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in subgeneral position in projective algebraic varieties
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Do Duc Thai and Nguyen Huu Kien (Hanoi)

1. Introduction. First of all, we recall some basic notions in Diophan-
tine geometry. For details we refer the readers to [5], [8] and [16].

Let k be a number field. Let v : k → [0,∞) be a valuation on k. For each
x ∈ k, denote by |x|v or v(x) the absolute value of x with respect to v.

We denote by Mk a set of representatives of all equivalence classes of
nontrivial valuations over k. Let M∞k be the subset of Mk consisting of
all archimedean valuations, and M0

k be the subset consisting of all nonar-
chimedean valuations. Then M∞k is finite and Mk = M∞k ∪M0

k .

For each valuation v, we denote by kv the algebraic closure of kv, and
we extend v to kv. We also denote by k the algebraic closure of k.

Let S be a finite subset of Mk such that M∞k ⊂ S. We set

OS = {x ∈ k | |x|v ≤ 1 ∀v ∈Mk \ S}.

Then OS is a ring, called the ring of S-integers of k. A point x = (x1, . . . , xn)
∈ kn is said to be an S-integral point if xi ∈ OS for all 1 ≤ i ≤ n.

We now recall the product formula which is an important fact in Dio-
phantine geometry.

Theorem 1.1. Let k be a number field. Then for each equivalence class
v ∈Mk there exists a valuation ‖ · ‖v ∈ v such that∏

v∈Mk

‖x‖v = 1 for all x ∈ k \ {0}.

From now on, we fix for each v ∈Mk a representative element ‖ · ‖v such
that the product formula is satisfied.

For each x = [x0 : · · · : xn] ∈ Pn(k), the relative height and the absolute
height of x are defined
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Hk(x) =
∏
v∈Mk

max{‖xj‖v | 0 ≤ j ≤ n}, h(x) =
1

[k : Q]
logHk(x).

Let k,Mk, S be as above. Let D be a divisor on a nonsingular variety V.
Extend ‖ · ‖v to an absolute value on the algebraic closure kv. Then a local
Weil function for D relative to v is a function λD,v : V (kv) \ |D| → R such
that if D is represented locally by (f) on an open set U, then

λD,v(P ) = − 1

[k : Q]
log ‖f(P )‖v + α(P ),

where α(P ) is a continuous function on U(kv). By choosing embeddings
k → kv and k → kv, we may also think of λD,v as a function on V (k)\|D| or
V (k)\ |D|. Concerning basic notions and properties of global Weil functions
for D over k we refer to [5, Chapter 10, Secs. 1 and 2]. A global Weil function
for D over k is a collection {λD,v} of local Weil functions, for v ∈Mk, where
the αv above satisfy certain reasonable boundedness conditions as v varies.

Now, we give the definition of (S,D)-integral points.

Fix a number field k. Let OS be the ring of S-integers of k. A point
P ∈ An(k) is called an S-integral point if all its coordinates are S-integers.
Similarly, an affine variety V ⊂ An defined over k inherits a notion of integral
point from the definition for An. Now let V be a projective variety and D be
a very ample effective divisor on V , and let 1 = x0, x1, . . . , xn be a basis for
L(D). Then P 7→ (x1(P ), . . . , xn(P )) defines an embedding of V \D into An.
We say P is an (S,D)-integral point if xi(P ) ∈ OS for all i. We note that
any point P in V (k) \ D can be an (S,D)-integral point for some basis of
L(D). Thus we let integrality be a property of the set of points. This is a
natural concept in light of the following lemma.

Lemma 1.2 ([16, Lemma 1.4.1]). Let D be a very ample effective divisor
on V . Let R be a subset of V (k) \ |D|. Then the following are equivalent:

(i) R is a set of (S,D)-integral points on V.
(ii) There exists a global Weil function λD,v and constants cv for each

v ∈ Mk \ S, such that almost all cv = 0 and for all P ∈ R, all
v ∈Mk \ S and all embeddings of k in kv,

λD,v(P ) ≤ cv.
Corollary 1.3 ([16, Lemma 1.4.2]). The notion of (S,D)-integrality is

independent of the multiplicities of the components of D.

The lemma motivates a more general definition of integrality:

Definition 1.4. Let D be an effective divisor on V and let R be a
subset of V (k)\ |D|. Then R is an (S,D)-integral set of points if there exists
a global Weil function satisfying condition (ii) of Lemma 1.2.
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The problem of integral points has a long history, going back to A. Thue
[15], C. L. Siegel [14], S. Lang [5], P. Vojta [16], G. Faltings [3] and others.
The classical theorem of Thue–Siegel says that P1 \ {3 distinct points} has
finitely many integral points.

In 1991, M. Ru and P.-M. Wong [12] estimated the dimensions of integral
points in the case of Pn \ {2n+ 1 hyperplanes in general position}.

In 2008, A. Levin [6] generalized the above theorem of Ru–Wong to the
case of Pn \{r hyperplanes in s-subgeneral position}. Namely, he proved the
following.

Theorem A ([6, Corollary 3A]). Let H be a set of hyperplanes in Pn
defined over a number field k. Suppose that the intersection of any s + 1
distinct hyperplanes in H is empty. Let r = ]H. Suppose r > s. Then for
every number field K ⊃ k and S ⊂ MK , for all sets R of S-integral points
on Pn \ |H|,

dimR ≤
[

s

r − s

]
.

In particular, if r > 2s, then all such R are finite. Furthermore, if the
hyperplanes in H are in general position (s = n), then the above bound is
achieved by some R.

In 1993, M. Ru [11] estimated the dimensions of integral points in the
case of Pn \ {2n + 1 hypersurfaces in general position}. Namely, he proved
the following.

Theorem B ([11, Theorem 5]). Let k be a number field. Let {Di}qi=1 be
a finite family of (irreducible) hypersurfaces in Pn

k
in general position and

set D =
∑q

i=1Di. Then every set of (S,D)-integral points is contained in a
finite union of subvarieties of Pn

k
of dimension 2n− q + 1.

Working in a different direction, J. Noguchi and J. Winkelmann [8,
Secs. 4.9 and 9.7] showed the finiteness of the set of integral points of V \
{l hypersurfaces in general position}, where V is a projective algebraic va-
riety over k. Namely, they showed

Theorem C ([8, Theorem 9.7.6]). Let V be a projective algebraic variety
over k. Let {Di}li=1 be a finite family of ample divisors on V in general

position and set D =
∑l

i=1Di. Assume that l ≥ 2 dimV + r({Di}), or more
strongly that l ≥ 2 dimV + rankZ NS(V ), where NS(V ) is the Néron–Severi
group of V. Then every (S,D)-integral subset is finite.

Here we denote by r({Di}) the rank of the subgroup
∑

i Z ·c1(Di) gener-
ated by c1(Di) ∈ H2(M,Z), 1 ≤ i ≤ l, in H2(M,Z) (see [8, Notation 4.9.1,
p. 157]).
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Note that in Theorem C, we have l > 2 dimV + 1 in general, and there
are no estimations of dimensions for sets of (S,D)-integral points in V.

A natural question arises: How to generalize Theorems A, B and C to the
case where the hypersurfaces are in N -subgeneral position in an (irreducible)
projective algebraic variety V over k?

It seems that some key techniques in the proofs of Theorems A, B and
C could not be used for the above question. The first main purpose of this
paper is to give a complete answer to the above question. To state the first
result, we recall the following.

Definition 1.5. Let k be a number field and V be an irreducible subva-
riety of dimension n of Pm

k
. Let N ≥ n. A family of hypersurfaces D1, . . . , Dq

of Pm
k

is said to be in N -subgeneral position in V if
⋂N
j=0Dij ∩ V (k) = ∅ for

all tuples q ≥ iN > iN−1 > · · · > i0 ≥ 1.

In this paper, we always assume that k is a number field, Mk is the set
of all nonequivalent valuations of k and S ⊂Mk is a finite set containing all
the archimedean valuations. We now state the main theorem of this paper.

Theorem 1.6. Let V be an irreducible algebraic subvariety of dimension
n of Pm

k
and D1, . . . , Dq be hypersurfaces in Pm

k
in N -subgeneral position on

V (q > N ≥ n). Assume that D =
⋃q
i=1Di. Then every set of (S,D)-integral

points is contained in an algebraic subvariety W of V such that

dimW ≤ N

q −N
.

When Di are hyperplanes in N -subgeneral position in Pm, Theorem 1.6
implies Theorem A. When N = n, we get Theorems B and C. Theorem
1.6 also implies the finiteness of the set of integral points off divisors in
subgeneral position in a projective algebraic variety V ⊂ Pm

k
.

Corollary 1.7. Let the notation be as above.

(i) Assume that q ≥ 2N + 1 and N ≥ n. Then every set of (S,D)-
integral points is finite.

(ii) Assume that q ≥ N + n + 1 and n ≤ N < 2(n + 1). If D intersects
any irreducible rational curve in V (k) in (at least) three points, then
every (S,D)-integral point set of V is finite. However, if there is an
irreducible rational curve in V (k) such that D only intersects this
curve in (at most) two points, then generally the assertion is not
true.

As is well known, there are deep interactions between Kobayashi hyper-
bolicity and Diophantine approximation. In 1974, S. Lang conjectured the
following.



Hyperbolicity and integral points off divisors 235

Lang’s conjecture. Let F be an algebraic number field and V a pro-
jective algebraic variety. Assume that for some embedding F ↪→ C, the com-
plex manifold VC given by V is Kobayashi hyperbolic. Then V (F ) is a finite
set.

Motivated by Lang’s conjecture, the complete hyperbolicity of the com-
plement of divisors in general position in a projective algebraic variety
V ⊂ PMC has been studied by several authors (see M. Ru [11] and Noguchi–
Winkelmann [8] and references therein for related subjects). For instance,
Noguchi and Winkelmann showed the following.

Theorem D ([8, Theorem 7.3.4]). Let {Di}li=1 be a family of ample
divisors on a projective algebraic variety X of dimension n, which is in
general position. Assume that l ≥ 2n + r({Di}li=1), or more strongly that
l ≥ 2n + rankZ NS(V ), where NS(V ) is the Néron–Severi group of V. Then

the open variety X \Supp
∑l

i=1Di is complete hyperbolic and hyperbolically
embedded into X.

The second main purpose of this paper is to show the complete hyperbol-
icity of the complement of divisors in N -subgeneral position in a projective
algebraic variety V ⊂ PMC . Namely, we will prove the following.

Theorem 1.8. Let V be an algebraic subvariety of dimension n of PmC .
Let {Di}qi=1 be a family of hypersurfaces of PmC in N -subgeneral position in V
(q > N ≥ n). Let W be a subvariety of V such that there is a nonconstant
holomophic curve f : C→W \

⋃
W*Di

Di with Zariski dense image. Then

dimW ≤ N

q −N
.

In particular, if q ≥ 2N + 1, then V \
⋃q
i=1Di is complete hyperbolic and

hyperbolically embedded into V.

2. Integral points off divisors in subgeneral position in projec-
tive algebraic varieties. We now recall the following lemmas.

Lemma 2.1 ([16, Lemma 1.4.5]). Let S be a finite set of valuations of k
containing all the archimedean valuations. Let k′ be a finite extension of k.
Let S′ be the set of valuations of k′ lying over valuations of S. Assume D is
an effective divisor on V. Then I ⊂ V (k) is a set of (S,D)-integral points if
and only if it is a set of (S′, D)-integral points.

Lemma 2.2 ([16, Lemma 1.4.6]). Let I be an (S,D)-integral set of points
on V and let f be a rational function with no poles outside of D. Then there
is a nonzero constant b ∈ k such that bf(P ) is S-integral for all p ∈ I.

Lemma 2.3 (Unit lemma). Let k be a number field and n a positive
integer. Let Λ be a finitely generated subgroup of k∗. Then all but finitely
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many solutions of the equation

u0 + u1 + · · ·+ un = 1, ui ∈ Λ ∀i,
satisfy an equation of the form

∑
i∈I ui = 0, where I is a proper nonempty

subset of {0, . . . , n}.

Lemma 2.4 ([4, Chapter I, Theorem 7.2]). Let V be a closed irreducible
algebraic subvariety of Pm

k
of dimension n ≥ 1 and let D be a hypersurface.

Then either V ⊂ D, or the intersection X = V ∩D is nonempty and every
component of X has dimension n− 1.

Lemma 2.5. Let V be a closed (irreducible) algebraic variety in Pm
k

of di-
mension n ≥ 1, N ≥ n and D1, . . . , D2N+1 be hypersufaces in N -subgeneral
position in V . Then there exists a subset {i1, . . . , in+2} of {1, . . . , 2N + 1}
such that we can choose one irreducible component Xj of each V ∩ Dij

(j = 1, . . . , n+ 2) in such a way that X1, . . . , Xn+2 are distinct. Moreover if
t1 < · · · < ts, then Xt1 *

⋃s
i=2Dti.

Proof. Denote by Aij (1 ≤ i ≤ mj) the irreducible components of V ∩
Dj (1 ≤ j ≤ 2N + 1). It is easy to see that there exists j1 ∈ {1, . . . , 2N + 1}
such that V * Dj1 . By Lemma 2.4, we have dimAij1 = n − 1 for each 1 ≤
i ≤ mj1 . In particular, dimA1

j1
= n−1. Similarly, we can take Dj2 such that

A1
j1

* Dj2 . This implies that every component of A1
j1
∩Dj2 has dimension

n − 2. Since A1
j1
∩Dj2 ⊂ V ∩Dj2 =

⋃mj2
i=1 D

i
j2
, we can find i such that Di

j2

contains an irreducible component of A1
j1
∩ Dj2 . By setting A1

j2
= Di

j2
, we

have dim{A1
j1
∩A1

j2
} = n−2, where {Y } denotes any irreducible component

of the projective algebraic variety Y of maximal dimension. Set X1 = A1
j1

and X2 = A1
j2
. Then X1 6= X2. Note that 2N+1−i > N for each i ≤ n ≤ N .

By repeating the above process, for each 1 ≤ i ≤ n, we can select Dji

such that

dim
{
A1
ji ∩ {A

1
ji−1
∩ {· · · ∩A1

j1} · · · }
}

= n− i.

We set Xi = A1
ji

(1 ≤ i ≤ n). These are irreducible and distinct. Moreover,

each Xi is an irreducible component of V ∩Dji . By our choice, {A1
jn
∩{A1

jn−1
∩

{· · · ∩ A1
j1
} · · · }} is nonempty; pick x0 in this set. Since at most N of the

Dj (1 ≤ j ≤ 2N + 1) can intersect at x0, we can find a Djn+1 such that
x0 /∈ Djn+1 . Select y0 ∈ Djn+1 ∩ V. At most N of the Dj (1 ≤ j ≤ 2N + 1)
can intersect at y0. The total number of hypersufaces that intersect either at
x0 or at y0 is at most 2N. Therefore, there exists Djn+2 such that {x0, y0}∩
Djn+2 = ∅. Denote by Xn+1 the irreducible component of Vjn+1 containing
y0, and by Xn+2 any irreducible component of V ∩Djn+2 . It is obvious that
Xj 6= Xi for all 1 ≤ i < j ≤ n. Since x0 ∈ Xi (1 ≤ i ≤ n) and x0 belongs to
neither Xn+1 nor Xn+2, we have Xi 6= Xj (1 ≤ i ≤ n; n + 1 ≤ j ≤ n + 2).
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Furthermore, since Xn+1 contains y0, while Xn+2 does not, it follows that
Xn+1 6= Xn+2. In summary, X1, . . . , Xn+2 are distinct.

For the “moreover” part, by the irreducibility of Xt1 , suppose for con-
tradiction that there exists 2 ≤ i ≤ s such that Xt1 ⊂ Dti . Again by the
construction above, we have{

A1
jti−1

∩ {A1
jti−2

∩ {· · · ∩A1
jt1
} · · · }

}
⊂ A1

jt1
= Xt1

and {
A1
jti−1

∩ {A1
jti−2

∩ {· · · ∩A1
jt1
} · · · }

}
* Djti

This is impossible.

Lemma 2.6. Let V be an irreducible algebraic subvariety of dimension n
of Pm

k
and D1, . . . , Dq be hypersurfaces in Pm

k
in N -subgeneral position in V .

Set D =
⋃q
i=1Di. Assume that q ≥ 2N+1. Then every set of (S,D)-integral

points is finite.

Proof. Let J be a set of (S,D)- integral points of V (k). Assume that
the hypersufaces D1, . . . , Dq are defined by P1, . . . , Pq respectively, which
are homogeneous polynomials in n + 1 variables with coefficients in k. By
Lemma 2.1, without loss of generality, we may assume that the coefficients
of Pi (1 ≤ i ≤ q) are in k.

Claim. For every (irreducible) algebraic subvariety U of V of dimen-
sion p defined over k, J ∩ U is contained in a finite union of proper closed
subvarieties of U .

Indeed, by the assumption, D1, . . . , Dq are in N -subgeneral position
over U . By Lemma 2.5, there exist p + 2 distinct (irreducible) hypersu-
faces X1, . . . , Xp+2 in U(k) such that each Xi (1 ≤ i ≤ p + 2) is an irre-

ducible component of U(k) ∩ Dji . Set Qi = P
d/dji
ji

(1 ≤ i ≤ p + 2), where

d = gcd(dj1 , . . . , djp+2). Then the function field of U(k) has transcendence

degree p, and hence the rational functions Q2/Q1, . . . , Qp+2/Q1 on U(k) are
algebraically dependent, so there exists a polynomial T with coefficients in
k such that

T (Q2/Q1, . . . , Qp+2/Q1) = 0

identically on U(k). By using the normNk′
k of T, where k′ is a finite extension

of k that contains all coefficients of T , we may assume that the coefficients
of T are in k. Thus,

l∑
i=1

ciTi/T0 = 1,

where ci ∈ k∗ and each T0, . . . , Tl is a monomial in {Q2/Q1, . . . , Qp+2/Q1}.
We can choose T with l minimal. Since Qi/Q1 (2 ≤ i ≤ p+ 2) are rational
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functions of U and have no poles outside D, this implies that there exists
ai ∈ k∗ such that for every x ∈ J ∩ U ,

aiQi(x)/Q1(x) ∈ OS .

By the same argument, there exists bi ∈ k∗ such that

biQ1(x)/Qi(x) ∈ OS
for all x ∈ J ∩ U . Set

A = {ai, bi, cj | 2 ≤ i ≤ p+ 2 , 1 ≤ j ≤ l},
S′ = {v ∈Mk | ∃a ∈ A such that ‖a‖v 6= 1}.

Since A is finite, so is S′. Set S′′ = S ∪ S′. Then S′′ is finite, OS ⊂ OS′′ and
a ∈ O∗S′′ for each a ∈ A. Since OS′′ is a ring and a is a unit element for every
a ∈ A, it follows that both ciQi(x)/Q1(x) and Q1(x)/(ciQi(x)) are in OS′′
for all x ∈ J ∩ U . Hence ciQi(x)/Q1(x) is a unit element in OS′′ for each
x ∈ J ∩U . Since S′′ is finite, O∗S′′ is a finitely generated subgroup of k∗. The
unit lemma implies that all but finitely many points of J ∩U are contained
in some diagonal hypersuface

HI =
{
x ∈ U

∣∣∣ ∑
i∈I

ciTi(x)/T0(x) = 0
}
,

where I is a proper subset of {1, . . . , l}. If HI(x) = 0 on U(k), then we
can take T ′ =

∑
i∈I ciTi and since I is a proper subset of {1, . . . , l}, we

get l′ < l. This contradicts the minimum property of l. If (T1(x)/T0(x), . . . ,
Tl(x)/T0(x)) belongs to the finite set of exceptional solutions {(dji)li=1 | j =
1, . . . , s}, then x ∈

⋃s
j=1{y ∈ U \D | T1(y)−dj1T0(y) = 0}. Since x ∈ U \D,

we get T1(x) 6= 0, and hence we can eliminate j such that dj1 = 0. If
T1(x)− dT0(x) = 0 for all x ∈ U(k), and d 6= 0, then we may write

Qα1
i1
· · ·Qαt

it
= dQ

αt+1

it+1
· · ·Qαs

is

on U(k). Without loss of generality, we may suppose that

i1 = min{ij | j = 1, . . . , s}.

By Lemma 2.5, we see that Xi1 *
⋃s
j=t+1Dij . Then there exists x0 ∈

Xi1 \
⋃s
j=t+1Dij . So we have

Qα1
i1

(x0) · · ·Qαt
it

(x0) = dQ
αt+1

it+1
(x0) · · ·Qαs

is
(x0).

Since the right side is nonzero, so is the left side. This is a contradiction
proving the Claim.

By induction, we can show that J is contained in a finite union of proper
closed subvarieties of dimension i for each n ≥ i ≥ 0. For i = 0, this implies
that J is a finite set.
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We emphasize that the assumption q ≥ 2N + 1 in Lemma 2.6 plays an
essential role, because we need to use Lemma 2.5 to construct the sequence
X1, . . . , Xp+2. So a natural question is to find conditions on D,V such that
we also get X1, . . . , Xp+2 by the same process as in Lemma 2.5. This idea
suggests the following lemma.

Lemma 2.7. The process in Lemma 2.5 is successful if n > N/(q −N).

Proof. We suppose the contrary.

Claim. There exist n+ 1 sets I1, . . . , In+1 such that:

(i) I1, . . . , In+1 are disjoint subsets of {1, . . . , q}.
(ii) |Ij | ≥ q −N for each 1 ≤ j ≤ n+ 1.
(iii) For each 1 ≤ j ≤ n+1 and s, t ∈ Ij , Ds∩V = Dt∩V. In other words,

Ds ∩ V =: Fj does not depend on s ∈ Ij for each 1 ≤ j ≤ n+ 1.
(iv) For each 1 ≤ j ≤ n+ 1, there exists an irreducible component Ej of

Fj such that

dim
{
Ei ∩ {Ei−1 ∩ {· · · ∩ E1} · · · }

}
= n− i (1 ≤ i ≤ n).

We shall prove the Claim by induction.
For j = 1, by Lemma 2.5, there exist Dt1 , . . . , Dtn such that for every

1 ≤ i ≤ n, there is an irreducible component Wi of Dti ∩ V such that

dim
{
Wi ∩ {Wi−1 ∩ {· · · ∩W1} · · · }

}
= n− i (1 ≤ i ≤ n).

Then {Wn ∩ {Wn−1 ∩ {· · · ∩W1} · · · }} is nonempty. Take

x0 ∈
{
Wn ∩ {Wn−1 ∩ {· · · ∩W1} · · · }

}
.

Set I1 = {1 ≤ s ≤ q | {x0} * Ds∩V }. Since at most N of the Dt (1 ≤ t ≤ q)
can intersect at x0, we have |I1| ≥ q−N . We now show that Ds∩V ⊂ Dt∩V
for any s, t ∈ I1. Indeed, suppose that y0 ∈ Ds ∩ V , but y0 6∈ Dt ∩ V. Then,
by choosing Dtn+1 = Ds and Dtn+2 = Dt, the process in Lemma 2.5 is
successful. This is impossible by the assumption. This yields Ds∩V = Dt∩V
for any s, t ∈ I1.

For j = 2, take an irreducible component E1 of F1 = Ds ∩ V, s ∈ I1.
Repeating the process in Lemma 2.5, we may find Dt2 , . . . , Dtn and their
respective irreducible components W2, . . . ,Wn such that

dim
{
Wi ∩ {Wi−1 ∩ {· · · ∩ E1} · · · }

}
= n− i (1 ≤ i ≤ n).

By the same argument, there exists a subset I2 of {1, . . . , q} such that |I2| ≥
q −N and Ds ∩ V = Dt ∩ V for all s, t ∈ I2 and there exists x0 ∈ E1 \ F2,
where F2 = Ds ∩ V for some s ∈ I2. So E1 * F2.

For j = 3, take an irreducible component E2 of F2 such that dim{E1∩E2}
= n − 2. Repeating the process in Lemma 2.5 for W1 = E1, W2 = E2

and by the above argument, we can find I3 satisfying the above conditions.
Moreover, E2 ∩ E1 * F3.
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Similarly, we find subsets I1, . . . , In satisfying the above conditions. At
the end, in the same way, we still find In+1 such that |In+1| ≥ q − N and
Ds ∩ V = Dt ∩ V for all s, t ∈ In+1. So the Claim is proved.

Since (i) and (ii) hold, we now have q ≥ (n + 1)(q − N), and hence
n ≤ N/(q −N), a contradiction.

Proof of Theorem 1.6. Use the same argument as in the proof of Lemma
2.6 and apply Lemma 2.7.

Proof of Corollary 1.7. (i) This assertion is Lemma 2.6.

(ii) The first part can be deduced from the Thue–Siegel theorem (see
[14], [15]) and Theorem 1.6. For the second part, we consider the following.

Example 2.8. Let k = Q[
√

2], V = {x3 = 0} ⊂ P2
k

and D1 = {x1 = 0},
D2 = {x2 = 0}, D3 = {x21 − x23 = 0}, D4 = {x22 − x23 = 0}. Then
D1, D2, D3, D4 are hypersurfaces in 2-subgeneral position in V . Take J =
{((1 +

√
2)n : 1 : 0) | n ∈ N}. So J ⊂ V \ D and |J | = ∞. Since

{1, x2/x1, x1/x2} is a base of L(D′), where D′ = D1 + D2, we have the
embedding (

x1
x2
,
x2
x1

)
: V \D′ → A1.

It is easy to see that (1+
√

2)n ∈ O∗k ⊂ O∗S . Hence, J is a set of (S,D)-integral
points of V by Corollary 1.3, but J is an infinite set.

3. Hyperbolicity of the complement of divisors in subgeneral
position in projective algebraic varieties. First of all, we recall the
following.

Lemma 3.1 (Borel lemma). Let ui be nonvanishing entire functions sat-
isfying the unit equation

n∑
i=1

ui = 1.

Then the image of the entire curve f = (u1, . . . , un) is contained in a diag-
onal hyperplane.

Lemma 3.2 (see [7, Lemma 4.8] and [8, Theorem 7.2.13]). Let X be a
compact complex space and let {Ei}i∈I be a family of Cartier hypersurfaces
of X. Assume that for every subset ∅ ⊆ J ⊆ I, every holomorphic curve

f : C→
⋂
j∈J

Ej \
⋃
i∈I\J

Ei

is reduced to a constant mapping, where
⋂
j∈∅Ej = X. Then X \

⋃
i∈I Ei is

complete hyperbolic and hyperbolically embedded into X.
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Proof of Theorem 1.8. Let P1, . . . , Pq be homogeneous polynomials defin-
ing the hypersurfaces Dj (1 ≤ j ≤ q). Without loss of generality, we may
assume that Pj (1 ≤ j ≤ q) have the same degree. It suffices to prove that
if W is an irreducible subvariety of V with dimW := p > N/(q −N) and
f(C) ⊂W, then f(C) is contained in a proper subvariety ofW . Using Lemma
2.7, we may choose irreducible components X1, . . . , Xp+2 of Dj1 , . . . , Djp+2

as in Lemma 2.5. Set Qi = Pji . Then Q1(f), . . . , Qp+2(f) are nonvanishing
entire functions. Since the transcendence dimension of the function field of
W is p, the rational functions Q2/Q1, . . . , Qp+2/Q1 on W are algebraically
dependent. Hence there exists a polynomial T with coefficients in C such
that

T (Q2/Q1, . . . , Qp+2/Q1) = 0

identically on W . Therefore,

l∑
i=1

ciTi/T0 = 1,

where ci 6= 0 and T0, . . . , Tl are monomials in Q2/Q1, . . . , Qp+2/Q1. Set

Ti(f) = Ti(Q2(f)/Q1(f), . . . , Qp+2(f)/Q1(f)) (0 ≤ i ≤ l).

Then Ti(f)/T0(f) (1 ≤ i ≤ l) are nonvanishing entire functions. Using the
Borel lemma and in the same way as in the Unit Lemma and by repeating
the discussion as in the case of (S,D)-integral points, we get the first claim.

Now we apply Lemma 3.2 to prove the last claim. In fact, assume that
J is any subset of {1, . . . , q} with |J | = l. If l ≥ N + 1, then

⋂
j∈J Dj ∩

V = ∅ by our assumption, and hence the assertion is proved. If 0 ≤ l ≤ N,
then by definition, the family {Di}i∈I\J is in (N − l)-subgeneral position on⋂
j∈J Dj ∩V . By the above, any holomorphic curve f : C→ (

⋂
j∈J Dj ∩V )\⋃

i∈I\J Di is contained in a proper subvariety W of
⋂
j∈J Dj ∩ V such that

dimW ≤ N − l
(q − l)− (N − l)

.

Since q ≥ 2N + 1 and 0 ≤ l ≤ N we have dimW ≤ N−l
q−N < 1. Therefore

f(C) is discrete, and hence f is constant by the connectedness of f(C). The
proof is complete.
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