)(g+qo +1)

Now, let H- = k x C7. As k € T, again we have H~ < T. So the
extension F//FH " is ramified at Py, P; with ramification index 2n, and at
q — 1 other places, fixed by k, with ramification index 2. If we apply the
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Riemann-Hurwitz formula to F/FH ™
29 -2=2n(29g- —2)+2(2n—-1)+q¢—1
where gg- is the genus of F~ | we get
1
9~ = - (4= 1)(3q0q + ¢+ 3g0 — 1).
When n = (¢ — 1)/2, H~ becomes equal to T and the genus of F7 is

g7 = 3(3¢0q + q + 3q0 — 1).

Dihedral groups of order 2n with n dividing (q+1)/2. Let DT < L’ be a
dihedral subgroup of order 2n with n | (¢ + 1)/2. Since (¢+ 1,q(¢—1)) = 2,
the ramification index of any place of F, in F/F b +, is at most 2. Let CT
be the subgroup of Dt of order n and # an involution in D™ which is not
contained in C*. Then

Dt = (h,CT).

The involutions of DT are

(1) the elements in {fo | 0 € CT},
(2) the possible involution of C't.

So again we have two cases: 2{n and 2|n. If 2¢n, the number of distinct
involutions in D is n = |C*|. So, denoting by gp+ the genus of FP' we
have

29 —2=2n(2g9p+ — 2) +n(g+1)
and we get

gp+ = ﬁ(Q‘Fl)[(?)QO-Fl)(q—1)—n—1]+1.

If 2|n, then DT has n + 1 distinct involutions and we have

9p+ = ﬁ(Q+1)[(3QO+1)(q—1)—71—2]—}—1.

Let MT = (k) x D™ < L. If 2{n then Mt has 2n+1 distinct involutions.
We have

29 — 2 =4n(2gp+ —2) + (2n+1)(g + 1)
where g+ is the genus of FM +, computed as
1
gur = g (@ + D[Bao+1)(g = 1) =20 - 2] + 1.

In the case 2|n, M " has 2(n+ 1) + 1 = 2n + 3 distinct involutions and we
get

Im+ = % (¢+1)[(3go+1)(¢g—1) —2n—4] + 1.



Subfields of the function field of the Ree curve 153

If n=(¢+1)/4, we have

gp+ = B +1)(¢—1) — (¢ +1)/4,

gu+ = 5Ba0 +1)(g—1) = (¢ +1)/4,
and if n = (¢ +1)/2, then

gp+ = 5B +1)(g—1) = (¢ +1)/4,

g+ = 1300 + 1) (g —1) — (¢ +1)/4.

Dihedral groups of order 2n with n dividing (¢ — 1)/2. Let D~ < L' be

a dihedral subgroup of order 2n with n| (¢ —1)/2. Since (3,2n) = 1, the
extension F//FP™ is tame. Let T be the cyclic subgroup of G of order ¢ — 1,
fixing the points Py and Py, and let C'~ be the subgroup of D~ of order n.

We can assume that C'~ < T by taking a suitable conjugate of D~. Let 6
be an element of D™, with 8 ¢ C'~. Then @ is an involution and

D™ =(0,C7).
The only involution of T is k, so § ¢ T'; moreover, being an involution
commuting with s, 6 (and any element of D~ — C'~) does not fix any of

the points fixed by « (cf. Lemma 4.6). So, as in the case of cyclic groups of

order dividing (¢ — 1)/2, the ramification indices of Py and Py, in F/FP™|

are equal to n = |C'~|. The other ramified places of F' in F//FP™ are those

fixed by involutions in D~. Since 2/n, D~ has n = |C~| involutions, each

fixing a disjoint set of ¢ + 1 points. So the Riemann-Hurwitz formula gives
29 —2=2n(2gp- —2)+2(n—1)+n(g+1),

where gp)- is the genus of FP~ and we get

1
9p- = 3~ (¢=1) (3209 + g+ 3q0 —n).

Consider now the subgroup M~ = (k) x D~ < L. The ramified places
of F'in F/FM™ are as follows:

e since k € T, Py and P, are ramified with ramification index 2n;

e there are g—1 more places, P, ..., Py, fixed by x, and they are ramified
with index 2;

e M~ has 2n involutions distinct from &, each fixing a disjoint set of g+1
places (which are also different from P, ..., P,), so that, 2n(g+1) more
places are ramified with index 2.

Substituting this data in the Riemann-Hurwitz formula,
29 —2=4n2gp- —2)+22n—-1)+ (¢ —1) +2n(g+ 1),

where g,— is the genus of FM™ | we get

1
gM- =3~ (¢ —1)(3g0q + g+ 3q0 — 2n — 1).
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In the particular case where n = (¢ — 1)/2, we have

gp- = 2(6q0 + 1)(qg+1), gy- =1 3q0(q+1).

Here we note that, when n = (¢ — 1)/2, M~ becomes itself a dihedral group
of order 2(q — 1), generated by the involution § and the cyclic group T.
Moreover, M~ is the normalizer (in G) of the cyclic Hall subgroup C~ < G
with |C~] = (¢ — 1)/2 (listed in Proposition 2.3(5)).

Semidirect products of elementary Abelian 3-groups with cyclic groups.
Let S =V’ x C~ < L’ be the semidirect product of an elementary Abelian
3-group, V' < L', of order 3/ with a cyclic group, C~ < L', of order n, with
f<2s+1,n|3/ —1and n|(q—1)/2. Let V be the 3-Sylow subgroup of L’
containing V/ and T the cyclic subgroup of L, of order ¢ — 1, containing C'~.
Since V’ is normal in S = V/ x C~, by Proposition 2.3(9), S is contained
in the normalizer N7 (V) of V in L. By Proposition 4.8, V fixes one of the
places Py, ..., P, fixed by , and by Theorem 4.9, N1,(V') = VT is the inertia
group of that place. So, by taking a suitable conjugate of S, we can assume:

e V (and V') fixes Py,
e T (and C7) fixes Py and Py;

in particular, Ni(V) = VT is the inertia group, Lo(FP), of Py in the exten-
sion F/FL. Since 2¢|S|, S does not contain any involution and the ramifi-
cations of F//F can occur only at the places fixed by x. As V' is the only
3-Sylow subgroup of S, only Py is wildly ramified. The ramification groups
of Py in F/F¥ are
V' forl<i<3qy+1,
(1) for i > 3qp+ 2.
Therefore the different exponent of Py is (cf. Corollary 4.10)
dp, = (3'n—1)+ (37 —1) + 3¢o(3" - 1).
Now the V'-orbit of P;, V'.P; = {o(P}) | 0 € V'}, has 37 elements, say
V'!.Py = {Py,..., Pys}. Each conjugate of C~ by an element of V', cC~ 0!,
fixes the place o(P}). So each place in V'.P; is tamely ramified in F//F* with
ramification index n = |C'~|. Now we will show, using a counting argument,
that if P # Py and P ¢ V'.Py, then no nonidentity element of S fixes P.
Hence the ramified places of F in F/F* are exactly P, ..., Psy.
Let 01,09 € V' be two distinct elements of V’. Then
oiC o NV = (1), i=12.
For i = 1,2, each element of O'Z'O_O'i_l fixes both Py and o;(P;). So any
element of olC’_afl N 020_051 fixes Py, 01(P1) and o2(P1). As 01(Py) #
o2(P1), any element of 016’_01—1 N 020_02_1 is either the identity or an
involution (because a nonidentity element of G fixing 3 points should be an

So(Po) =S, Si(PR) = {
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involution, cf. Proposition 2.5), but S does not contain any involution, so
010 a7 ' NoaC oyt = (1).
Therefore the number of elements in | J, .\ (cC~ o™t — (1)) is [V'|(|C~| - 1)
= |S| = |V']. So we have
S=J (o = 1)uv,
eV’
where, for all ¢ € V', an element in cC~c~! — (1) fixes only Py and o(Py),
and an element of V' fixes only Py. Hence any element of S fixes either P
or an element of V'.Py.
We are ready to compute the genus, gg, of F¥. We have
29 — 2 = 3/n(2g5 — 2) + dp, + 3/ (n — 1),
where dp, = 3¢03/ — 3o + 3/n + 3/ — 2 and we get
11
2 3/n
Consider now the subgroup (k) x S < L. As k € T < VT, the different
exponent of Py in F/F*)*S is
a5 =(2-3"n - 1) + (37 — 1) + 3¢0(37 — 1).

The other ramified places of F in F/F{*5 are

gs 3q0(q* + qq0 — g0 — 37).

e the 3/ places fixed by conjugates of (k) x C~, with ramification index
2n;
e the remaining ¢ — 3/ places fixed by x, with ramification index 2.

So the Riemann—Hurwitz formula states
29 —2=2-3"n(2g.s — 2) +d +37(2n - 1) + (¢ - 37),
where g,.g denotes the genus of F** and d;f = 3q037 —3qo+2-3/n+37 -2

Then g.g is computed as
_1
4 3fn
When f=2s+1and n=(¢—1)/2, we have
S=VTy, (k)yxS=VT,

where T is the subgroup of T' of order (¢ — 1)/2. The genera of FV?2 and
FVT are computed as

s (3q04* + ¢* — 2q — 3q037 + 37).

gvr, =3¢ +1,  gvr=3(3q +1)

respectively.
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The groups isomorphic to PSL(2, 3f). Let L'f be a subgroup of L’ iso-
morphic to PSL(2,3/) with f|2s+ 1. Then

IL'| = |PSL(2,37)| = 1 - 3/(3/ — 1)(3/ +1).

If f =1, then L'7 is isomorphic to the alternating group on four letters
and this case is considered in the next subsection. Therefore we assume here
that f > 1 is an odd integer.

Recall that for any ¢ = 3271, s > 1, L has a unique subgroup L’ isomor-
phic to PSL(2, ¢) and L’ has ¢+ 1 disjoint 3-Sylow subgroups corresponding
to P, ..., P,, the fixed places of k. Let 6 be an involution of L’ and assume
without loss of generality that 0(FPy) = P;. Let V be a 3-Sylow subgroup of
L’ (or equivalently of L) fixing Py, and T be the subgroup of L fixing Py
and P;. Recall the equality (4.2),

L=VTUVoVT.

Let T, be the subgroup of order (¢ — 1)/2 of T. Using the same arguments
used to obtain (4.2), we also get

L'=VThuVoVTs.
Note also that L’ has g+ 1 disjoint 3-Sylow subgroups corresponding to the
fixed places of k and for the normalizer of V' in L' we have N/ (V) = V5.
Since f > 1 is odd, considering Ree(3/) and by the discussion above, L'f

has 37 + 1 disjoint 3-Sylow subgroups corresponding to Py, ..., Py among
the fixed places of k. Moreover

' =vitiuvielviTi,
where V/ is the 3-Sylow subgroup of L'/ fixing Py, T 2f is the subgroup, of
order (3/ —1)/2, fixing Py and P;, and 6/ is an involution of L’ such that
6f (Py) = Py. Also Ny (V) =VIT Vi<V, and Tf <.
Therefore for any P € {Py, ..., P;s}, the ramification groups are

Vi for1<i<3 1
Py =vit{, LI(P)= { or s rs Sty
(1) fori>3qo+2,

(2

where V/ is the 3-Sylow subgroup of L'/ fixing P, and T 2f is the subgroup
(of order (3 —1)/2) of L'/ fixing P and all Py, ..., Py;. Hence the different
exponent of P in F/FL/f is
dp=(3-3/(3/ =1) = 1) + (37 — 1) + 3o (37 — 1).
Now, let o € LY,
(i) If 3||o| then o fixes a unique place among Py, ..., Pyy;
(ii) if |o|| ¢ — 1 and |o| # 2 then by Theorem 2.6, ¢ is contained in a

cyclic subgroup (of G) of order ¢ — 1 and from the subgroup struc-
ture of PSL(2,37) (cf. Theorem 4.11), ¢ is contained in a cyclic
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subgroup of L'f of order (3f —1)/2, and fixes exactly two places
among Fo, ..., Psy;

(iii) if |o| = 2 then o is an involution of L distinct from x and does not

fix any of the places fixed by .

Therefore, from Theorem 2.6, if P is a place fixed by x and P & { Py, ...
..., P} then P is not ramified in F'/ FL'7 So the remaining ramified places
of F in F/FL” are those fixed by involutions of L'f = PSL(2, 3/).

When ¢ is odd, PSL(2,3") has 3/(3' — 1)/2 involutions. So in our case,
f12s+1and L' has 3/(3/ — 1)/2 involutions. Now, we are ready to apply

the Riemann-Hurwitz formula to the extension F'/ FLY.

373 - 1)

1
29-2=5" 33 1) (3 +1) (295 —2)+ (37 + 1)dp + (g+1),

where g; s is the genus of L'/ and
dp=1%-3/(3/ —1)+3/ +3¢p(3/ — 1) — 2.
The genus of L'/ is computed as
3qo(q* = 3*) +¢° =3% —q+3/ +5-3/3 - 1)/ —g)
33 —1)(37 +1)

Consider now the group (k) x L'f. In F/F #xL' the different exponent
of each of the 3/ + 1 wildly ramified places will become

dn = (373" —1) = 1)+ (3 = 1) +3¢(37 — 1)

(because the inertia group of such a place will be of the form (k) x (V/xC~),

which is of order 3/(3/ — 1)). The involution x will fix ¢ — 3/ more places
3f37 -1 _
=

grir =

and these will be ramified with ramification index 2. There are 2
37(3/ — 1) more involutions in x x L'f, each fixing ¢ + 1 points. Then the
Riemann-Hurwitz formula gives

292 =3/ (3/ = 1)(3/ +1)(2g,.1s —2)+ (3 +1)dp+(¢—37)+3/ (3/ = 1) (¢+1),
where g,.;/¢, the genus of L'/, is calculated as
_ 3a0(@® =3) +¢* =3 + 23/ — ) +3/(3 - 1)/ —q)
Irrs = 2.3/ (3 —1)(3F +1) '

In particular, when 3/ = ¢, i.e. L' = I/ =2 PSL(2, q), the genus, gy, of
the field FL' is gy =0, and as FL C FL,, the genus of F is also zero.

Groups isomorphic to the alternating group on four letters. Let A be a
subgroup of L’ isomorphic to A4. Then:

(i) |A] = 12;

(ii) A has three distinct involutions k1, ko, k3, With K1ky = K3;
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(iii) A has four disjoint 3-Sylow subgroups, V/,i = 0,1, 2,3, where V/ =
KiVb/Iii, 1= 1,2,3.
If Py is the point fixed by V{ (which is among the points fixed by &), then
each V! fixes k;(Pp), for i = 1,2, 3. Let us see that

Py # ki(Po) # k;(Po)
if ¢ # j. This will prove that each of the four 3-Sylow subgroups of A fixes
a distinct point.
Since k ¢ A, we have k; # k and by Lemma 4.6, k;(Py) # Py, for each
i =1,2,3. Suppose that k1(Py) = k2(Fy) = P1. Then
k1k2(Po) = k1(P1) = Py,
i.e. k1Ko fixes Py, but by (ii) above, k1k2 = k3 is an involution, and again
by Lemma 4.6, k1k2 cannot fix Py. So k1(Fy) # k2(FPp) and similarly
i#j = ri(Bo) # ri(R).
Therefore, for each ¢ = 0,...,3, V; fixes a different point, so it is contained
in a different 3-Sylow subgroup, U;, of L. Moreover, only four places of F' are
wildly ramified in F'/ FA_If P; is the place fixed by V;, then the ramification
groups of P;, in F/FA are
Ao(P) = Ai(P) = Ao(P) = Vi, As(P) = (1),

and the different exponent of P; is

dp,=3—-1)+(3—1) 4+ 3go(3 —1) =4+ 6qo.
The remaining ramified places of F in F/F# are the 3(q + 1) places fixed
by the involutions of .A. We have

29 —2=12(294 — 2) + 4(4 + 6q0) + 3(q + 1),
where g4 is the genus of FA, calculated as

1
94 = 5; (3000” + ¢° + 20 — 27q0 + 3).

If we consider the extension F'/ F{x A the different exponent of P, i =
0,...,3, becomes

dp = (6—1)+(3—1)+3q(3 —1) =7+ 6qo.

The remaining ¢ — 3 places fixed by  are ramified in F/F (XA wwith ram-
ification index 2. The group (k) x A has six more involutions, each fixing
q + 1 points. So we have

29 — 2 =24(2gka — 2) + 4(7T+6q0) + (¢ — 3) + 6(¢ + 1),

(K)x A

where the genus, g4, of F' is calculated as

1
9rd = g (3q04° + ¢* — 8¢ — 27qp + 15).
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4.2. Normalizer of a subgroup of order g+3qo+1. Let K be a cyclic Hall
subgroup of G of order g + 3¢y + 1 and I" = Ng(K). By Proposition 2.3(6),
I' is a Frobenius group with kernel K and a cyclic noninvariant factor of
order 6. In this subsection we find the genera of all subfields of F' fixed by
a subgroup of I'.

Let us first recall the definition of a Frobenius group and some properties
of Frobenius groups (see for example [G-L-S 2] or [Ro]). A finite group I" is
called a Frobenius group if it has a subgroup H < I' with (1) # H # I such
that

HNH?=() foraloel' —H

where H° = ¢ Ho 1. Then
K=r- -

ocel’
is a normal subgroup of I" such that

I'=KH, HNMK=/1).

K is called the Frobenius kernel, H is called a Frobenius complement (or a
noninvariant factor). The Frobenius kernel K is uniquely determined by the
conditions above and H is uniquely determined up to K-conjugacy.

First we find all subgroups of a Frobenius group with cyclic Frobe-
nius kernel of order n and cyclic Frobenius complement of order 6, where
ged(n, 6) = 1.

PROPOSITION 4.13. Let M be a Frobenius group with cyclic Frobenius
kernel N of order n and cyclic Frobenius complement of order 6, where
ged(n,6) = 1. If My < M is a subgroup, then M is of one of the following
types:

(i) |Mi||n and M; < N,
(ii) |M1||6 and My < H for a Frobenius complement H of M,
(iii) ‘M1| =nihy with 1 < ni, 1< hl, n |n, h1 ’6 and My, = N1 % Hl,
where Ny is the subgroup of N with |N1| = n1 and Hy is the subgroup
of a Frobenius complement H of M with |Hi| = hy. Moreover M
1s itself a Frobenius group with Frobenius kernel N1 and Frobenius
complement Hy.

Proof. 1t is clear that for any n1 | n, hy | 6 and any Frobenius complement
H of M, there are cyclic subgroups Ny of N and H; of H with |N;| = n; and
|H1| = hy. Conversely for any subgroup My of M with |Mi||n or |M;] |6, we
have M7 < N or My < H for a Frobenius complement H of M respectively,
by Theorem 2.1. Therefore it remains to consider (iii).

For any subgroup Ny < N and h € H, if g € Ny then |g| = |hgh~!| and
hence hgh™! € Nj. Therefore for any nontrivial subgroup (1) # N; < N
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of the Frobenius kernel N and any nontrivial subgroup (1) # H; < H of
a Frobenius complement H, N7 x Hj is a Frobenius subgroup of M with
Frobenius kernel Ny and Frobenius complement H;.

Conversely first assume that M; is a subgroup of order 2n; with 1 <
ny |n. Let Hy be a 2-Sylow subgroup of M;. Then H; < H for a unique
Frobenius complement H of M. If x € N — (1), then Hy NzHyz~! = (1). If
x € M} —(NUH;), then z is an involution and = ¢ H, since H has a unique
involution. Therefore H; N xHiz~! = (1) for any x € My — Hy and M is
a Frobenius group with Frobenius complement H;. Moreover the Frobenius
complement of M; is the unique subgroup N of N with |Ni| = ny.

Next assume that M; is a subgroup of order 3n; with 1 < nj|n. Let
H;y be a 3-Sylow subgroup of M. Similarly M; is a Frobenius group with
Frobenius complement H; and the subgroup Ny of N with |N;| = n; as the
Frobenius kernel.

Now we assume that M is a subgroup of order 6n; with 1 < n; < n and
n1|n. Let N1 be the subgroup of N of order ny. Let {1,a} and {1, 3, 3%}
be 2-Sylow and 3-Sylow subgroups of M. Let {1,a} C H, where H =
{1,h,...,h°} is the Frobenius complement containing o. Then o = h? and
B =uh?u~! (or B = uh*u=!) for u € N. First we consider the case u € Nj.
In this case we have a = h3 € M; and h%? € My (or h* € My). Therefore
h € M; and hence M7 = Ny x H, which is a Frobenius group with Frobenius
kernel N7 and Frobenius complement H.

We show that the other case u € N — Nj is impossible. Let H; = ().
Observe that Ni x () is a subgroup of M;. Moreover N; x (3) N {ga :
g € N1 x ()} =0 and My = Ny x (B) U{ga : g € Ny x (§)}. Since
N1 x (B)NH =0, for any 0 € My — Hy we have c Hio~! = (1). Hence M
is a Frobenius group with Frobenius complement H; and Frobenius kernel
Ny x (B). In particular afa € Ny x ((3).

Note that for any g € N, we have

a(ga)? = (aga)ga = g(aga)a  since N is Abelian
= (9a)’a.

Then a € (ga) 2H(ga)? N H. Moreover (ga)? € N and hence (ga)? = 1,

since H is a Frobenius complement of M. Therefore ag = g 'a.

We have a = h3, B = uh®u™! (or 8 = uh*u™1), and afa € Ny x (3).
Then
afa = a(uh’ua  (or = a(uh*u"")a)
= (uta)h?(au) (or = (u ta)h*(au))
= u"'h?u (or = u~'h%u)

= u"2[Bu’.
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Moreover (afa) is a subgroup of order 3 and all subgroups of order 3 in
Ny x (f3) are exactly {(v™1Bv) : v € Ny}. Therefore there exists v € Nj such
that {1,u~26u?, u=23%u?} = {1,v"1Bv, v 1 3%v}. We have either u=23u? =
v 1Bv or u2Bu? = v %v. Then either vu2pBu?v™! = 3 or vu=2Bu?v!
= 2. In both cases, vu~2(B)u?v~! = (3). Moreover N x (3) is a Frobenius
group with Frobenius kernel N and Frobenius complement (3). Since vu 2
€ N and vu2(B)uv~! = (B), we have vu=2 = 1 and so v = u?. However
u € N — Ny and (u) = (u?), since ged(2,n) = 1. Hence it is a contradiction
that v =u?> € Ny. m

We consider the ramification structure of the extension F/F!. The
extension F/F! is not ramified at the nonrational places of F because
(II'),g —3go + 1) = 1 (cf. Theorem 3.5). So we need to find the ramified
places inside (2 (the set of rational places of F') and the corresponding ram-
ification groups.

The order of I"is 6(¢+3go+1), so the order of its 3-Sylow subgroups is 3.
Let H be a Frobenius complement of I'. Then H is a cyclic group of order 6.
So H contains an involution x and an element ¢ of order 3. Assume o fixes
the point FPy. Since ¢ commutes with , from the discussions in Section 4.1,
k (in particular H) also fixes Pp.

We first discuss the wildly ramified places of F'in F//F!. Recall that the
order of the subgroup of G fixing a point of 2is ¢3(¢—1). As (|K|,¢*(¢—1))
= 1, the K-orbit of Py, K.Py = {a(Fy) | @« € K}, has |[K| = g+ 3q0 + 1
elements, say P, ..., P3¢, (we will show later that  fixes only Py among

these points).
THEOREM 4.14. The wildly ramified places of F in F/FI are Py, ...
ooy Pyysgo. The ramification groups of Py in F/F" are
(o) for1<i<3q+1,
Iy(P) =H, Ii(P)= .
(1)  fori>3qo+2.

The different exponent of Py is
dp,=(6—-1)+(3—1)+3go(3—1) =6qp + 7.

Moreover, for each i = 1,...,q + 3qo, the ramification groups of P; are
conjugates of those of Py, and the different exponent of P; is equal to dp,.

Proof. As (|I'|,¢*>(g—1)) = 6, H is the (largest) subgroup of I" fixing Py,
and the assertions about the ramification groups and the different exponent
of Py follow from Theorem 4.9 and Corollary 4.10.

The wildly ramified places of I’ will be those fixed by 3-Sylow subgroups
of I'. Any 3-Sylow subgroup of I'" has order 3 and should be a conjugate
(in I') of (o), so it should be contained in a conjugate (in I') of H. So
the wildly ramified places of F' will be those fixed by conjugates of H. As
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I' can be written as the product of its Frobenius kernel and its Frobenius
complement, I' = K H, any conjugate (in I') of H is awHw 'a™! = aHa ™,
where a € K and w € H. In other words, the set of conjugates of H is

{aHa ™' |a € K}.

Let a1 # ay be two elements of K. Then a;(FPy) # as(Fp). For i = 1,2,
the element of order 3 of a;Ho; Lis Qoo 1, and this element fixes only
a;(Py) € 2. So the groups alHal_l and OégHOé2_1 are distinct. Therefore,
H has g + 3qg + 1 conjugates, each of them fixing a different point among
Py, ..., Pyy3g0+1. Since any conjugate, aHa™!, of H, is the inertia group of
a(Pp), the last assertion of the theorem follows. m

Now, the ramification index of any tamely ramified place of F' in F/FT
is 2 (because (|I'|,¢®(¢ — 1)) = 6). So we need to find the fixed points of
involutions in I'.

LEMMA 4.15. The group I has exactly q+3qo+1 involutions, each firing
exactly one point among Py, ..., Pyi34, and q other points of §2. Moreover,
two distinct involutions of I' cannot fix the same point of {2.

Proof. The order of a 2-Sylow subgroups of I" is 2. Therefore any invo-
lution of I" is a conjugate (in I") of k, so it is contained in a conjugate of H.
In the proof of Theorem 4.14, we have also established that H has exactly
q+ 3qo + 1 distinct conjugates. From the definition of Frobenius groups, the
conjugates of H are disjoint. As each conjugate of H has a unique involu-
tion, I" has exactly ¢ + 3go + 1 involutions and (from the proof of Theorem
4.14) each of them fixes one of Py, ..., Pyi3q-

To finish the proof it is enough to show that distinct involutions of I
cannot fix the same point. Let k1 # k2 be two involutions in I'. Suppose
k1(P) = ko(P) = P for some point P of {2. Then the subgroup of I
generated by k1 and kg, (k1,k2), will also fix P. So (k1,k2) < Gp (and
(K1, k2) < I'), which implies

{1, m2)] |6 = (¢°(q = 1), 6(q + 3g0 + 1))
Obviously the order of the group (k1,k2) cannot be 2 and 3. So |(k1, K2)]
= 6 but this implies that (k1,k2) = I'o(P) which is a conjugate of H. No
conjugate of H has two distinct involutions, and this contradiction finishes
the proof. =

From Lemma 4.15, we easily get

THEOREM 4.16. The number of tamely ramified places of F in the ex-
tension F/F! is q(q + 3qo + 1), and the ramification index of each of them
18 2.

Any subgroup of I' is given in Proposition 4.13. In the subsections below
we find genera of any subfield of F' corresponding to subgroups I.
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Subgroups of the form Ny x H with |[N1| =mn1|q+ 3q0+ 1 and |H| = 6.
Ni X H has n; disjoint Frobenius complements each fixing a place among
the wildly ramified places of F' in F//F!. The ramification groups of these
places in F//FN1*H are the same as their ramification groups in F/F!’ say
Py,...,Py,—1. For any P € {Py,...,P,,—1}, the corresponding Frobenius
complement of N; x H fixing P has the unique involution which fixes q other
places of 2. Moreover two distinct involutions of N1 X H cannot fix the same
place. Therefore the Riemann—Hurwitz formula applied to F//F NixH giveg

29 — 2 = 6n1(29N, xm — 2) +n1(6g0 + 7) + n1g,
where gn, xm is the genus of FNixH - computed as

~ 3qo(q—1)(g+qo+1) —ni1(g+6go —5) — 2
gN1xH = 12711 .

In particular for Ny = K we have Ny x H = I" and gr = (¢ — 1)(q0 — 1) /4.

Subgroups of the form Ny x () with |[N1| =n1|q+3q0+1 and |B| = 3.
N7 % () has n; disjoint Frobenius complements each fixing a unique place

Po,...,Pp,—1. Let P be one of these places. The ramification groups of P
in F/FN12(8) are

(1 % (9))P) = {
Therefore its different exponent is
dp=(3—1)+(3—1) +3q (3 —1) = 6y + 4.
Nj % () has no involutions and applying the Riemann-Hurwitz formula to

F/FNXB) we get
29— 2 = 3n1(29N1>4<ﬁ> - 2) + n1(6% + 4)7

(B) for 0<i<3qp+1,
(1)  for i > 3qo + 2.

where gy, (g is the genus of FNvB) - computed as

3qo(q — 1)(q+ qo + 1) —n1(6gp — 2) — 2
6TL1 '

INix(B) =

In particular for Ny = K we have gx (s = (¢ — 1)q0/2 — q/3.

Subgroups of the form Ny x () with |[Ni|=n1]q+3q +1 and |of = 2.
Observe that ged(| N1 x (a),3) = 1 and hence there is no wild ramification
in F/FN>{@)  Since Ny x (a) has n; disjoint Frobenius complements each
having a unique involution, the Riemann—-Hurwitz formula gives

29 — 2 = 2n1(29N, u(a) — 2) + 11(q + 1),
where gn, y(a) 18 the genus of F Nix(e) computed as

~3q(g—1)(g+q+1)—ni(¢g—3) -3
gN1>4(a> - 4”]_ .

In particular for Ny = K we have gg (o) = (3(¢ +1)q0 + 1 — 3¢) /4.
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Subgroups of the form Ni with |Ni| =n1|q+ 3qo + 1. Observe that
ged(|N1[,6) = 1 and hence the extension F/F™' is unramified. Therefore
the Riemann-Hurwitz formula gives

29 — 2 =n1(2g9n, — 2),
where gy, is the genus of F Nt computed as
_3a(g—D(g+aq+1)+2nm —2
2n1 .
In particular for Ny = K we have gx = (3(¢+ 1)q0 — 2¢)/2.

1

4.3. Normalizer of a subgroup of order ¢ — 3qo + 1. Let K be a cyclic
Hall subgroup of G of order ¢ — 3go + 1 and I' = Ng(K). By Proposi-
tion 2.3(6), I" is a Frobenius group with kernel K and a cyclic noninvariant
factor of order 6. The properties of the group and its action on {2 (the set
of rational places of F') are very similar to those of the normalizer of a Hall
subgroup of order g + 3gg + 1, which we discussed in Section 4.2. So by just
imitating the proofs of Theorems 4.14 and 4.16, we get the ramified rational
places of F in F/FT".

THEOREM 4.17. F has q — 3qo + 1 wildly ramified places in F/FT. The
ramification groups of each wildly ramified place P are

(o) for1<i<3q+1,

(1) fori>3q+2,

where H is a Frobenius complement of I'; which is cyclic of order 6, and o
is the element of order 3 of H. The different exponent of P in F/F! is

dp=(6—-1)+(3-1)+3¢(3—1)=06¢ + 7.
F has q(q—3qo+1) tamely ramified rational places, each with ramification 2.

I'o(P) = H, Fi(P):{

Proposition 4.13 gives all subgroups of I' for this subsection as well. In
the following subsections, we find genera of any subfield corresponding to
subgroups of I.

Subgroups of the form Ny x H with [Ni| =mn1|q—3qo+ 1 and |H| = 6.
Note that N1 < K and K is a cyclic Hall subgroup of order ¢ — 3¢qp + 1.
By Theorem 3.5, there exists a degree 6 place Q) of F' such that K fixes Q.
The ramification index of @ in F//F G is ¢ — 3¢ + 1 and hence by Theorem
4.1, the ramification index of @) in F/FN1>4H is n1. Moreover N1 x H has nq
disjoint Frobenius complements. Each of these gives a unique wildly ramified
place P and its different exponent is dp = 6¢y + 7. Also the involution of
each Frobenius complement fixes ¢ other places of 2. Therefore applying
the Riemann-Hurwitz formula to F/FN1 > we get

29 — 2 =6n1(29N, x1 — 2) + n1(6g0 + 7) + n1g + 6(ny — 1),
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where gn, i is the genus of F NixH ' computed as

_3qo(q—1)(q+qo+1) —ni(qg+6gy+1)+4
INi=H = 12, ‘

In particular for Ny = K we have Ny x H =I" and gr = (¢ + 1)(qo + 1) /4.

Subgroups of the form Ny x () with |N1| =n1|q—3qo+ 1 and || = 3.
As in the previous subsection, there is only one nonrational place @ of F'
which ramifies in F/F Nix(B) 1t is a degree 6 place and its ramification
index is nj. Moreover N; x () has n; disjoint Frobenius complements each
fixing a unique (rational) place. Let P be one of these places. Then P is
wildly ramified with different exponent dp = 6¢p + 4. Since N7 x (/) has no
involutions, the Riemann—Hurwitz formula gives

29 — 2= 3n1(29Nn, % (5) — 2) + n1(6g0 +4) + 6(n1 — 1),

where gp, »(g) is the genus of F Nix(B) | computed as

~ 3q0(g—1)(¢+qo+1) —n1(6go+4) + 4
gNlX](/B> _ 67’L1 .

In particular for N1 = K we have gg (3 = (¢ + 1)qo/2 + 2¢/3.

Subgroups of the form N1 x (a) with |[N1| =n1|q—3q0 + 1 and |a| = 2.
There is only one nonrational place @ of F, of degree 6, ramifying in
F/FNv{@) with ramification index ny. Since ged(|Ny % ()], 3) = 1, there is
no wild ramification. As N1 x () has ny distinct involutions, the Riemann—
Hurwitz formula gives

2g-2= 2”1(29N1>4(a> - 2) + nl(q + 1) + 6(”1 - 1)7
where gy, 5 (q) 18 the genus of FNo(@) - computed as

~3q(q—1)(g+q+1)—ni(q—3)+4
gN1>4(a) - 4711 N

In particular for Ny = K we have g (o) = (3¢ +1)(qo0 + 1)/4 + 2qo.

Subgroups of the form N1 with |Ni| = n1|q — 3qo + 1. F/FN is ramified
at the degree 6 place () with the ramification index nj. Since ged(|Ny],6)
= 1, there is no other ramification. Therefore the Riemann-Hurwitz formula
gives

29 —2=mn1(29n, —2) +6(n1 — 1),
where gy, is the genus of FV1, computed as
_ 3a(g—D(g+aq+1)—4m +4
2n1 .
In particular for Ny = K we have gx = 3qo(q + 3)/2 + 2q.

1
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4.4. Normalizer of a subgroup of order (¢ + 1)/4. Let A be a cyclic Hall
subgroup of order (¢+1)/4 and J = Ng(A) be its normalizer in G. By
Proposition 2.3(4) and [G-L-S 3, pp. 332-333], the order of J is 6(¢+ 1) and

we have:

PROPOSITION 4.18. There is an elementary abelian subgroup E < G of
order 4 and a dihedral subgroup D < G of order (¢+ 1)/2 where A < D,
and the elements of E commute with the elements of D, such that Ng(A)
is the extension of E x D by an element of order 3 normalizing both factors
and acting without fixed points on E and A.

We will assume that the groups F and D in the above proposition are
subgroups of J and so £ x D < J. We will denote £ x D by K. In fact K
is the only subgroup of J with order 2(¢q + 1). Indeed, we have

LEMMA 4.19. Let H < J and write the order of H as [H| = 2ia3/,
where a|(q+1)/4. Then H has a subgroup of order 2'a contained in K. In
particular if ged(|H|,3) =1 then H < K.

Proof. First we note that the involutions of J are elements of K. This
follows from the fact that K is a normal subgroup of J with index 3. Similarly
any element of order dividing (¢ + 1)/4 is contained in A. Write the prime
decomposition of a as a = p|"* ---p;**. Then for each i = 1,...,t, the p;-
Sylow subgroup S, of H is contained in some Hall subgroup of G of order
(g +1)/4. So Sy, is cyclic and contained in A. Therefore H has a subgroup
Ap of order a which is contained in K. Also, any 2-Sylow subgroup So of H
is contained in K. Now the subgroup generated by Ax and Ss is the desired
subgroup of order 2'a. m

Here we note that, being the center of K, the first component E of
E x D is also uniquely determined. For the second component, although
K contains four distinct dihedral subgroups of order (¢ + 1)/2, only one of
them is normalized by elements of order 3, which will be discussed below.

From the Sylow theorems, it follows that J has ¢+ 1 3-Sylow subgroups
and the order of the normalizer of each of them is 6. By Proposition 2.3(4),
3-Sylow subgroups are cyclic of order 6. Notice that any 3-Sylow subgroup V'
normalizes K, so that J = K x V. In particular, V' acts on K by conjugation
and since V' is a cyclic group generated by some o € J, |o| = 3, the fixed
points of this action are the elements of K commuting with . We have

LEMMA 4.20. Let o € J be an element with |o| = 3. Then o commutes
with a unique involution k € K \ E. Let D be the dihedral subgroup of K
generated by k and A. Then o normalizes both E and D and acts without
fized points on E and A.
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Proof. The subgroup FE is the center of K, and A is the only cyclic
subgroup of K of order (¢ + 1)/4. So any automorphism of K (in particular
conjugation by o) should map E and A to themselves. Hence cEoc~! = E
and 0 Ac~! = A. Now, for any involution x € K \ E, oko~! is again an
involution in K \ E. The number of involutions in K \ E is ¢ + 1. Since
31q + 1, o should commute with an involution in K \ E. As |N;(o)| = 6,
there is no other element of K commuting with o, which finishes the proof. »

Let kg = 1, k1, ko, k3 denote the distinct elements of E. From the above
lemma, it follows that the distinct conjugates of a 3-Sylow subgroup V of J
are

rkiaVa lk;, i=0,...,3, acA.

Let & be the involution of K \ F commuting with the generator o of V', and
D be the dihedral subgroup generated by x and A. Then, for any a € A,
the involution a2k € D commutes with aca” ) kiaoca T k1, Keaoa ko,
kzaoa lkg. Since ged((q + 1)/4,2) = 1, any involution of D can be written
as o’k for some o € A. As D has (¢ + 1)/4 involutions and J has ¢ + 1

3-Sylow subgroups, we get:

LEMMA 4.21. The group K has a unique dihedral subgroup D of order
(g + 1)/2 normalized by elements of order 3 in J, and each involution of D
1s contained in the normalizer of exactly four 3-Sylow subgroups of J which
are conjugate under the elements of E.

From now on D will denote the dihedral subgroup of K, of order (¢+1)/2,
normalized by elements of order 3 in J.

We want to determine the structure of all subgroups of J. If H < J with
31|H|, then Lemma 4.19 implies H < K and the subgroups of K can be
easily listed. So we need to deal with subgroups H of J with 3| |H]|.

LEMMA 4.22. Let H < J with 3||H|. Let Ep be the subgroup H N E
of H. Then Ey is either trivial or equal to E.

Proof. Let 0 € H be an element of order 3. Then by Lemma 4.20, o acts
on F by conjugation and this action does not fix any nontrivial subgroup of
E, which proves the lemma.

LEMMA 4.23. Let H < J with 3||H|. Let o € H be an element of or-
der 3, Eg=HNE and Dg = HN D. Then
H = (EH X DH) X <O‘>,
in particular H N K = Egi X Dg. Moreover:
(i) If2¢|Dy| then H has |Eg||Dg| 3-Sylow subgroups and the normal-
izer (in H) of each of them is equal to that subgroup.
(ii) If2 | |Dy| then H has §|Eg||Dp| 3-Sylow subgroups and the order
of the normalizer (in H) of each of them is 6. In this case, each
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involution of Dy is contained in the normalizer of exactly |Eg| 3-
Sylow subgroups of H.

Proof. To show the first assertion, we need only show that H N K =
Fy x Dyg. Let B= HNK and Ay = H N A. First note that B is either
Ey x Ay or Eg x Dy where D1 is a dihedral subgroup generated by Agy
and an involution in K\ E. Now, as Ay < Dy and Eg x Dy < B, we need
only show that, in the case B = Ey x Dy with 2||D;|, Dy also contains
an involution. This is equivalent to showing that B contains an involution s
commuting with o (then x should also be in D). So assume B = E x D;
with 2| |D;|. By Lemma 4.22, Ey = (1) or E. In both cases, since B <1 H,
the same counting argument as in the proof of Lemma 4.20 shows that o
commutes with an involution in B. This also shows that if 2 | [Dg| then
[Nu((0))] = 6.

Now by Lemma 4.19 the order of H is 3|Eg||Dg|. Let V be a 3-Sylow
subgroup of H, and n3 be the number of its conjugates in H. In the case
21|Dpgl, Lemma 4.20 implies that Ng(V) = V, and (i) follows from the
Sylow theorems. When 2 | |Dg|, we have |Ng(V)| = |[Nu({(c))] = 6 and
ns = 3|Ex||Dp|. The last assertion follows from Lemma 4.21.

The following theorem gives a complete list of subgroups of J.

THEOREM 4.24. The group J = Ng(A) has only the following subgroups:

(i) subgroups of E x D,
(ii) for each subgroup D1 of D, extensions of E x Dy by an element of
order 3,
(iii) for each subgroup D of D, extensions of Dy by an element of or-
der 3.

Proof. By Lemmas 4.19 and 4.23, any subgroup of J is one of those
listed in (i)-(iii). So we need only show the existence of subgroups listed
in (ii) and (iii). Let Dy < D. In the case 2||D1]| let o € J be an element
of order 3 commuting with an involution in D; (such a ¢ exists by Lemma
4.21), otherwise let o € J be any element of order 3. By Lemma 4.20,
o normalizes both E and A, but since A is cyclic, it also normalizes any
subgroup of A. Thus the following are subgroups of J:

Dy x (o), (ExDp)x{(o). =

Now we determine the ramification structure of F//F”. The extension
F/F’ is not ramified at the nonrational places of F' because ged(|J|,q —
3g0 + 1) = 1. So we need to find the ramified places inside {2 (the set of
rational places of F') and the corresponding ramification groups.

For the wild ramifications of F//F”, we have:
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PROPOSITION 4.25. The number of wildly ramified places of F in F/F’
is ¢ + 1. If P is one of them, then the ramification groups of P, in F/F’
are
Vi for1<i<3qyp+1,
Jo(P)=Ny(V), Ji(P)= .
(1)  fori>3qo+ 2,

where V' is a 3-Sylow subgroup of J. The different exponent of P is
dp=(6—-1)+(3-1)+3¢(B3—1)=06¢ + 7.

Proof. The number of wildly ramified places of F in F/F” is equal to
the number of 3-Sylow subgroups of J, which is ¢ + 1. For V a 3-Sylow
subgroup, since |N;(V')] is contained in the centralizer of some involution,
the other assertions follow from Theorem 4.9 and its corollary. =

The ramification index of any tamely ramified place of F' in F/F” is
2 (because ged(|J],¢*(q — 1)) = 6). So we need to find the places fixed by
involutions in J. Now, any involution of .J is an element of E' x D (by Lemma
4.19) which is contained in the centralizer of some involution. So Lemma 4.6
of Section 4.1 implies that two distinct involutions of J cannot fix the same
place. Since any involution of G fixes g + 1 places, counting the involutions
in J and using Lemma 4.21, we get:

PROPOSITION 4.26. The tamely ramified places of F in F/F” are:

(i) the %(q — 3) places fized by (¢ + 1)/4 involutions of D, which are
also in the normalizer Nj(V') of a 3-Sylow subgroup V' of J,

(ii) the (3(¢+1)/443)(q+1) places fized by the remaining 3(q¢ + 1)/4+3
mwvolutions of E X D.

We want to find the genera of all subfields of F' fixed by subgroups of J.
The subgroups of £ x D are contained in the centralizer of an involution
in F, and were already studied in Section 4.1. So, in this section we shall
consider only the subgroups of J listed in (ii) and (iii) of Theorem 4.24.
We distinguish here four types of subgroups which will be discussed in the
following subsections.

Subgroups of the form Ai, where Ay < A is cyclic of order ay | (¢ +1)/4.
Since ged (a1, ¢>(g—1)) = 1, F/F41 is unramified and hence by the Riemann—
Hurwitz formula we have

29 — 2 =a1(2g94, — 2),
where g4, is the genus of F A1 computed as

_ 3a(g—D(g+aq+1) -2

1.
2a1 *

1

In particular for A; = A we have g4 = 6(q¢ — 1)qo + 2q — 3.
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Subgroups of the form D1, where D1 < D is dihedral of order 2ay with
a1 |(qg+1)/4. Since ged(3,2a1) = 1, there is no wild ramification in F/FP1.
The number of involutions in D7 is a1 and hence the Riemann-Hurwitz
formula gives

29 —2=2a1(2gp, —2) +ai1(qg+1),
where gp, is the genus of F' D1 computed as

_3q0(¢—1)(g+q+1)—2 q+1
by = 140
4&1 4

In particular for D; = D we have gp = 3qo(¢—1)+q¢—1—(¢+1)/4.

Subgroups of the form E x Ay, where A1 < A is cyclic of order ay divid-
ing (g+1)/4. Since ged(4aq,3) =1, there is no wild ramification in F'/ FF*41,
Since E x A; has three involutions the Riemann—Hurwitz formula gives

29 — 2 =4a1(29pxa, —2) +3(q + 1),
where gpx 4, is the genus of F’ ExAr computed as

3¢0(¢ —1)(g+q+1)—2—-3(¢+1)
8&1

JExA, = + 1.

In particular for A1 = A we have gpxa = 3qo(q¢—1)/2— (¢ —1)/2.

Subgroups of the form E x D1, where D1 < D is dihedral of order 2aq
with ay | (¢ + 1)/4. Since ged(8ay,3) = 1, the extension F//FE*P1 is unram-
ified. E x D1 has 4a; + 3 involutions and hence Riemann—Hurwitz formula
gives

29 — 2 =8a1(29ExD, —2) + (4a1 + 3)(¢ + 1),
where gpxp, is the genus of F ExDr - computed as
_Balg=D@+e+1) -2+ (“a+3)(¢+1)

16(11
In particular for D1 = D we have gpxp = (3qo(¢ — 1) +2)/4 + 2.

+ 1.

9Ex D,

Subgroups of the form Ay x (o), where Ay < A is cyclic of order ay divid-
ing (¢+1)/4 and o € J, |o| = 3. By Lemma 4.23, A; x (o) has a; = |A4]
3-Sylow subgroups and since ged(|A; % (0)],2) = 1, it does not contain any
involution. So F has a; ramified places (each with index 3) in F/F41*(?) and
the different exponent of each of them equals 6¢gy+4. The Riemann—Hurwitz
formula states

29 — 2 =3a1(294, %6 — 2) + a1(6go + 4),

where g4, %o is the genus of FAM(U), computed as
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~ 3q(q—1)(qg+q+1)—2—4a;
gA1><1<U> - 6(11

+ 1.

In particular for A; = A we have g4, (o) = 2q0(¢ — 1) —qo — 1.

Subgroups of the form Di x (o), where Dy < D is dihedral of order 2a;
with a1 |(¢+1)/4 and o € J, |o| = 3. By Lemma 4.23, D; x (o) has a;
3-Sylow subgroups, the order of the normalizer of each of them is 6 and
each involution of D; is contained in the normalizer of only one 3-Sylow
subgroup of Dj x (o). The last implies that each involution of D; fixes one
place which is wildly ramified and g other places which are tamely ramified
in F/F7. So F has a; wildly ramified places, with different exponent 6¢q -+ 7
each, and ajq tamely ramified places of index 2, in F//F”/. Applying the
Riemann—Hurwitz formula we get

29 — 2 = 6a1(29p, xo — 2) + a1(6qo + 7) + a1q,
where gp, o is the genus of FD12(0)  computed as

C3q0(g—D(g+q+1)—2—ai(6go+qg+7)

9D1x (o) = 120, + L

In particular for Dy = D we have gpy (o) = qo(q — 1) — (¢ — 2q0 — 1)/4.

Subgroups of the form (E x Aj) x (o), where Ay < A is cyclic of order
a1|(¢g+1)/4 and o € J, |o| = 3. This subgroup has 4a; 3-Sylow subgroups
and three involutions, which implies that F' has 4a; wildly ramified places
with different exponent 6gp + 4 and 3(q + 1) tamely ramified places with
index 2. So the Riemann—Hurwitz formula states

29 — 2= (12a1)(29(Ex A1) x (o) — 2) +4a1(6g0 +4) + 3(g + 1),
where g(gx A,)x (o) 18 the genus of FExA)x(©)  computed as

_ 3ao(g—1)(g+q+1)—2—4a1(6g+4) —3(g+1)
Y(ExA)x(o) = Sla; + 1

In particular for A; = A we have g(pxA)x () = (3q0(¢ — 1) + ¢ —3)/6 — qo.

Subgroups of the form (E x Dy) x (o), where D1 < D is dihedral of order
2a1 with a1 |(¢+1)/4 and o € J, |o| = 3. This subgroup has 4a; 3-Sylow
subgroups and hence F' has 4aq wildly ramified places. Moreover the different
exponent of these places is 6gg + 7. There are a; involutions in D; which
are also in the normalizer of a 3-Sylow subgroup of J and each of them
fixes ¢ — 3 more places. Also (E x D1) x (o) has 3a; + 3 further involutions
which are not in the normalizer of any 3-Sylow subgroup of J. Therefore
the Riemann—Hurwitz formula gives

29 — 2 = 24a1(29(Ex Dy)x (o) — 2) +4a1(6go + 7) + a1(q — 3)
+ (3a1 4+ 3)(g + 1),
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where g(px p,)x (o) is the genus of F(ExP1)>x(@)

~ 3qo(q—1)(g+qo+1)—2—4ai(q+6g0+7) —3(qg+1)
9(ExD1)x{c) = 484,

In particular for Dy = D this subgroups becomes J and we have g; =
qo(q — 3)/4.

4.5. Ree subgroups. Let M < G be a Ree subgroup of the form Ree(m)
with ¢ = m™, where n is an odd integer (not necessarily prime) with n > 3
and m > 27. In this subsection we find the genus of the subfield of F' fixed
by M.

REMARK 4.27. Recall that maximal Ree subgroups of G are of the form
Ree(m) with ¢ = m™ and n is a prime. Therefore by Theorem 2.4, the only
subgroup of G which would not be considered in the previous subsections
or in this subsection is either a subgroup of the normalizer of a 3-Sylow
subgroup of G or a subgroup of a Ree subgroup of G of the form Ree(3).

Let mg be defined by m = 3m3 and V be a 3-Sylow subgroup of M. Let
U be the 3-Sylow subgroup of G containing V. Let g € N(U)NM and v € V.
Then gvg~! € UNM =V and hence N(U)NM < Ny (V), where Ny (V) is
the normalizer of V' in M. By Proposition 2.3(10), for the normalizer N (V') of
Vin G, we have N(V) < N(U). Therefore Ny (V) = N(V)NM < N({U)nM
and hence Ny (V) = N(U) N M. This implies that for any g1, g2 € M,

(4.5) G NM(V) = ga2Nu(V) & giN(U) = g2N(U).

By the results in Section 2, M has the usual 2-transitive representation of
m3 + 1 left cosets of Nj(V) in M. Similarly G has the usual 2-transitive
representation of ¢® + 1 left cosets of N(U) in G. By Corollary 2.10, G has
the usual 2-transitive representation on the set {2 of rational places of F'. In
particular any P corresponds to a unique left coset g N (U) in G. Let §2,,, C 2
be the subset of {2 consisting of the rational places of F' corresponding to
the left cosets gN(U) with ¢ € M < G. By (4.5), |£2,n] = m3 + 1 and by
Corollary 2.10, M has the usual 2-transitive representation on (2,,.

, computed as

+ 1.

THEOREM 4.28. Let o be a nonidentity element of M. Then o fizes a
rational place of P € §2 if and only if one of the following holds:

(i) 3| |o| and o0 € Ny (V). In this case P corresponds to the 3-Sylow
subgroup U of G containing V and P € §2,.
(ii) |o| | m — 1 and |o| # 2. In this case o fizes exactly two distinct
rational places P and P’ with P, P’ € (2,,.
(iii) |o| = 2. In this case o fizes exactly m — 1 distinct rational places
from $2, and ¢ —m rational places from 2 — (2.

Proof. By Theorem 4.2, as ¢ € (G, o fixes a rational place P € (2 if
and only if either 3||o| or |o||m — 1. If 3| |o|, then o0 € Ny (V) for some
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3-Sylow subgroup V of M and o fixes exactly one rational place P € (2,
by Theorem 4.2. Similarly if |o||m —1 and |o| # 2, then o fixes exactly two
distinct rational places of §2,,,. If |o| = 2, then o fixes exactly m — 1 rational
places from f2,,, by the usual 2-transitive representation of M on 2,,, and
q — 1 rational places from (2 by the usual 2-transitive representation of G
on (2. m

In computations, we need the following lemmata.

LEMMA 4.29. The number of involutions of Ree(m) is
m3+1
("5
1
("2)
Proof. Let k be an involution of M. Then « fixes exactly m + 1 rational
places Py, ..., Py from §2,,. Moreover for any two distinct rational places
P, P’ € §,,, there exists a unique involution of the subgroup Mpp: of M
fixing P and P’. Since each involution is counted exactly (m; 1) times as the
involution of any two distinct rational places of its fixed rational places, we

get the formula. »

=m?(m?> —m+1).

LEMMA 4.30. No two distinct involutions of M can fix the same rational
place Q from 2 — §2,,.

Proof. Assume that k1 # ko are two involutions of M fixing Q) € 2—(2,,.
By Lemma 4.6, k1k2 # kok1. Multiplying both sides by x1ko we get

(/illig)(/il/ig) 7& (Hllig)(/iglil) =1.

Then k1Ko is neither the identity nor an involution and it fixes a rational
place Q € §2 — (2,,. This is a contradiction to Theorem 4.28. u

Let P € (2,,. We compute the ramification groups for P in F/FM. The
inertia group Mo(P) for P in F/FM is the subgroup of M fixing P. By
Proposition 2.5 and Proposition 2.3(8), My(P) = VT,,—1, where V is the
3-Sylow subgroup of M fixing P, and T,,—1 is the cyclic subgroup of order
m — 1 of M fixing P and any other rational place from (2,,. Let U be the
3-Sylow subgroup of G containing V. Let U; be the derived group of U,
and Z(U) be the center of U in G. By Theorems 3.1 and 4.1, for the higher
ramification groups of P in the extension F'/FM we have:

(i) My(P)=MnNnU=V,

(il) M;(P) =V NU; for 2 <i<3qo+ 1,

(iii) M;(P)=V NZ({U) for 3go +2 <i < q+3q + 1,
(iv) M;(P) = (1) for i > q+ 3qo + 2.

LEMMA 4.31. Under the above notations, we have V NU; = Vi, where
V1 is the derived group of V.
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Proof. Recall that
Up=(z 'y tay:a,yel), Vi=(z 'y lay:2,yeV).

As V < U, by definition of derived subgroups we have V4 < Uj and V; < V.
It remains to prove that V NU; < Vj. Assume that there exists o € V N U,
and a € Vi. As a € V — Vi, by Proposition 2.3(7), the order of v is 9. But
o € Uy as well and Uy is an elementary Abelian group again by Proposition
2.3(7). Hence the order of a cannot be 9, which is a contradiction. m

LEMMA 4.32. Under the above notations, we have VN Z(U) = Z(V),
where Z (V') is the center of V in M.

Proof. For « € VNZ(U), « € V and ah = ha for any h € U. In
particular ah = ha for any h € V < U. Therefore o € Z(V'). It remains to
prove that Z(V) <V NZ(U). Assume that there exists a € Z(V') such that
a g Z(U). Since a € Z(V) — (1), a = 3 for some v € V — V4 by Proposi-
tion 2.3(7). Moreover V. N U; = Vi by Lemma 4.31 and hence v ¢ Uj.
Therefore v € U — Uy and again by Proposition 2.3(7), o = 4> € Z(U). This
is a contradiction. m

COROLLARY 4.33. Let P € (2,. Let V be the 3-Sylow subgroup of M
fixing P, and T,,—1 be the cyclic subgroup of M fixing P and another place
of 2. Let Vi be the derived subgroup of V. and Z(V') be the center of V.
The ramification groups of P in the extension F/F™M are:

(i) Mo(P) = VT,
(ii) My(P) =V,
(iii) M;(P)=V; for2<i<3qy+1,
(iv) Mj(P)=Z(V) for3qo+2<1i<q+3q +1,
(v) My(P) = (1) fori > q+ 3qo + 2.

Therefore the different exponent dp of P in F/FM is
dp=m3(m —1) =14 (m® = 1) + 3go(m? — 1) + ¢(m — 1)
=m* 4+ 3g0(m? —1) +q(m — 1) — 2.
For the ramification structure of F'/F M at nonrational places, we need
the following lemmata.

LEMMA 4.34. If n = 3 mod 6, then ged(|Ree(m)|,q —3qo + 1) = 1.

Proof. Note that m3|¢3, m—1|g—1 and |[Ree(m)| = m3(m—1)(m?+1).
Since ged(¢3(¢—1),q—3qo+1) = 1, we have ged(m3(m—1),q—3qo+1) = 1.
It remains to prove that ged(m3+1,q—3qo+1) = 1. Let n = 3+ 6k, where k
is a nonnegative integer. Then ¢+ 1 = m3@E+1) 41 and hence m? +1 lqg+1.
The assertion follows from the fact that ged(¢+ 1,4 —3¢0+ 1) =1. =
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LEMMA 4.35. For any odd integer n > 5 we have:

(i) if n=1mod 6 with (n—1)/6 even or n =5 mod 6 with (n —5)/6
odd, then

m—3mo+1]g—3q+1, m+3mog+1|qg+3q +1;

(ii) of n» =1 mod 6 with (n —1)/6 odd or n =5 mod 6 with (n —5)/6
even, then

m—3mo+1[¢g+3qp+1, m+3mog+1|qg—3q + 1.
Proof. We only give the proof of (i). Note that

3m2 = 3mg — 1 mod (m — 3mg + 1),

32mg = mo — 1 mod (m — 3mg + 1),
33m$ = —1 mod (m — 3mg + 1).

If n=1mod 6 and k = (n — 1)/6 is even, then
qgo = m033km8k = mo mod (m — 3mg + 1),
q = 3¢2 = 3m? mod (m — 3mg + 1),
q—3q0+1=3m2—3mo+1=0mod (m —3mg +1).
If n =5 mod 6 and k = (n — 5)/6 is odd, then
g0 = 3°m333*mf* = (mg — 1)(~1) mod (m — 3mg + 1),
q =3¢ = —3mp + 2 mod (m — 3mg + 1),
q—3q+1=(-3mp+2)—3(1—mp)+1=0mod (m—3mg+1).
Using similar arguments we also get m +3mo+1|g+3gy+ 1. m

LEMMA 4.36. The number of distinct Hall subgroups of order m—3mo—+1
of Ree(m) is

|Ree(m)| ~ m*(m —1)(m+ 1)(m+ 3mo + 1)
6(m —3mo+1) 6 '
The number of distinct Hall subgroups of order m + 3mg + 1 of Ree(m) is
|Ree(m)| ~ m3(m —1)(m+1)(m — 3mg + 1)
6(m+3mg+1) 6 '

Proof. Let Ag,, be a Hall subgroup of order m —3mg+1 in Ree(m) and
k = |Ree(m)|/6(m — 3my + 1). Any Hall subgroup of order ¢ — 3gp + 1 in
Ree(m) is of the form gAs,,g~! for some g € Ree(m). Let
{Nnm(A2m), a1 Ny (A2m), - s ap—1 Ny (A2m)}

be the set of left cosets of the normalizer Nps(Ag,,) of Az, in Ree(m).
We fix 1,a1,...,a5—1 € Ree(m). For any g € Ree(m), there are uniquely
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determined elements a € {1,a1,...,a5_1} and a € Ny(Az,,) such that
g =aa. Let a, 5 € Ny(A2ym) and a,b € {1,a1,...,a,_1}. Then

(CLCM)AZm(CLOé)_l = (bﬁ)AZm(bﬁ)_l R CLA27mCL_1 = bAz’mb_1
& a Ay m(a ) = Ay
& a b€ Ny (Azm)
& a=hb.

Hence k is the number of distinct Hall subgroups of order m — 3mg + 1 in
Ree(m). We use similar arguments for the number of distinct Hall subgroups
of order m + 3mgy + 1 of Ree(m). =

Now we can identify the ramification structure of F//F'™ at nonrational
places of F'.

THEOREM 4.37. Forn > 3, if n = 3 mod 6, then there is no nonrational
place of F ramified in F/FM. Forn > 5:

(i) If n = 1 mod 6 with (n—1)/6 even or n = 5 mod 6 with (n —5)/6
odd, then F has exactly m®(m — 1)(m + 1)(m + 3mg + 1)/6 places
of degree 6 which ramify in F/FM. Moreover the ramification index
of any of these places is m — 3mg + 1.

(ii) If n = 1 mod 6 with (n—1)/6 odd or n = 5 mod 6 with (n—5)/6
even, then F has exactly m3(m — 1)(m + 1)(m — 3mg + 1)/6 places
of degree 6 which ramify in F/FM. Moreover the ramification index
of any of these places is m + 3mg + 1.

Proof. F/F™ is ramified at a nonrational place of F if and only if there
exists a Hall subgroup Ay of G with order ¢—3qp+1 such that AoNM # (1).
For n > 3 and n = 3 mod 6, as ged(|M|,q — 3go + 1) = 1 by Lemma 4.34,
there is no ramified nonrational place of F in the extension F/FM Forn > 5
and n =1 mod 6 with (n — 1)/6 even, each Hall subgroup of M with order
m — 3mg + 1 is in a uniquely determined Hall subgroup of G with order ¢ —
3qo+1, since m—3mg+1|g—3qo+1. Moreover the number of Hall subgroups
of M with order m —3mqg+1 is m3(m — 1)(m + 1)(m + 3mg + 1)/6 by Lem-
ma 4.36. This completes the proof in this case. The other cases are proved
similarly. =

Now we compute the genus of M. The different exponent dp for any
P € (2, is given by Corollary 4.33 as

dp = (m* —2) + 3qo(m? — 1) + q(m — 1).

M has m?(m? —m + 1) distinct involutions and each involution gives ¢ —m
extra ramified rational places from (2 — (2,,, with ramification index 2 (see
Lemmas 4.29 and 4.30).
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Case n = 3 mod 6. By Theorem 4.37 there is no ramification at nonra-
tional places of F'in F/FM. Hence the Riemann-Hurwitz formula applied
to F/FM gives

29 —2=m3(m —1)(m> +1)(2g9x — 2)
+ (m? + 1)((m* = 2) + 3go(m? — 1) + g(m — 1))
+m?(m?* —m+1)(g — m),
where gy is the genus of F'™ | computed as
_ 1
~2m3(m — 1)(m3 + 1)

M {3¢0(¢ —1)(¢g+q +1)

~ (m® + 1)(g(m — 1)+ 3ao(m® — 1) + m* —2)
—(g—m)m*(m?> —m+1) =2} + 1.
In particular when m = 27 and ¢ = 3°, we have gy; = 4.
Case n = 1 mod 6 with (n—1)/6 even or n = 5 mod 6 with (n —5)/6
odd. By Theorem 4.37, there are exactly m?(m —1)(m+1)(m+3mo+1)/6

places of degree 6 which ramify in F'/FM. The ramification index of any of
these places is m — 3mg + 1. Therefore the Riemann—Hurwitz formula gives

29 —2 =m3(m —1)(m® +1)(29m — 2)

+ (m® + 1)((m* = 2) + 3qo(m? — 1) + q¢(m — 1))

+m?(m? —m +1)(g —m)

+m3(m — 1)(m + 1)(m + 3mg + 1)(m — 3myg),
where gy is the genus of F™ | computed as

1
" 2m3(m — 1)(m3 + 1)
— (m® + 1)(g(m — 1) + 3qo(m? — 1) + m* —2)

Z_m+1)
—m3(m? = 1)(m + 3mg + 1)(m — 3mg) — 2} + 1.
333

M {3¢0(¢ —1)(g+q +1)

~ (¢ —m)m*(m

In particular when m = 27 and ¢ = 3°°, we have

gy = 198087081146045468888591849593.

Case n = 1 mod 6 with (n—1)/6 odd or n = 5 mod 6 with (n —5)/6
even. Using Theorem 4.37 as above, the Riemann—Hurwitz formula in this
case gives

29 —2=m3(m —1)(m> +1)(291 — 2)
+ (m® +1)((m* = 2) + 3go(m* — 1) + ¢(m — 1))
+m?(m?* —m+1)(g —m)
+m3(m — 1)(m 4 1)(m — 3mg + 1) (m + 3my),
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where gy is the genus of F™ | computed as
1
— (m? 4+ 1)(g(m — 1) + 3qo(m? — 1) + m* — 2)
— (g —=m)m?*(m? —m+1)
—m3(m? = 1)(m — 3mo + 1)(m + 3myg) — 2} + 1.

gm

In particular when m = 27 and ¢ = 3'°, we have gy = 67059625.

REMARK 4.38. For various subgroups H < @, the action of H on the
rational places of F' is examined throughout the section. More precisely, for
a subgroup H < G considered in one of the subsections above, the number
of degree 1 places of F ramified in the extension F/F and the ramification
index of each of them is determined. Using this information, one can easily
compute the number of degree 1 places of F below the degree 1 places
of F. This will give a lower bound on the number of rational places of FH
(see examples below). On the other hand, for most of the subgroups H < G,
there will be rational places of F¥ below higher degree places of F, and
to find the number of such places is difficult. The task of computing the
exact number of rational places of F¥ for some of the subgroups H < G is
considered in another work that we are preparing.

We now give examples on how to calculate the number of rational places
of ¥ below the rational places of F. For H < G, let N(FH) denote the
number of degree 1 places of F'¥1. We give examples among subgroups of the
centralizer of an involution. Let £ € GG be an involution and L the centralizer
of k in G. Recall that L = k x L, where L’ is the subgroup of L isomorphic
to PSL(2, q) (see Section 4.1).

EXAMPLE 4.39. Let H = k x DT, where Dt < L' is a dihedral sub-
group of order 2n with n|(¢+1)/2 and 2|n. Then |H| = 4n and 8||H]|.
From Section 4.1, there are (2n + 3)(g + 1) places in F ramified in F/F,
each of them being a degree 1 place with ramification index 2. So each or-
bit of H among the ramified places of F' has 4n/2 elements. Therefore H
has (2n + 3)(q¢ + 1)/2n orbits among ramified places of F' and (¢% 4+ 1 —
(2n 4 3)(¢ + 1))/4n orbits among the unramified degree 1 places of F. So
(46) N(FH)Z(2n+3)(Q+1)+q3+1—(2n+3)(Q+1).

2n 4dn
Note that in the special case of n = 2, i.e. when H is a 2-Sylow subgroup
of G, we have equality in (4.6).

EXAMPLE 4.40. Let H be a 3-subgroup of L of order m = 3/, f < 2s+1.
From Section 4.1, there is only one place in F' (which is a degree 1 place)
ramified in F/FH with ramification index m. In this case also, the number
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of places of FH below the degree 1 places of F is equal to the exact number
of degree 1 places of F. So we have

3
NFHy =14+ L.
m
Acknowledgements. We are grateful to the anonymous referee for the
encouraging and invaluable detailed comments.
Both authors wish to thank Stikrii Yalginkaya for very useful conversa-
tions during the preparation of the paper.
The second author is partially supported by the Turkish Academy of
Sciences in the framework of Young Scientists Award Programme (F.O./
TUBA-GEBIP/2003-13).

References

[G-S-X] A. Garcia, H. Stichtenoth and C. P. Xing, On subfields of the Hermitian func-
tion field, Compositio Math. 120 (2000), 137-170.

[G-K-T] M. Giulietti, G. Korchméaros and F. Torres, Quotient curves of the Deligne—
Lusztig curve of Suzuki type, preprint 2002, arXiv:math.AG/0206311.

[G-L-S 2] D. Gorenstein, R. Lyons and R. Solomon, The Classification of the Finite
Simple Groups. Number 2, Amer. Math. Soc., Providence, 1996.

[G-L-S 3] —, —, —, The Classification of the Finite Simple Groups. Number 3, Amer.
Math. Soc., Providence, 1998.
[H-P] J. P. Hansen and J. P. Pedersen, Automorphism groups of Ree type, Deligne—

Lusztig curves and function fields, J. Reine Angew. Math. 440 (1993), 99-109.
[K-O-5] W. M. Kantor, M. E. O’'Nan and G. M. Seitz, 2-Transitive groups in which
the stabilizer of two points is cyclic, J. Algebra 21 (1972), 17-50.

[La] G. Lachaud, Sommes d’Eisenstein et nombre de points de certaines courbes
algébriques sur les corps finis, C. R. Acad. Sci. Paris 305 (1987), 729-732.

[L-N] V. M. Levchuk and Ya. N. Nuzhin, Structure of Ree groups, Algebra Logic 24
(1985), 16-26.

[N-X] H. Niederreiter and C. Xing, Rational Points on Curves over Finite Fields:
Theory and Applications, Cambridge Univ. Press, Cambridge, 2001.

[P] J. P. Pedersen, A function field related to the Ree group, in: Lecture Notes in
Math. 1518, Springer, 1992, 122-131.

[Re] R. Ree, Sur une famille de groupes de permutations doublement transitifs,
Canad. J. Math. 16 (1964), 797-820.

[Ro] D. J. S. Robinson, A Course in the Theory of Groups, Springer, New York,
1993.

[Se] J.-P. Serre, Local Fields, Springer, New York, 1979.

[St] H. Stichtenoth, Algebraic Function Fields and Codes, Springer, Berlin, 1993.

[T-V] M. A. Tsfasman and S. G. Vladut, Algebraic-Geometric Codes, Kluwer, Dor-
drecht, 1991.

[V-M] R. C. Valentini and L. M. Madan, A Hauptsatz of L. E. Dickson and Artin—

Schreier extensions, J. Reine Angew. Math. 318 (1980), 156-177.



180 E. Qakcak and F. Ozbudak

[W] H. N. Ward, On Ree’s series of simple groups, Trans. Amer. Math. Soc. 121
(1966), 62-89.

Institute of Applied Mathematics Department of Mathematics
Middle East Technical University Middle East Technical University
Inénii Bulvar: Inénii Bulvar:
06531, Ankara, Turkey 06531, Ankara, Turkey
E-mail: cakcak@metu.edu.tr E-mail: ozbudak@math.metu.edu.tr

Received on 24.6.2003
and in revised form on 8.3.2004 (4564)



