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1. Introduction. By Faltings’ theorem, a (smooth complete geometri-
cally irreducible) curve of genus > 1 over a number field has finitely many
rational points. By [2], it is widely believed that the number of these ra-
tional points is bounded in terms of the genus. In [12], prior to [2], Mazur
asked whether the number of rational points can be bounded in terms of
the genus and the Mordell–Weil rank of its Jacobian variety. For the case
of twists of curves, in [19], Silverman proves that Mazur’s question has a
positive answer. However, for general cases, this question is totally open.

By Silverman’s result, given a curve of genus > 1 over a number field,
finding infinitely many twists with a bounded number of rational points
becomes a problem of finding infinitely many twists with bounded Mordell–
Weil rank. Even for special cases such as Thue equations (see [11]), an answer
to this problem is sometimes not known. For the case of elliptic curves, by
Kolyvagin’s result [7] and the modularity of elliptic curves proved by Wiles
et al., results such as [14], in which quadratic twists with analytic rank 0 are
computed, imply that given an elliptic curve over Q, there are infinitely many
quadratic twists with Mordell–Weil rank 0, i.e., algebraic rank 0. There are
also results of this type such as Heath-Brown’s [4], [24], [25], and [3] which
rather directly show that there is a “positive proportion” of algebraic rank-0
quadratic twists of certain elliptic curves.

In this paper, we consider a family of twists of superelliptic curves over
a global field, and obtain results about the distribution of a certain Selmer
rank in this family of twists. These results imply that for these twists,
the problem of finding infinitely many twists with bounded Mordell–Weil
rank has a positive answer and, hence, there are infinitely many twists with
bounded number of rational points if the genus is > 1. Our result can be ap-
plied to Thue equations which can be mapped down to superelliptic curves
considered in this paper. For the case of superelliptic curves over a constant
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field and the case of hyperelliptic curves over Q, finer results are obtained.
In particular, using superelliptic curves over a constant field, we show in
Theorem 3.12 that there are (infinitely many twists of) curves of arbitrarily
large genus over a function field with Mordell–Weil rank 0. Over a number
field, examples of such curves are not known.

Let n ≥ 2 be a positive integer, and let R be an integral domain of
characteristic not dividing n, with field of fractions K. Let f(x) be a monic
polynomial in R[x] such that n is coprime to deg(f), and f(x) has distinct
roots. In this paper, a superelliptic curve is the projective K-model of the
affine plane curve yn = f(x).

1.1. Let K be a field, and let ℓ be a prime number different from charK.
Let C/K be the normalization of a superelliptic curve given by yℓ = f(x).
For D ∈ K∗, we denote by CD/K the normalization of the curve given by
yℓ = Ddf(x/D) where d := deg(f), and by JD/K the Jacobian variety
of CD. The Jacobian variety JD is called an ℓth power twist of J . For the
case of hyperelliptic curves (where ℓ = 2), the plane curve Dy2 = f(x) is
isomorphic to y2 = Ddf(x/D). We denote by rankJD(K) the Mordell–Weil
rank of JD(K) if JD(K) is a finitely generated (abelian) group. Let ζℓ be a
primitive ℓth root of unity, let F be K(ζℓ), and let λ := 1− ζℓ. Throughout
the paper, we also denote by λ the endomorphism 1 − ζℓ on JF defined in
[16, Sec. 3], and by Sel

(λ)(J, F ) the λ-Selmer group of JF .

In our work, we shall consider both the number field case and the function
field case, but in this section we state results for number fields. The function
fields considered in this paper are defined in 1.5, and the function field
analogues of our results are stated in Theorems 3.10 and 4.5.

Let k > 1 be a positive integer, and denote by Pk(X) the set of all
positive kth power-free integers up to X. Given a polynomial f(x), let ∆f

denote the discriminant of f(x). Let F be the field of fractions of a Dedekind
domain OF , and let D be a set of prime ideals of OF . A nonzero element D
of OF is supported by D if DOF is divisible only by prime ideals contained
in D .

1.2. Theorem. Let K := Q(ζℓ) where ℓ is a regular prime number.

Let f(x) be a monic polynomial of prime degree p defined over Z such that

f(x) is irreducible over K, and ℓ 6= p. Let C/Q be the normalization of the

superelliptic curve yℓ = f(x), and let J/Q be the Jacobian variety of C. Let

D0 be a positive integer. Let N := dimFℓ
Sel

(λ)(JD0
, K), and let M be the

number of prime ideals of OK dividing ℓ∆f D0. Then there is a set D of

prime numbers with Dirichlet density at least (p − 1)/(ℓ(N+M+1)p!(ℓ − 1)p!)
such that whenever a positive integer D is supported by D ,

(1) dimFℓ
Sel

(λ)(JD0 D, K) = N.
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Moreover , there is a positive constant ε < 1 depending on C and D0 such

that

(2) #{D ∈ Pℓ(X) : dimFℓ
Sel

(λ)(JD, K) = N} ≫J,D0

X

(log X)ε
.

This theorem is proved using Schaefer’s description of the λ-Selmer
group [16]. The case of superelliptic curves yℓ = x2 − A is considered by
Stoll in [21], which in fact inspired our work (see Corollary 3.9). Schaefer’s
description is more complicated when ℓ | deg(f); see [15].

Finer results on the distribution of Selmer ranks of twists of the Jacobian
variety of a curve have only been obtained in special cases of elliptic curves;
see [4], [6], [25], and [3]. As mentioned earlier, these results have application
to the distribution of Mordell–Weil ranks of quadratic twists of elliptic curves
considered in these papers. For our case, Corollary 3.7 shows the application
to the distribution of Mordell–Weil rank in the ℓth power twists and, hence,
by Silverman’s result [19, p. 234], it has application to the number of rational
points on these twists. Moreover, using Stoll’s result [20, Theorem 1.1] yields
a sharper result (see Corollary 3.8) about the distribution of the number of
rational points for hyperelliptic curves.

1.3. Theorem. Let K := Q(ζℓ) where ℓ is a regular prime number. Let

f(x) be a monic polynomial defined over Z such that f(x) has a root in K,
and ℓ ∤ deg(f). Let C/Q be the normalization of the superelliptic curve

yℓ = f(x).
Given a positive integer n, there is a positive constant ε < 1 depending

on C and n such that

#{D ∈ Pℓ(X) : dimFℓ
Sel

(λ)(JD, K) > n} ≫C,n X/(log X)ε.

In particular , lim supD dimFℓ
Sel

(λ)(JD, K) = ∞.

Suppose that ℓ = 2, and that f(x) is any polynomial of odd degree
with a root in Q such that f(x) has distinct roots. Theorem 1.3 implies in
particular that the 2-Selmer groups of quadratic twists of the hyperelliptic
curve y2 = f(x) can be arbitrarily large, and this result seems new. However,
for some elliptic curves, more is known. For instance, it is proved in [1] as
a generalization of Lemmermeyer’s work [8] that the 2-part of the Tate–
Shafarevich groups of quadratic twists of the elliptic curves considered in
this paper can be arbitrarily large.

It was asked by J. Silverman (see [14, p. 653]) whether given an elliptic
curve E/Q, there are infinitely many prime numbers p for which either Ep

or E−p has Mordell–Weil rank zero. The following corollary immediately
follows from Theorem 1.2:

1.4. Corollary. Let E/Q be an elliptic curve without Q-rational 2-

torsion points. If dimF2
Sel

(2)(E, Q) = 0, then there is a set D of prime
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numbers with a positive Dirichlet density such that rank Ep(Q) = 0 for all

p ∈ D . In particular , there are infinitely many prime numbers p such that

rankEp(Q) = 0.

In [14, Corollary 3], Ono and Skinner proved that the question of Silver-
man has a positive answer for all elliptic curves with conductor ≤ 100. Using
a specific example such as E : y2 = x3 − 2, we can show that Theorem 1.2
and Corollary 1.4 imply that there are infinitely many elliptic curves over
Q for which the question of Silverman has a positive answer.

Little is known about the distribution of quadratic twists of an elliptic
curve with Mordell–Weil rank 1, and the distribution of cubic twists of an
elliptic curve with Mordell–Weil rank 0. Vatsal’s result [23] for the case of
quadratic twists, which is unconditional, proves the existence of a positive
density of D’s with rankED(Q) = 1. If we assume the finiteness of the Tate–
Shafarevich groups of all elliptic curves over Q, Theorem 1.2 and properties
of the Cassels–Tate pairing yield a result about the distribution of quadratic
twists with Mordell–Weil rank 1 as dimF2

Sel
(2)(ED, Q) = 1 implies that

rankED(Q) = 1; see also [5]. While there are several on-going investigations
on the cubic twists, it seems that Lieman’s result [9] is the only unconditional
result at the moment. In Corollary 3.9, we obtain an unconditional result
for the cubic twists. This corollary might be merely an observation following
from Stoll’s formula [21, Corollary 2.1], but it seems worth noting it.

We conclude this introduction by providing the reader with a road map
for the proof of Theorem 1.2. Let L be a field isomorphic to K[x]/(f).
Using Schaefer’s method, we have the first two rows of the commutative
diagram

(3)

J(K)/λJ(K)
δ //

κv

��

H
1(K, J [λ])SJ

θ //

resv

��

L(SJ , ℓ)
incl //

resv

��
ΨJ

((QQQQQQQQQ
L∗/(L∗)ℓ

NL/K
��

J(Kv)/λJ(Kv)
δv //

H
D

v��

H
1(Kv, J [λ])

θv //

idD

��

L∗

v/(L∗

v)ℓ K∗/(K∗)ℓ

JD(Kv)/λJD(Kv)
δD

v // H1(Kv, JD[λ])
θD

v // L∗

v/(L∗

v)ℓ K∗/(K∗)ℓ

JD(K)/λJD(K)
δD

//

κv

OO

H
1(K, JD[λ])SD

θD
//

resv

OO

L(SD, ℓ)
incl //

resv

OO
ΨD

66mmmmmmmmm

L∗/(L∗)ℓ

NL/K

OO

Recall from 1.1 that the curve CD is given by yℓ = fD(x) := Dpf(x/D).
Since L ∼= K[x]/(fD), as in the case of J/K, we can construct a map θD :
H1(K, JD[λ]) → L∗/(L∗)ℓ. It is well known that the first two rows and
the last two rows of (3) are commutative. It is noteworthy, though, that
the targets of θ and θD are both L∗/(L∗)ℓ, and it can be understood as
a consequence of the fact that the two group schemes J [λ] and JD[λ] are
isomorphic to each other.
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Two key points we shall prove in Section 2 are the following: First, if D is
an ℓth power in Kv for some v, then there is a map H D

v : J(Kv) → JD(Kv)
such that the diagram (3) commutes (see Proposition 2.5). It is clear that
there is an isomorphism J(Kv) → JD(Kv), but it is not so obvious, unless
one knows the horizontal maps, that it commutes with the identity map
on L∗

v/(L∗

v)
ℓ. Secondly, if D is divisible only by prime ideals p of OK such

that pOL is prime, then kerΨJ = kerΨD in the diagram (3) (see Propo-
sition 3.1). These two results imply that θD(Sel

(λ)(JD, K)) is contained in
θ(Sel

(λ)(J, K)) (see the proof of Theorem 3.6). By imposing more conditions
on D (see 3.II), we can prove dimFℓ

Sel
(λ)(JD, K) = dimFℓ

Sel
(λ)(J, K). To

exhibit the existence of (enough) such D’s, we use the Chebotarev density
theorem and the general reciprocity laws.

Notation

1.5. A function field of one variable over an arbitrary field k is a field
extension K of k with transcendence degree 1 such that K is finitely gen-
erated over k, and k is algebraically closed in K. A function field of one
variable with a rational divisor v∞ is a function field K of one variable over
a finite field k with a non-archimedean absolute value v∞ on K/k of de-
gree 1. Such function fields correspond to smooth complete curves Z over k
with a k-rational point p∞ corresponding to the absolute value v∞. For this
type of function fields, we choose OK := {α ∈ K : |α|v ≤ 1 for all v 6= v∞}
to be a ring of integers in K, i.e., OK is the ring of regular functions on the
open subset Z \{p∞}.

1.6. In this paper, a global field K is either a number field or a function
field of one variable with a rational divisor v∞. We denote by MK the set
of all places of K, by M∞

K the set of archimedean places or {v∞} if K is
a function field, and by M0

K the set MK \M∞

K . Throughout the paper, if
L is a finite separable extension of K, let OL denote the integral closure
of OK in L. We denote by K the algebraic closure of K, and by Ksep the
(algebraic) separable closure of K. We denote by GK the absolute Galois
group Gal(Ksep/K). For each q ∈ MK , let Kq denote the completion of

K at q. We fix the algebraic closures K and Kq, and fix an embedding
κq : Ksep →֒ Kq, sep. A variety J over an arbitrary field K is a separated
scheme of finite type over K such that JK is integral (i.e., reduced and
irreducible).

2. The λ-Selmer group of twists. In this section, we introduce Schae-
fer’s method for computing Selmer groups, and two key propositions which
will prove the commutativity of the diagram (3). This method is introduced
in [16] for number fields, and Schaefer’s proofs generalize to the case of global
fields.
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2.1. Let ℓ be a prime number, and let K be a global field of charac-
teristic 6= ℓ such that K contains a primitive ℓth root of unity ζℓ. Let C/K
be the curve in 1.1. Recall that f(x) has distinct roots, and let {zi ∈ Ksep :
i = 1, . . . , d} be the roots of f(x). If f(x) does not have a K-rational root,
then we set d′ := d, and if f(x) has a K-rational root zd, then we set
d′ := d − 1. Then we define X := {z1, . . . , zd′}.

Let Z(C) be a set of representatives of the GK-orbits in X. For each
v ∈ MK , we denote by Xv the image of X under κv defined in 1.6. We
choose the set Z(C, q) of representatives of the GKv -orbits in Xv such that
Z(C) →֒ Z(C, q) under κq. Write Z(C) = {y1, . . . , ys}, and let Li := K(yi)
for i = 1, . . . , s. Given a set of places S containing M∞

K and places over ℓ,
we define

C (S, ℓ) :=
∏

z∈Z(C)

K(z)(S, ℓ) =

s∏

i=1

Li(S, ℓ),

Cq :=
∏

z∈Z(C,q)

Kq(z)∗/(Kq(z)∗)ℓ;

see [16, Sec. 2.3] for the definition of Li(S, ℓ). We denote the product∏
z∈Z(C) K(z)∗/(K(z)∗)ℓ by C . Then, by the method introduced in [16],

if S is a subset of MK containing M∞

K , the places above ℓ, and the places of
bad reduction of J/K, then the subgroup H1(K, J [λ])S unramified outside
S is isomorphic to the kernel of the norm map, ker(N : C (S, ℓ) → K(S, ℓ))
when # X = d, and isomorphic to C (S, ℓ) when # X = d − 1. In fact, we
have an injective map H1(K, J [λ]) → C extending H1(K, J [λ])S → C (S, ℓ),
and we denote the extension by θ. This map is also defined for Kq, and we
denote it by θq : H1(Kq, J [λ]) → Cq. For each q ∈ MK , we have a natural

map C → Cq denoted also by resq, and Sel
(λ)(J, K) can be described as

a subgroup of C as follows: If f(x) does not have a K-rational root, then
Sel

(λ)(J, K) is isomorphic to

{α ∈ C (S, ℓ) : N(α) = 1, resv(α) ∈ Im θv ◦ δv for all v ∈ S}.
If f(x) has a K-rational root, then we have a simpler description:

Sel
(λ)(J, K) ∼= {α ∈ C (S, ℓ) : resv(α) ∈ Im θv ◦ δv for all v ∈ S}.

Note that we have an injective homomorphism θ◦δ : J(K)/λJ(K) → C ,
and, in [16], a useful description of this map is provided. Write Ksep(CKsep

)

as the field of fractions of Ksep[x, y]/(yℓ−f(x)). Then we denote by fzi
(x, y)

the function x − zi. The function fzi
can be considered as a function on

divisors of C. Then, by [16, Sec. 2], we have a well defined homomorphism
Pic0(C) → C given by [D] 7→ (fz(E) : z ∈ Z(C)) where E =

∑
nR(R) is

a divisor in Div(C) such that the support of E avoids X (see [16, p. 450]),
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K(R)/K are separable for all R with nR 6= 0, and [E] = [D]. We denote
this map by δ.

The lemma below is [16, Theorem 2.3 and Proposition 3.3] if #X = d.
The proposition in [16] essentially shows that [(∞)] = [D] for some divisor
D avoiding Y such that (fz(D) : z ∈ Z(C)) is trivial in C where Y =
{z1, . . . , zd}. Using this, we can prove

2.2. Lemma. The map δ : Pic0(C) → C is equal to θ ◦ δ. Suppose that

f(x) has a K-rational root zd. If E is a nonzero divisor in Div0(C) such

that E = (Q) − (degK(Q))(∞) for some Q avoiding X, and K(Q)/K is

separable, then [E] is mapped to (fz(Q) : z ∈ Z(C)) under δ. In particular ,
[(zd, 0) − (∞)] 7→ (fz(zd, 0) : z ∈ Z(C)).

Proof. The proof is left to the reader.

Let us prove the commutativity of the diagram (3) in a slightly more

general context. Recall that f(x) = (x− z1) · · · (x− zd). Then Ddf(x/D) =
(x − z1D) · · · (x − zdD) for D ∈ K∗. For D ∈ K∗ and q ∈ MK , we define

XD := {ziD : i = 1, . . . , d′}, XD
q := {κq(ziD) : i = 1, . . . , d′}.

Let Z(CD) := {zD : z ∈ Z(C)}. It is a set of representatives of GK-orbits
in XD, and this choice is said to be compatible with Z(C). We choose
Z(CD, q) to be compatible with Z(C, q); hence, Z(CD) ⊂ Z(CD, q). As
in the case of C/K, with respect to Z(CD) and Z(CD, q), we have CD and
(Cq)D, and the maps θD and θD

q . Then it follows from the choice of Z(CD)
and Z(CD, q) that CD = C and (Cq)D = Cq for all q ∈ MK .

2.3. Let S be a subset of MK containing M∞

K , the places above ℓ, and

the places of bad reduction of JD/K. Then Sel
(λ)(JD, K) is described as a

subgroup of the fixed space C as follows:

θD(Sel
(λ)(JD, K))
∼= {α ∈ θD(H1(K, JD[λ])S) : resq(α) ∈ Im θD

q δD
q for all q ∈ S}.

In a slightly more general context, we introduced above all the horizontal
maps in (3). Proposition 2.4 below is one of the key propositions which
establishes the commutativity of the diagram formed by the restriction maps
in the second and third columns of (3). The proof of this proposition is left
to the reader.

2.4. Proposition. For each q ∈ MK , the following diagram commutes

for all D ∈ K∗:

H1(K, JD[λ])

resq

��

θD
// C

resq

��
H1(Kq, JD[λ])

θD
q // Cq
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Proposition 2.5 below completes the proof of the commutativity of the
diagram (3).

2.5. Proposition. Let q be a place in MK . For all nonzero elements

D of OK such that D ∈ (K∗

q)ℓ, there is an isomorphism HD : J(Kq) →
JD(Kq) such that the following diagram commutes:

(4)

JD(Kq)/λJD(Kq)
θD
q δD

q // Cq

J(Kq)/λJ(Kq)
θqδq //

HD

OO

Cq

id

OO

In particular , Im θD
q δD

q = Im θqδq for all nonzero D ∈ OK and q ∈ MK

such that D ∈ (K∗

q)ℓ.

Proof. Let D be a nonzero element of OK such that D ∈ (K∗

q)ℓ. Then

we have an isomorphism (CD)Kq → CKq given by (x, y) 7→ (x/D, y/
ℓ
√

Dd),
and this isomorphism induces an isomorphism HD : J(Kq) → JD(Kq) by
pulling back on the divisors. Recall Z(CD, q) = {zD : z ∈ Z(C, q)}. Let E :=∑

nj(Rj) be a divisor in Div0(CKq , sep) avoiding Xq such that Kq(Rj)/Kq

are separable, and write Rj = (xj, yj). Then, for any z ∈ Z(C, q),

fzD(HD(E)) =
∏

j

(fzD(xjD, yj
ℓ
√

Dd))nj =
∏

j

(xjD − zD)nj

= D
∑

nj

∏

j

(xj − z)nj =
∏

j

(xj − z)nj ,

fz(E) =
∏

j

(fz(xj , yj))
nj =

∏

j

(xj − z)nj .

This proves the commutativity of the diagram (4).

3. The Jacobian varieties without λ-torsion points. In this sec-
tion, we prove Theorem 1.2, and state its analogue for the function field
case. Let ℓ be a prime number, and let K be a global field of characteristic
6= ℓ, containing a primitive ℓth root of unity ζℓ. Let C/K be the curve in 1.1,
and suppose that f(x) is a monic polynomial of prime degree p defined over
K such that f(x) is irreducible over K, and ℓ 6= p. For the number field case,
suppose that f(x) is defined over Z. Let ∆f be the discriminant of f(x). We
keep all the notation and definitions introduced in Section 2. Let SJ denote
the subset of MK containing M∞

K , the places dividing ℓ∆f . For each nonzero
element D of OK , let SD denote the set SJ ∪{p ∈ M0

K : p |DOK}. Then the
sets SJ and SD contain the set of places of bad reduction of J/K and JD/K,
respectively. Recall that X := {z1, . . . , zd}. Since X forms one orbit, Z(C)
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contains a single point, and we choose Z(C) := {z1} as a representative. Let
L denote the finite separable field extension L1 := K(z1) of degree p. Then
C := L∗/(L∗)ℓ as defined in Section 2.

3.1. Proposition. Let D be a nonzero element of OK , and suppose

that DOK is supported by the set of prime ideals q of OK such that either

qOL is prime in OL or qOL = pp for some prime ideal p of OL. Then

ker(NL/K : L(SJ , ℓ) → K(SJ , ℓ)) = ker(NL/K : L(SD, ℓ) → K(SD, ℓ)).

Hence,

θ(H1(K, J [λ])SJ
) = θD(H1(K, JD[λ])SD

)

as subgroups of L∗/(L∗)ℓ.

Proof. The proof is left to the reader.

The Legendre symbol is used throughout Sections 3 and 4. Some results
on Legendre symbols required to prove our main results are introduced in
Appendix A. In A.1, we extend the definition of the symbol to prime ideals
dividing ℓOK and archimedean places, so that given α ∈ OK and p ∈ MK ,(

α
p

)
ℓ
= 1 implies α ∈ (K∗

p)ℓ.

3.I. The case of number fields

Suppose that K = Q(ζℓ), and that ℓ is a regular prime number.

3.2. Let W be a finite subset of OL \{0}. We denote by DW the set
of prime numbers q ∈ Z not dividing ℓ which have the following properties:
for all prime ideals q of OK dividing q, (1) the ideal qOL is prime; (2)
α 6≡ 0 mod qOL, and

(
α

qOL

)
ℓ
= 1 for all α ∈ W .

3.3. Lemma. Let q be a prime ideal of OK not dividing ℓOK such that

qOL is prime. If α ∈ OK is such that
(

α
qOL

)
ℓ
= 1, then

(
α
q

)
ℓ
= 1.

Proof. The proof is left to the reader.

3.4. Proposition. Let W be a finite subset of OL\{0}, and let DW be

the set of prime numbers defined in 3.2. Then DW contains a set of prime

numbers in Z with Dirichlet density at least (p − 1)/(ℓ(#W )p!(ℓ − 1)p!).

Proof. Let M be the Galois closure of L( ℓ
√

α : α ∈ W ) over Q. Let M ′

be the Galois closure of L over Q. Then m := [M ′ : L] 6≡ 0 mod p, and
[M : M ′] = ℓn for some nonnegative integer n. Hence, [M : K] = pmℓn. Let
G denote the group Gal(M/Q). Then Gal(M/K) is a subgroup of G, and
the group G contains an automorphism τ of order p acting trivially on K.
Moreover, the subgroup 〈τ〉 of G is stable under conjugation. Therefore, the
subset H := {τk : k = 1, . . . , p − 1} is stable under conjugation in G.
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Let D be the set of all prime numbers q such that q is unramified in M
and its Frobenius automorphisms are contained in H. Then, since [M : Q]
divides (ℓ − 1) · p! · ℓ(# W ) p!, by the Chebotarev density theorem, D has
Dirichlet density at least (p− 1)/(ℓ(#W ) p!(ℓ− 1)p!). Since W is a finite set,
the following set of prime ideals has Dirichlet density equal to the Dirichlet
density of D :

{q ∈ D : α 6≡ 0 mod q for all prime ideals q | qOL and for all α ∈ W}.
Thus, let us assume that D is the above set.

Let us show that D is a subset of DW . Let q ∈ D , and let Q be a prime
ideal of OM lying over q. Let QL := Q∩OL, and q := Q∩OK . Let us show
that qOL is a prime ideal. Let f(q/q), f(QL/q), and f(Q/QL) denote the
residue degrees. Then

(5) p = |Frob(Q/q)| = f(Q/q) = f(Q/QL)f(QL/q)f(q/q).

Since τ = Frob(Q/q) ∈ Gal(M/K), and K/Q is Galois, Frob(q/q) = resK(τ)
= 1. Hence, 1 = |Frob(q/q)| = f(q/q). Thus, p = f(Q/QL)f(QL/q). Since
M/L is Galois, f(Q/QL) divides mℓn and, hence, f(Q/QL) 6≡ 0 mod p.
Therefore, f(Q/QL) = 1 and f(QL/q) = p. In other words, the prime ideal q

remains prime in OL. Moreover, f(Q/QL) = 1 implies that OM/Q ∼= OL/QL

and, hence, ℓ
√

α for all α ∈ W are defined in OL/QL. In other words, since
QL = qOL, 1 =

(
α

qOL

)
ℓ

for all α ∈ W . Therefore, q ∈ DW .

Recall that ℓ is a regular prime number. The following lemma is the
key place in our work where the additional hypothesis of ℓ being regular is
needed.

3.5. Lemma. Let W be a finite subset of OL\{0} containing ζℓ. Let DW

be the set of prime numbers defined in 3.2. Let q be a place of K. If q is a

prime ideal of OK , then we choose αq ∈ OK such that qm = αqOK where m
is the order of q in Cl(OK), and if q = λOK , then we choose αq := λ. If q

is an infinite place of K, or if q is a prime ideal of OK such that αq ∈ W ,

then
(

D
q

)
ℓ
= 1 for all positive integers D supported by DW .

Proof. Suppose that q is a prime ideal of OK not dividing ℓOK , and
qm = αqOK where m is the order of q in Cl(OK). Let q be a prime number
dividing D, and suppose that αq ∈ W . Let qOK =

∏t
j=1 pn

j be a prime ideal

decomposition. Since q ∈ DW , it follows that
( αq

pjOL

)
ℓ

= 1 and, hence, by

Lemma 3.3,
(αq

pj

)
ℓ
= 1. Then

(
αq

q

)

ℓ

=

t∏

j=1

(
αq

pn
j

)

ℓ

=

t∏

j=1

(
αq

pj

)n

ℓ

= 1.
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Since W contains ζℓ and λ, it follows that
( ζℓ

p1

)
ℓ
= 1. If ℓ = 2, then K = Q,

and it follows that
(
−1
p1

)
2

=
(

2
p1

)
2

= 1. By Lemma A.2,
( q

λOK

)
ℓ

= 1. By
Corollary A.3,

1 =

(
αq

q

)

ℓ

=

(
q

αq

)

ℓ

=

(
q

q

)m

ℓ

.

Since m 6≡ 0 mod ℓ, we proved that
( q

q

)
ℓ

= 1 for all prime numbers q
dividing D.

Suppose that q := λOK . Then
( q

λOK

)
ℓ
= 1 for all q |D was already shown

above. Since D > 0, it is clear that
(

D
v

)
ℓ

= 1 for all infinite places
v ∈ MK .

Let us return to the context of our superelliptic curves. Recall that
L := K(z1). For all D ∈ K∗, we have Sel

(λ)(JD, K) ⊂ H1(K, JD[λ])SD
→֒

L∗/(L∗)ℓ under θD.

3.6. Theorem. Let N := dimFℓ
Sel

(λ)(J, K), and let M be the number

of prime ideals of OK dividing ℓ∆f . Then there is a set D of prime num-

bers with Dirichlet density at least (p − 1)/(ℓ(N+M+1)p!(ℓ − 1)p!) such that

whenever a positive integer D is supported by D , we have θ(Sel
(λ)(J, K)) =

θD(Sel
(λ)(JD, K)). In particular , dimFℓ

Sel
(λ)(J, K) = dimFℓ

Sel
(λ)(JD, K).

Proof. Let WJ be a subset of OL generating θ(Sel
(λ)(J, K)). For each

prime ideal q of OK , let us fix an element αq of OK as in Lemma 3.5.
Recall the set SJ , and let YJ := {ζℓ} ∪ WJ ∪ {αq ∈ OK : q ∈ SJ ∩ M0

K}.
Let DYJ

be the set of prime numbers defined in 3.2 for W = YJ . Then,
by Proposition 3.4, DYJ

contains a set D of prime numbers with Dirichlet
density at least (p − 1)/(ℓ(N+M+1)p!(ℓ − 1)p!).

Let D be a positive integer supported by D . Let us show that

θD(Sel
(λ)(JD, K)) ⊂ θ(Sel

(λ)(J, K)).

Let α ∈ θD(Sel
(λ)(JD, K)). By 2.3, θ(Sel

(λ)(J, K)) and θD(Sel
(λ)(JD, K))

are subgroups of θ(H1(K, J [λ])SJ
) and θD(H1(K, JD[λ])SD

), respectively. By

Proposition 3.1, we have θD(H1(K, JD[λ])SD
) = θ(H1(K, J [λ])SJ

); hence, α
is contained in θ(H1(K, J [λ])SJ

). Let q be a place in SJ . Then q is contained

in SD. By Lemma 3.5,
(

D
q

)
ℓ

= 1, and by Hensel’s lemma, this implies

that D ∈ (K∗

q)ℓ. By Proposition 2.5, it follows that Im θqδq = Im θD
q δD

q

and, hence, α is contained in Im θqδq since α ∈ θD(Sel
(λ)(JD, K)). Thus,

α ∈ θ(Sel
(λ)(J, K)).

Let us show that

θ(Sel
(λ)(J, K)) ⊂ θD(Sel

(λ)(JD, K)).

Let α ∈ θ(Sel
(λ)(J, K)). By Proposition 3.1, α ∈ θD(H1(K, JD[λ])SD

). If q

is a place in SJ , then we showed above D ∈ (K∗

q)ℓ, and by Proposition 2.5,
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Im θqδq = Im θD
q δD

q . Thus, α ∈ Im θD
q δD

q for all q ∈ SJ . Let q be a prime ideal

in SD \SJ . Since D is supported by D , we have
(β

q

)
ℓ

= 1 for all β ∈ WJ .

Since WJ generates θ(Sel
(λ)(J, K)), it follows that

(
α

qOL

)
ℓ
= 1, i.e., α ∈ (L∗

P)ℓ

where P := qOL. Recall the natural map resq : L∗/(L∗)ℓ → Cq. Since qOL

is prime, Cq = L∗

P/(L∗

P)ℓ. Thus,
(

α
qOL

)
ℓ

= 1 implies resq(α) = 1 and, in

particular, resq(α) ∈ Im θD
q δD

q . We established that resq(α) ∈ Im θD
q δD

q for

all q ∈ SD. Therefore, α is contained in θD(Sel
(λ)(JD, K)). Since θ and θD

are injective maps, the dimensions of the two Selmer groups are equal to
each other.

The proof of Theorem 1.2 follows from Theorem 3.6 and [18, The-
orem 2.4].

3.7. Corollary. Assume the same hypotheses as in Theorem 1.2. Then

there is a positive constant ε < 1 such that

#{D ∈ Pℓ(X) : rank JD(Q) ≤ N} ≫J,D0
X/(log X)ε.

Proof. The result follows from [16, Corollary 3.7 and Proposition 3.8].

3.8. Corollary. Suppose that ℓ = 2 and deg(f) ≥ 5, and that there is

a positive integer D0 such that N := dimF2
Sel

(2)(JD0
, Q) < (p− 1)/2. Then

there is a positive constant ε < 1 depending on C and D0 such that

#{D ∈ P2(X) : # CD(Q) ≤ 2N + 1} ≫ X/(log X)ε.

Proof. Let ι be the hyperelliptic involution on CD. In [20, Theorem 1.1],
Stoll proves that if D is coprime to a fixed finite set T of prime numbers de-
termined by C and D0, then any set S ⊂ CD(Q) such that # S ≤ (p− 1)/2
and S ∩ ι(S) = ∅ generates a subgroup of rank #S in JD(Q). By Theo-
rem 1.2, #{D ∈ P2(X) : dimF2

Sel
(2)(JD, Q) = N} ≫ X/(log X)ε. Let D

be a positive integer not supported by T such that dimF2
Sel

(2)(JD, Q) = N .
Then, by Stoll’s theorem and Corollary 3.7, CD(Q) cannot contain a subset
S such that #S > N and S∩ι(S) = ∅. Since CD(Q) does not contain a point
fixed under the involution, except ∞, we conclude # CD(Q) ≤ 2N + 1.

3.9. Corollary. Let E/Q be an elliptic curve given by y2 = x3 − A
where A is a positive square-free integer such that A ≡ 1 or 25 mod 36 and

dimF3
Cl(Q(

√
−A))[3] = 0. For a nonzero cube-free integer D, let ED be the

cubic twist y2 = x3 −AD2. Then there is a positive integer ε < 1 such that

#{D ∈ P3(X) : rankED(Q) = 0} ≫ X/(log X)ε.

Proof. By [21, Corollary 2.1], dimF3
Sel

(λ)(E, K) = 0 where λ = 1 − ζ3

and K = Q(ζ3). As A is square-free and coprime to 3, the polynomial
y2 + AD2 is irreducible over K, and the result follows immediately from
Corollary 3.7 with ℓ = 3.
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3.II. The case of function fields

The proof of the function field analogue of Theorem 1.2 is treated dif-
ferently. However, it is essentially the same, and we shall just state the
result without proof. Let k be a finite field containing a primitive ℓth root of
unity ζℓ; hence, char k 6= ℓ. Let K/k be a function field of one variable with a
rational divisor v∞ such that Cl(OK)[ℓ] 6≡ 0 mod ℓ. Let π∞ be a uniformizer
of the discrete valuation ring O∞ of K at v∞, and let ord∞ := ordv∞ . Note
that each nonconstant element g of OK is not an element of the valuation ring
O∞, i.e., ordv∞(g) < 0. The leading coefficient of a nonzero element g of OK

(with respect to π∞) is the constant a ∈ k∗ such that πm
∞

g ≡ a mod π∞

for some m ∈ Z. The element g is monic if the leading coefficient is 1. The
degree of an element g of OK , denoted by deg(g), is − ord∞(g).

3.10. Theorem. Let D0 be a nonzero element of OK , define N :=
dimFℓ

Sel
(λ)(JD0

, K), and let M the number of prime ideals of OK divid-

ing ℓ∆f D0. Then there is a set D of prime ideals of OK with Dirichlet

density at least (p − 1)/(ℓ(N+M+1)p!p!) such that whenever D is a monic

element of OK supported by D such that deg(D) is divisible by ℓ, we have

dimFℓ
Sel

(λ)(JD0D, K) = N .

3.11. Given an infinite set D of prime ideals of OK , there are indeed
infinitely many classes in K∗/(K∗)ℓ represented by D ∈ OK which is sup-
ported by D and deg(D) ≡ 0 mod ℓ. Thus, Theorem 3.10 implies that there
are infinitely many twists with Selmer rank N . The ℓ-divisibility condition
on deg(D) is due to the local condition at v∞ ∈ M∞

K —the Legendre symbol
over v∞ is introduced in Appendix A.

3.12. Theorem. Suppose that f(x) is defined over k. Let k′ be the

finite extension of k of degree p := deg(f). Let L := K ⊗ k′. Suppose that

dimFℓ
Cl(OL)[ℓ] = 0. Then dimFℓ

Sel
(λ)(J, K) = 0.

Let E/k be the constant Jacobian variety of the normalization of the

superelliptic curve yℓ = f(x) over k. Then there is a set D of prime ideals

of OK with Dirichlet density (p − 1)/p such that whenever D is an element

of OK supported by D , dimFℓ
Sel

(λ)(JD, K) = 0 and # CD(K) ≤ # E(k);
moreover , rank JD(K) = 0.

Proof. Note that L/K is Galois. Then SJ = M∞

K , and H1(K, J [λ])M∞

K

is isomorphic to ker(NL/K : L(M∞

K , ℓ) → K(M∞

K , ℓ)). Since the subgroup

Cl(OL)[ℓ] is trivial, by Lemma 3.13 below, H1(K, J [λ])M∞

K
= 1 and, hence,

Sel
(λ)(J, K) = 0.

Let D be the set of prime ideals q of OK such that qOL is prime. Then
D has Dirichlet density (p−1)/p. If D is an element of OK supported by D ,
then, by Proposition 3.1, θD(H1(K, JD[λ])SD

) = θ(H1(K, J [λ])SJ
) = 1 and,
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hence, dimFℓ
Sel

(λ)(JD, K) = 0. By [16, Corollary 3.7],

rank JD(K) ≤ (ℓ − 1) dimFℓ
Sel

(λ)(JD, K) = 0.

Suppose that D is not a unit in OK , and let F := K( ℓ
√

D). Then k is alge-
braically closed in F , and F ⊂ Ksep since ℓ 6= charK. Since (CD)F

∼= CF

as F -schemes, by Proposition 3.15 below, # JD(K)Tor ≤ # E(k). Since
JD(K) = JD(K)Tor, the result follows.

The hypothesis in Theorem 3.12 is often satisfied. Let K be a func-
tion field of one variable with a rational divisor v∞, and let Z /k be the
smooth curve with function field K. Then, by Proposition 3.14, # Cl(OK) =
# Pic0(Z ). Let L := K ⊗ k′ for a finite extension k′ of k. Then # Cl(OL) =
# Pic0(Zk′). Therefore, for all but finitely many prime numbers ℓ, we have
# Cl(OL) = # Pic0(Zk′) 6≡ 0 mod ℓ. Thus, we find examples of superellip-
tic curves of arbitrarily large genus which satisfy the conditions in Theo-
rem 3.12. For the curves C considered in Theorem 3.12, there are infinitely
many D’s such that # CD(K) is bounded. In [17], Schoen considered hy-
perelliptic curves defined over certain geometric fields, and showed that for
these curves, the number of rational points of their quadratic twists can be
arbitrarily large.

3.13. Lemma. Let L := K⊗k′ where k′ is a finite (separable) extension

of k of degree d coprime to ℓ, and suppose that Cl(OL)[ℓ] is trivial. Then

ker(NL/K : L(M∞

K , ℓ) → K(M∞

K , ℓ)) = 1.

Proof. Since Cl(OL)[ℓ] = 1, the subgroup L(M∞

K , ℓ) is isomorphic to
O∗

L/(O∗

L)ℓ. It follows from Proposition 3.14 below that O∗

L = (k′)∗. Hence,
ker(NL/K : L(M∞

K , ℓ) → K(M∞

K , ℓ)) is isomorphic to ker(Nk′/k : k′∗/(k′∗)ℓ

→ k∗/(k∗)ℓ). The result follows from this description.

3.14. Proposition. Let k′ be a finite field. Let Z /k′ be a smooth com-

plete curve with function field F such that Z has a rational divisor v∞.

Then there is a k′-morphism Z → P1
k′ such that v∞ is totally ramified

over a rational divisor in P1
k′. Let OF be the ring of integers defined in 1.6

with M∞

F := {v∞}. Then the group of units O∗

F is (k′)∗, and # Cl(OF ) =
# Pic0(Z ). Hence, the class number of OF does not depend on the choice

of a rational divisor on F .

Proof. Using the Riemann–Roch theorem, we can find a function g in
k′(Z ) with poles supported only by v∞. Then the function g induces a
morphism Z → P1

k′ such that v∞ is totally ramified over a rational point
∞ ∈ P1

k′ . To finish the proof, we use [10, Sec. VIII, p. 299].

3.15. Proposition. Let k be a perfect field , and let K be a field ex-

tension of k such that k is algebraically closed in K. Let E/k be a smooth

complete geometrically connected curve with a k-rational point. Let C ′/K be
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a twist of EK/K, and suppose that there is a field extension F of K such

that k is algebraically closed in F and C ′

F
∼= EF (as F -schemes). Let J/k

be the Jacobian variety of E/k, and let JC′/K be the Jacobian variety of

C ′/K. Then JC′(K)Tor →֒ J(k).

Proof. Note that J(k)Tor = J(K)Tor = J(Ksep)Tor. Then

JC′(K)Tor ⊂ JC′(F )Tor
∼= JF (F )Tor

∼= J(F )Tor = J(k).

4. The Jacobian varieties with λ-torsion points. In this section,
we prove Theorem 1.3, and state its function field analogue Theorem 4.5
without proof as the proof is similar to the number field case. Let ℓ be a
prime number, and let K := Q(ζℓ) for which we assume ℓ is regular. Let
C/K be the curve in 1.1, and we keep the notation used in Section 2. Let
∆f be the discriminant of f . Recall z1, . . . , zd ∈ Ksep, the roots of f(x),
and suppose that zd is contained in K. Recall the set Z(C) := {y1, . . . , ys}
and the fields Li := K(yi) for i = 1, . . . , s. Let L be the compositum of
L1, . . . , Ls in Ksep.

4.1. Let us fix a set of generators of θ(Sel
(λ)(J, K)), and note that

each generator is an s-tuple with entries in L. Let WJ be the union of
all entries of the generators. Then WJ is a subset of L∗. For each prime
ideal q of OK , choose an element αq of OK as in the proof of Theorem 3.6.
Let SJ := M∞

K ∪ {q ∈ M0
K : q | ℓ∆fOK}, and let YJ := {ζℓ,−1} ∪ WJ ∪

{αq ∈ OK : q ∈ SJ ∩ M0
K}. Let M be the Galois closure of L( ℓ

√
α : α ∈ YJ)

over Q.
Let us denote by D ′

YJ
the set of prime numbers q in Z such that q splits

completely in OM and coprime to α for all α ∈ YJ . By the Chebotarev
density theorem with H being the trivial subgroup of Gal(M/Q), the set of
prime ideals of Z that split completely in M has a positive Dirichlet density.
Then it is clear that D ′

YJ
has a positive Dirichlet density. The proof of the

following lemma is similar to that of Lemma 3.5, and we leave it to the
reader.

4.2. Lemma. Let D be a positive integer supported by D ′

YJ
. If q is a

place in SJ , then
(

D
q

)
ℓ
= 1.

4.3. Proposition. Let D be a positive ℓth power free integer in Z which

is supported by D ′

YJ
. Then dimFℓ

Sel
(λ)(JD, K) > dimFℓ

Sel
(λ)(J, K). In par-

ticular , lim supD dimFℓ
Sel

(λ)(JD, K) = ∞.

Proof. Let D be a positive ℓth power-free integer in Z which is sup-

ported by D ′

YJ
. The proof of θ(Sel

(λ)(J, K)) ⊂ θD(Sel
(λ)(JD, K)) is similar to

the proof in Theorem 3.6. To prove the inequality, note that θ(Sel
(λ)(J, K))

⊂ ∏s
i=1 Li(SJ , ℓ). Let SD := SJ ∪ {q ∈ M0

K : q |DOK}. Lemma 4.4
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below shows that there is an element of θD(Sel
(λ)(JD, K)) which is

contained in
∏s

i=1 Li(SD, ℓ) but not in
∏s

i=1 Li(SJ , ℓ). This proves that

dimFℓ
Sel

(λ)(JD, K) > dimFℓ
Sel

(λ)(J, K). By induction, it is clear that

lim supD dimFℓ
Sel

(λ)(JD, K) = ∞.

4.4. Lemma. Let D be an ℓth power-free positive integer supported

by D ′

YJ
. Then the K-rational point [(zdD, 0) − (∞)] ∈ JD[λ](K) is mapped

to
∏

Li(SD, ℓ) \∏
Li(SJ , ℓ) under θDδD : JD(K)/λJD(K) → C .

Proof. Since D is supported by D ′

YJ
, D is coprime to ∆f and to all

prime ideals q ∈ SJ . Since P := [(zdD, 0) − (∞)] is a point in JD(K), by
Lemma 2.2,

θD(δD(P )) = (fzD(zdD, 0) : z ∈ Z(C)) = (zdD − zD : z ∈ Z(C))(6)

= (D(zd − z) : z ∈ Z(C)).

Note that for all z ∈ Z(C), the difference zd − z divides ∆f and, hence,
it is coprime to D. Since DOK can be assumed to be supported by prime
ideals unramified in the compositum L, and is not an ℓth power of an ideal,
it follows that D(zd − yi) ∈ Li(SD, ℓ) \Li(SJ , ℓ) for all i = 1, . . . , s.

Proof of Theorem 1.3. By Proposition 4.3, there is a positive ℓth power-
free rational integer D0 such that dimFℓ

Sel
(λ)(JD0

, K) > n. Proposition 4.3
applied to J = JD0

and [18, Theorem 2.4] together imply the result.

The theorem below is a function field analogue of Theorem 1.3.

4.5. Theorem. Suppose that K is a function field defined in 1.5. Given

a positive integer n, there are D0 ∈ OK and a set of prime ideals D of OK

with a positive Dirichlet density such that whenever D is a monic element

of OK of degree divisible by ℓ such that DOK is not an ℓth power of an

ideal and D is supported by D , we have dimFℓ
Sel

(λ)(JD0D, K) > n.

Acknowledgements. I wish to thank Robert Rumely, Dino Lorenzini,
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A. The general reciprocity laws. The general reciprocity law is used
in this paper to show the existence of infinitely many prime numbers or
ideals satisfying a set of conditions under which we are able to control the
size of the Selmer groups. Results introduced in this section can be proved
using the reciprocity law in [13, Theorem 8.3, p. 415], or [22, p. 352]. Except
Theorem A.4, we leave to the reader the proofs of results in this section. We
also refer to [13] for the definitions of symbols used here. As we omitted many
proofs of the function field case, in fact, Theorem A.4 and Corollary A.4 are
not used in the proofs presented in this paper. However, since a convenient
form of the global reciprocity law for a general function field of one variable
does not seem to be available, we include the statement and proof.
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A.1. Let ℓ be a prime number. Let K be a number field containing ζℓ.
Given a place v dividing ℓ∞ and α ∈ K∗ coprime to v, we define, for
convenience,

(
α
v

)
ℓ

to be 1 if α ∈ (K∗

v )ℓ, and −1 if not.

A.2. Lemma. Let q be a rational prime coprime to ℓ. Let p be a prime

ideal of OK lying over q. Suppose that ℓ is odd. If
( ζℓ

p

)
ℓ

= 1, then q ≡
aℓ mod ℓ2 for some a ∈ Z, and

( q
λOK

)
ℓ

= 1. Suppose that ℓ = 2, i.e.,

K = Q. If q is an odd prime such that
(
−1
q

)
ℓ
=

(
2
q

)
ℓ
= 1, then

( q
2Z

)
ℓ
= 1.

A.3. Corollary. If a is a positive rational integer coprime to ℓ such

that
(

a
λOK

)
ℓ
= 1, then

(
a
α

)
ℓ
=

(
α
a

)
ℓ

for all α ∈ OK coprime to aℓ.

Let k be a finite field of characteristic q, and let K/k be a function field
of one variable with a rational divisor v∞. Let us define

( g
v∞

)
ℓ

to be 1 if

g ∈ (K∗

v∞)ℓ, and −1 if g 6∈ (K∗

v∞)ℓ. Let g be an element of OK with the

leading coefficient a ∈ k∗ (with respect to π∞). Then g ∈ (K∗

v∞)ℓ if and only

if a ∈ (k∗)ℓ and deg(g) is divisible by ℓ.

A.4. Theorem (The general reciprocity law for function fields). Let q
be a prime number , and let n be a positive integer not divisible by q. Suppose

that k has qr elements, and k contains a primitive nth root of unity. If g
and h are monic distinct elements of OK such that g is coprime to h, then

(−1

g

)

n

= (−1)((q
r
−1)/n)·ord∞(g);

(
g

h

)

n

((
h

g

)

n

)
−1

= (−1)((q
r
−1)/n)·ord∞(g) ord∞(h).

Proof. Let Kv∞ be the completion of K at v∞. Let Ô∞ := {α ∈ Kv∞ :

|α|v∞ ≤ 1}, and M̂∞ := {α ∈ Ô∞ : |α|v∞ < 1}. Since deg(v∞) = 1, let us

define ω : Ô∗

∞
→ k∗ by α 7→ a such that α ≡ a mod M̂∞. By [13, Chapter V,

Sec. 3, Proposition 3.4] for nonzero elements α and β in OK ,

(7)

(
α, β

v∞

)

n

= ω

(
(−1)ord∞(α) ord∞(β) βord∞(α)

αord∞(β)

)(qr
−1)/n

.

Let π∞ ∈ K∗ be a uniformizer of Kv∞ . Let g and h be monic distinct
elements of OK coprime to each other. Then, by [13, Theorem 8.3, p. 415],

(−1

g

)

n

=

(−1, g

v∞

)

n

= ω((−1)ord∞(g))(q
r
−1)/n = (−1)ord∞(g)(qr

−1)/n.

Since g and h are monic, there are a and b in Ô∗

∞
such that a ≡ b ≡ 1

mod M̂∞, g = aπ
ord∞(g)
∞ , and h = bπ

ord∞(h)
∞ . It follows from Hensel’s lemma
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that a and b are contained in (K∗

v∞)n. Then, by [13, Theorem 8.3, p. 415],
(

g

h

)

n

((
h

g

)

n

)
−1

=

(
π∞, π∞

v∞

)ord∞(g) ord∞(h)

n

.

By (7),
(π∞,π∞

v∞

)
n

= (−1)(q
r
−1)/n.

The following corollary easily follows from this theorem:

A.5. Corollary. If g is a monic element of OK such that
(
−1
g

)
n

= 1,

then
(

h
g

)
n

=
( g

h

)
n

for all monic elements h of OK coprime to g.
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