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On Bialostocki’s conjecture for zero-sum sequences
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1. Introduction. A finite sequence S of terms from an (additive) abelian
group is said to be a zero-sum sequence if the sum of the terms of S is zero.
In 1961 P. Erdős, A. Ginzburg and A. Ziv [3] proved that any sequence of
2n − 1 terms from an abelian group of order n contains an n-term zero-
sum subsequence. This celebrated EGZ theorem is an important result in
combinatorial number theory and it has many different generalizations [5–8]
including Sun’s recent extension involving covering systems.

The following theorem is called the weighted EGZ theorem. It was con-
jectured by Y. Caro [2] and proved by D. J. Grynkiewicz [4].

Theorem 1.1 (Weighted EGZ Theorem). Let n be a positive integer
and let w1, . . . , wn ∈ Zn = Z/nZ with

∑n
k=1wk = 0. If a1, . . . , a2n−1 is

a sequence of elements from Zn, then
∑n

k=1wkajk = 0 for some distinct
j1, . . . , jn ∈ {1, . . . , 2n− 1}.

Recently Bialostocki raised the following challenging conjecture.

Conjecture 1.1 (Bialostocki [1, Conjecture 14]). Let n be a positive
even integer. Suppose that a1, . . . , an and w1, . . . , wn are zero-sum sequences
with terms from Zn. Then there exists a permutation σ ∈ Sn such that∑n

k=1wkaσ(k) = 0, where Sn denotes the symmetric group of all permuta-
tions on {1, . . . , n}.

The conjecture has been verified for n = 2, 4, 6, 8. It fails for n =
3, 5, 7, . . . . For example, {a1, a2, a3} = {w1, w2, w3} = Z3 gives a counter-
example for n = 3.

In this paper we mainly establish the following result.

Theorem 1.2. Let n be a positive even integer , and let a1, . . . , an ∈ Z
with

∑n
k=1 ak ≡ 0 (mod n). Then there exists a permutation σ ∈ Sn such
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that
∑n

k=1 kaσ(k) ≡ 0 (mod n/2). Consequently , if w1, . . . , wn ∈ Z form an
arithmetic progression with even common difference, then

∑n
k=1wkaσ(k) ≡ 0

(mod n) for some σ ∈ Sn.

We are going to present two lemmas in the next section and then give
our proof of Theorem 1.2 in Section 3.

2. Two lemmas

Lemma 2.1. Let n = mq with m, q ∈ Z+ = {1, 2, 3, . . .} and m ≥ 2. Let
d ∈ Z+ be a divisor of q, and let a1, . . . , an ∈ Z. Then there is a partition
I1, . . . , Im of [1, n] = {1, . . . , n} such that for each s = 1, . . . ,m we have
|Is| = q and

d
∣∣ ∑
i∈Is

ai ⇒ |{ai mod d : i ∈ Is}| = 1.

Proof. By induction on m, it suffices to show that there exists an I ⊆
[1, n] with |I| = q such that for each J ∈ {I, [1, n] \ I} we have |{aj mod d :
j ∈ J}| = 1 or

∑
j∈J aj 6≡ 0 (mod d). To achieve this we distinguish three

cases.

Case 1: |{ai mod d : i ∈ [1, n]}| = 1. In this case, I = [1, q] works.

Case 2: |{ai mod d : i ∈ [1, n]}| = 2. Suppose that

{ai mod d : i ∈ [1, n]} = {r mod d, r′ mod d},
where r, r′ ∈ [0, d − 1], r 6≡ r′ (mod d), and ai ≡ r (mod d) for at least
n/2 values of i ∈ [1, n]. Choose I0 ⊆ {i ∈ [1, n] : ai ≡ r (mod d)} with
|I0| = q ≤ n/2. Let i0 ∈ I0 and j0 ∈ Ī0 = [1, n] \ I0 with aj0 ≡ r′ (mod d).
When

∑
j∈Ī0 aj ≡ 0 (mod d), we have both∑

i∈(I0\{i0})∪{j0}

ai ≡ 0− r + r′ 6≡ 0 (mod d)

and ∑
j∈(Ī0\{j0})∪{i0}

aj ≡ 0− r′ + r 6≡ 0 (mod d).

Thus, there always exists an I ⊆ [1, n] with |I| = q such that

|{ai mod d : i ∈ I}| = 1 or
∑
i∈I

ai 6≡ 0 (mod d),

and also
∑

j∈Ī aj 6≡ 0 (mod d).

Case 3: |{ai mod d : i ∈ [1, n]}| > 2. Note that q ≥ d > 2 in this case.
As n ≥ 2q ≥ 2q − 1, by the EGZ theorem there is an I0 ⊆ [1, n] with
|I0| = q such that

∑
i∈I0 ai ≡ 0 (mod q). For Ī0 = [1, n] \ I0, we clearly have

|Ī0| = (m− 1)q. Set b = a1 + · · ·+ an ≡
∑

j∈Ī0 aj (mod q).
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Suppose that aj − ai ≡ 0 or b (mod d) for any i ∈ I0 and j ∈ Ī0. Then

|{ai mod d : i ∈ I0}| ≤ 2 and |{aj mod d : j ∈ Ī0}| ≤ 2.

If i1, i2 ∈ I0, j ∈ Ī0 and aj 6≡ ai1 , ai2 (mod d), then aj − ai1 ≡ b ≡ aj − ai2
(mod d) and hence ai1 ≡ ai2 (mod d). So, if |{ai mod d : i ∈ I0}| = 2 then
{aj mod d : j ∈ Ī0} ⊆ {ai mod d : i ∈ I0}, which contradicts |{ai mod d :
i ∈ I0}| > 2. Similarly, if |{aj mod d : j ∈ Ī0}| = 2 then we also have a
contradiction. When

|{ai mod d : i ∈ I0}| = |{aj mod d : j ∈ Ī0}| = 1,

we cannot have |{ai mod d : i ∈ [1, n]}| > 2.
By the above, there are i0 ∈ I0 and j0 ∈ Ī0 such that

aj0 − ai0 6≡ 0, b (mod d).
Set

I = (I0 \ {i0}) ∪ {j0} and Ī = [1, n] \ I = (Ī0 \ {j0}) ∪ {i0}.
Then ∑

i∈I
ai =

∑
i∈I0

ai − ai0 + aj0 = 0− ai0 + aj0 6≡ 0 (mod d)

and ∑
j∈Ī

aj =
∑
j∈Ī0

aj − aj0 + ai0 ≡ b+ ai0 − aj0 6≡ 0 (mod d).

Note that |I| = q and |Ī| = (m− 1)q.
Combining the above and using an induction argument, we see that the

desired result holds for any m = 2, 3, 4, . . . .

Lemma 2.2. Let a1, . . . , an ∈ Z with n = pα, where p is an odd prime
and α is a positive integer. If

∑n
k=1 ak 6≡ 0 (mod p) or |{ak mod p : k ∈

[1, n]}| = 1, then there exists a permutation σ ∈ Sn such that
∑n

k=1 kaσ(k)

≡ 0 (mod n).

Proof. If a :=
∑n

k=1 ak 6≡ 0 (mod p), then there is an l ∈ [1, n] such that
al +

∑n
k=1 kak ≡ 0 (mod pα) and hence

n∑
k=1

kaσ(k) ≡
n∑
k=1

(k + l)ak ≡
n∑
k=1

kak + la ≡ 0 (mod pα),

where σ(k) is the least positive residue of k − l modulo n.
In the case a1 ≡ · · · ≡ an (mod p), it is clear that

p∑
k=1

kak ≡ a1

p∑
k=1

k = a1p
p+ 1

2
≡ 0 (mod p).

Thus we have the desired result for α = 1.
Now let α > 1 and assume the desired result with α replaced by α−1. As

mentioned above, the desired result holds if
∑n

k=1 ak 6≡ 0 (mod p). Suppose
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that a1 ≡ · · · ≡ an (mod p) and set bk = (ak−a1)/p for k = 1, . . . , n. In light
of Lemma 2.1, there exists a partition I1 ∪ · · · ∪ Ip of [1, n] with |I1| = · · · =
|Ip| = pα−1 such that for any s = 1, . . . , p either |{bk mod p : k ∈ Is}| = 1
or
∑

k∈Is bk 6≡ 0 (mod p). By the induction hypothesis, there are one-to-one
mappings σs : [1, pα−1]→ Is (s = 1, . . . , p) such that

pα−1∑
k=1

kbσs(k) ≡ 0 (mod pα−1) for all s = 1, . . . , p.

For s ∈ [1, p] and t ∈ [1, pα−1] define σ(pα−1(s−1)+t) = σs(t). Then σ ∈ Sn
and

n∑
k=1

kaσ(k) =
n∑
k=1

ka1 + p

n∑
k=1

kbσ(k)

=
pα(pα + 1)

2
a1 + p

p∑
s=1

pα−1∑
t=1

(pα−1(s− 1) + t)bσs(t)

≡ p
p∑
s=1

pα−1∑
t=1

tbσs(t) ≡ 0 (mod pα).

This concludes the induction step and we are done.

3. Proof of Theorem 1.2. We use induction on ν(n), the total number
of prime divisors of n.

In the case ν(n) = 1, clearly n = 2 and the desired result holds trivially.
Now let ν(n) > 1 and assume the desired result for those even positive

integers with fewer than ν(n) prime divisors.

Case 1: n = 2α for some α ≥ 2. By the EGZ theorem, there is an
I ⊆ [1, n] with |I| = n/2 = 2α−1 such that

∑
i∈I ai ≡ 0 (mod 2α−1). Note

that for Ī = [1, n] \ I we also have

∑
j∈Ī

aj =
n∑
k=1

ak −
∑
i∈I

ai ≡ 0 (mod 2α−1).

By the induction hypothesis, for some one-to-one mappings σ0 : [1, n/2]→ I
and σ1 : [1, n/2]→ Ī we have

2
2α−1∑
k=1

kaσ0(k) ≡ 2
2α−1∑
k=1

kaσ1(k) ≡ 0 (mod 2α−1).
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Observe that
2α−1∑
k=1

(2k − 1)aσ1(k) ≡ 2
2α−1∑
k=1

kaσ1(k) −
∑
j∈Ī

aj ≡ 0 (mod 2α−1).

For k ∈ [1, n/2] and r ∈ [0, 1] define σ(2k − r) = σr(k). Then σ ∈ Sn and
n∑
j=1

jaσ(j) = 2
2α−1∑
k=1

kaσ0(k) +
2α−1∑
k=1

(2k − 1)aσ1(k) ≡ 0 (mod 2α−1).

Thus we have the desired result for n = 2α.

Case 2: n has an odd prime divisor p. Write n = pαm with α,m > 0
and p - m. In view of Lemma 2.1 there is a partition I1∪· · ·∪Im of [1, n] with
|I1| = · · · = |Im| = pα such that for each s = 1, . . . ,m either |{ai mod p :
i ∈ Is}| = 1 or

∑
i∈Is ai 6≡ 0 (mod p). Combining this with Lemma 2.2, we

see that for each s ∈ [1,m] there is a one-to-one mapping σs : [1, pα] → Is
such that

∑pα

t=1 taσs(t) ≡ 0 (mod pα).
Set bs =

∑
k∈Is ak for s = 1, . . . ,m. Then
m∑
s=1

bs =
∑

k∈I1∪···∪Im

ak =
n∑
k=1

ak ≡ 0 (mod m).

As 2 |m and ν(m) < ν(n), by the induction hypothesis, for some τ ∈ Sm we
have

2
m∑
s=1

sbτ(s) ≡ 0 (mod m)

and hence

2
m∑
s=1

pα∑
t=1

saστ(s)(t) = 2
m∑
s=1

sbτ(s) ≡ 0 (mod m).

Note also that
m∑
s=1

pα∑
t=1

taστ(s)(t) =
m∑
s=1

pα∑
t=1

taσs(t) ≡ 0 (mod pα).

Therefore

2
m∑
s=1

pα∑
t=1

(pαs+mt)aστ(s)(t) ≡ 0 (mod pαm).

As pα is relatively prime to m,

{pαs+mt : s ∈ [1,m] and t ∈ [1, pα]}
is a complete system of residues modulo n = pαm. For any k ∈ [1, n], there
are unique s ∈ [1,m] and t ∈ [1, pα] such that k ≡ pαs + mt (mod n), and
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we define σ(k) = στ(s)(t). Then σ ∈ Sn and also

2
n∑
k=1

kaσ(k) ≡ 0 (mod n).

This concludes the induction step.
In view of the above, we have completed the proof of Theorem 1.2.
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