Sign changes in $\pi_{q,a}(x) - \pi_{q,b}(x)$

by

KEVIN FORD and RICHARD H. HUDSON (Columbia, SC)

1. Introduction and summary. Let

$$\text{li}(x) = \lim_{\varepsilon \to 0^+} \int_0^{1-\varepsilon} \frac{dt}{\log t} + \int_{1+\varepsilon}^x \frac{dt}{\log t}$$

and let $\pi(x)$ denote the number of primes $\leq x$. Also, $\pi_{q,a}(x)$ denotes the number of primes $\leq x$ lying in the progression $a \mod q$. In 1792, Gauss observed that $\pi(x) < \text{li}(x)$ for $x < 3000000$ (see e.g. [E]) and the question of whether or not there are any sign changes of $\pi(x) - \text{li}(x)$ remained open until 1914 when J. E. Littlewood [Li] showed that there exists a positive constant k such that infinitely often both $\pi(x) - \text{li}(x)$ and $\text{li}(x) - \pi(x)$ exceed

$$k \frac{x^{1/2} \log \log \log x}{\log x}.$$

Sign changes are, nonetheless, quite rare and it was not until 1955 that any upper bound was obtained for the first sign change. The upper bound of

$$10^{10^{10^{34}}}$$

was obtained by Skewes [Sk1] on the assumption of the Riemann Hypothesis, and in 1955 [Sk2] he provided the first unconditional upper bound for the first sign change, namely

$$10^{10^{10^{3}}}.$$

In 1966, Lehman [Leh] developed a new method based on an explicit formula for $\text{li}(x) - \pi(x)$ averaged by a Gaussian kernel and knowledge of zeros of the Riemann zeta function $\zeta(s)$ in the region $|\Re s| \leq 12000$. Lehman’s method drastically improves the upper bound for the first sign change. In particular, he proved that it must occur before $1.5926 \cdot 10^{1165}$ and his method was used by te Riele [tR] to lower the bound to $6.6658 \cdot 10^{370}$ and by Bays and Hudson [BH5] to lower it further to $1.39822 \cdot 10^{316}$.

2000 Mathematics Subject Classification: Primary 11N13; Secondary 11Y35.
In this paper, we generalize Lehman’s method, enabling one to compare the number of primes $\leq x$ in any two arithmetic progressions $qn + a$ and $qn + b$. For reasons given in, e.g., [H2], [RS], negative values of $\pi_{q,b}(x) - \pi_{q,a}(x)$ may be relatively infrequent if b is a quadratic non-residue of q and a a quadratic residue. This phenomenon, first noted by Chebyshev in 1853 for the case $q = 4$, is known as “Chebyshev’s bias”. It is quite pronounced when $q | 24$, $1 < b < q$, $(b,q) = 1$ and $a = 1$, and these cases have been studied extensively from a numerical point of view ([BH1]–[BH4], [Lee], [Sh]) and from a theoretical point of view ([BFHR], [H2], [K1]–[K3], [KT1], [KT2], [Li], [RS]). For example, Bays and Hudson [BH2] showed in 1978 that the smallest x with $\pi_{3,2}(x) < \pi_{3,1}(x)$ is $x = 608981813029$.

Section 2 is devoted to the development of the analog of Lehman’s theorem. Our bounds are considerably sharper than in [Leh], but as a consequence the bounds are a bit more complex. In Section 3 we apply the theorem for $q | 24$ and $a = 1$. Our present knowledge of the zeros of these L-functions is due to Rumely ([Ru1], [Ru2]) and this is insufficient to obtain bounds which are anywhere near “best possible”. The bounds, however, are in most cases adequate to localize negative values of $\pi_{q,b}(x) - \pi_{q,1}(x)$.

2. A generalization of Lehman’s theorem. For non-real numbers z, define

\begin{equation}
\text{li}(e^z) := e^z \int_0^\infty \frac{e^{-t}}{z - t} \, dt
\end{equation}

and let

\begin{equation}
K(s; \alpha) = \sqrt{\frac{\alpha}{2\pi}} e^{-\alpha s^2/2}.
\end{equation}

Also, for $\varrho = \beta + i\gamma$, $0 < \beta < 1$, define

\[J(\varrho) := \int_{\varrho - \eta}^{\varrho + \eta} K(u - \varrho; \alpha)u e^{-u/2} \text{li}(e^{\varrho u}) \, du. \]

Lemma 2.1. If $\varrho = 1/2 + i\gamma$ with $\gamma \neq 0$, $u \geq 1$ and $J \geq 1$, then

\[\left| \frac{\text{li}(e^{\varrho u})}{e^{\varrho u}} - \sum_{j=1}^{J} \frac{(j-1)!}{(\varrho u)^j} \right| \leq \frac{J!}{u^{J+1}} \min \left(\frac{1}{|\gamma|^{J+1}}, \frac{2^{1.5J+2}}{(1+2|\gamma|)^{J+1}} \right). \]

Proof. By (2.1) and repeated integration by parts, we have for non-real z the identity

\begin{equation}
e^{-z} \text{li}(e^z) - \sum_{j=1}^{J} \frac{(j-1)!}{z^j} = J! \int_0^\infty \frac{e^{-t}}{(z - t)^{J+1}} \, dt.\end{equation}
Now put $z = qu$. Since $|qu - t| \geq u|\gamma|$, the last integral is $\leq (u|\gamma|)^{-J-1}$. If $|\gamma|$ is small, we can do better by deforming the contour. If $\gamma > 0$ let C be the union of the straight line segments from 0 to $\frac{1}{2}(u - iw)$ to u to ∞ and if $\gamma < 0$ let C be the union of the line segments from 0 to $\frac{1}{2}(u + iw)$ to u to ∞. For $t \in C$, we have

$$|qu - t| \geq \frac{(1 + 2|\gamma|)u}{2^{3/2}}.$$

Together with the bound

$$\int_C |e^{-t}| \, dt \leq \sqrt{2},$$

this proves the lemma.

Lemma 2.2 (McCurley). Let χ be a Dirichlet character of conductor k and denote by $N(T, \chi)$ the number of zeros of $L(s, \chi)$ lying in the region $s = \sigma + it$, $0 < \sigma < 1$, $|\gamma| \leq T$. Then

$$\left| N(T, \chi) - \frac{T}{\pi} \log \left(\frac{kT}{2\pi e} \right) \right| \leq C_2 \log(kT) + C_3,$$

where

$$C_2 = 0.9185, \quad C_3 = 5.512.$$

Proof. This is Theorem 2.1 of [M] with $\eta = 1/2$.

Corollary 2.3. Suppose g is a continuous, positive, decreasing function for $t \geq T = 2\pi e/k$, and suppose $T_2 \geq T_1 \geq T$. Let χ be a Dirichlet character of conductor k and denote by γ the imaginary part of a generic non-trivial zero of $L(s, \chi)$. Then

$$\left| \sum_{T_1 < |\gamma| \leq T_2} g(|\gamma|) - \frac{1}{\pi} \int_{T_1}^{T_2} g(t) \log \left(\frac{kt}{2\pi} \right) \, dt \right|$$

$$\leq 2g(T_1)(C_2 \log(kT_1) + C_3) + C_2 \int_{T_1}^{T_2} \frac{g(t)}{t} \, dt.$$

Proof. Lemma 2.2 and partial summation.

Corollary 2.4. If $T \geq 150$, $n \geq 2$ and χ is a Dirichlet character of conductor $k \geq 3$, then

$$\sum_{|\gamma| > T} \gamma^{-n} < \frac{T^{1-n} \log(kT)}{3}.$$
Proof. Letting \(g(\gamma) = \gamma^{-n} \) in Corollary 2.3, we obtain
\[
\sum_{|\gamma| > T} \gamma^{-n} \leq T^{1-n} \left(\frac{\log \left(\frac{kT}{2\pi} \right)}{\pi(n-1)} + \frac{1}{\pi(n-1)^2} + \frac{2C_2 \log(kT) + 2C_3 + C_2/n}{T} \right)
\]
\[
\leq T^{1-n} \log(kT) \left(\frac{1}{\pi} + \frac{2C_2}{T} \right) + T^{1-n} \left(\frac{2C_3 + C_2/2}{T} - \frac{\log(2\pi)}{\pi} \right)
\]
\[
< \frac{1}{3} T^{1-n} \log(kT) .
\]

We also use the simple bound
\[
\int_{y}^{\infty} K(u; \alpha) \, du < \sqrt{\frac{\alpha}{2\pi}} \int_{y}^{\infty} \left(\frac{u}{y} \right) e^{-\alpha u^2/2} \, du = \frac{K(y; \alpha)}{\alpha y} \quad (y > 0).
\]

We now adopt a notational convention from [Leh]: The notation \(f = \vartheta(g) \) means \(|f| \leq |g| \).

Lemma 2.5. Suppose\n\[
\omega \geq 30, \quad 0 < \eta \leq \omega/30, \quad |\gamma| \leq \alpha \eta/2.
\]
If \(\varrho = 1/2 + i\gamma \), then
\[
J(\varrho) = e^{i\gamma \omega - \gamma^2/(2\alpha)} \left(\frac{1}{\varrho} + \frac{1}{\omega \varrho^2} + \frac{2}{\omega^2 \varrho^3} \right) + Q_1(\gamma) + Q_2(\gamma),
\]
where
\[
|Q_1(\gamma)| \leq \frac{6}{(\omega - \eta)^2} \min \left(\frac{1}{\gamma^4}, \frac{64\sqrt{2}}{(1 + 2|\gamma|)^4} \right),
\]
\[
|Q_2(\gamma)| \leq \frac{2.2K(\eta; \alpha)}{|\varrho| \alpha \eta} + \frac{1.25}{\alpha \omega^3 |\varrho|^2} + \frac{1.27e^{-\gamma^2/(2\alpha)}}{\omega^2 \alpha |\varrho|}.
\]

Proof. Without loss of generality suppose \(\gamma > 0 \). By Lemma 2.1 and the fact that \(\int_{-\infty}^{\infty} K(u; \alpha) \, du = 1 \),
\[
\int_{-\infty}^{\infty} K(u - \omega; \alpha) e^{-u/2} \text{li}(e^{\varrho u}) \, du = I + E,
\]
where
\[
I = \int_{-\infty}^{\infty} K(u - \omega; \alpha) e^{i\gamma u} \sum_{j=1}^{J} \frac{(j-1)!}{(\varrho u)^j} \, du,
\]
\[
|E| \leq \frac{J!}{(\omega - \eta)^j} \min \left(\frac{1}{\gamma^{j+1}}, \frac{2^{1.5}J^2}{(1 + 2\gamma)^{j+1}} \right).
\]
Now make the change of variables \(u = \omega - s \) and take \(J = 3 \). By (2.5),
\[|s/\omega| \leq 1/30 \text{ and } |\varrho\omega| \geq 15, \text{ thus } \]

\[
\frac{I}{e^{i\gamma_0}} = \int_{-\eta}^{\eta} K(s; \alpha) e^{-i\gamma s} \left(\frac{1}{q} + \frac{1}{\omega \varrho^2(1-s/\omega)} + \frac{2}{\omega^2 \varrho^3(1-s/\omega)^2} \right) \, ds
\]

\[
= \int_{-\eta}^{\eta} K(s; \alpha) e^{-i\gamma s} \times \left(\frac{1}{q} + \frac{1}{\omega \varrho^2} + \frac{2}{\omega^2 \varrho^3} + \frac{s}{\omega^2 \varrho^2} + \frac{4s}{\omega^3 \varrho^3} + \vartheta \left(\frac{1.25s^2}{\omega^3 \varrho^2} \right) \right) \, ds
\]

\[
= \left(\frac{1}{q} + \frac{1}{\omega \varrho^2} + \frac{2}{\omega^2 \varrho^3} \right) I_0 + \frac{I_1}{\omega^2 \varrho^2} \left(1 + \frac{4}{\omega \varrho} \right) + \vartheta \left(\frac{I_2^1 \cdot 1.25}{\omega^3 \varrho^2} \right)
\]

where

\[
I_n = \int_{-\eta}^{\eta} K(s; \alpha) s^n e^{-i\gamma s} \, ds \quad (n = 0, 1)
\]

and

\[
I_2 = \int_{-\infty}^{\infty} K(s; \alpha) s^2 \, ds = 1/\alpha.
\]

By (2.2) and (2.4), we have

\[
I_0 = e^{-\gamma^2/(2\alpha)} + \vartheta \left(2 \int_{\eta}^{\infty} K(s; \alpha) \, ds \right) = e^{-\gamma^2/(2\alpha)} + \vartheta \left(\frac{2K(\eta; \alpha)}{\alpha \eta} \right).
\]

In addition, by (2.5) we have

\[
|I_1| = \left| \frac{2i \sin \gamma \eta}{\alpha} K(\eta; \alpha) - \frac{i\gamma}{\alpha} I_0 \right|
\]

\[
\leq \left(\frac{2}{\alpha} + \frac{2\gamma}{\alpha^2 \eta} \right) K(\eta; \alpha) + \frac{\gamma e^{-\gamma^2/(2\alpha)}}{\alpha} \leq \frac{3K(\eta; \alpha) + \gamma e^{-\gamma^2/(2\alpha)}}{\alpha}.
\]

We thus obtain

\[
\left| I - e^{i\gamma_0 - \gamma^2/(2\alpha)} \left(\frac{1}{q} + \frac{1}{\omega \varrho^2} + \frac{2}{\omega^2 \varrho^3} \right) \right|
\]

\[
\leq \frac{1.27 \gamma e^{-\gamma^2/(2\alpha)}}{\omega^2 |\varrho|^2 \alpha} + \frac{1.25}{\omega^3 |\varrho|^2 2\alpha} + \left(\frac{3.8}{\omega^2 |\varrho|^2 \alpha} + \frac{2.16}{|\varrho| \alpha \eta} \right) K(\eta; \alpha).
\]

By (2.5), \(\omega^2 |\varrho| \geq 450 \eta \), and the lemma follows.

The next lemma, essentially due to Lehman ([Leh], §5), shows how to deal with the contribution from large \(\gamma \) without needing to assume the truth of the Riemann Hypothesis.
Lemma 2.6. Suppose that

\begin{equation}
|\gamma| \geq 100, \quad \omega \geq 30, \quad \eta \leq \omega/15, \quad 1 \leq N \leq \min(|\gamma|\eta/2, \alpha\omega^2/100).
\end{equation}

Writing \(\varrho = \beta + i\gamma \), with \(0 < \beta < 1 \), we have

\[|J(\varrho)| \leq e^{(\beta-1/2)(\omega+\eta)} \left(\frac{2.4\sqrt{\alpha} e^{-\alpha\eta^2/8}}{\gamma^2} + \frac{2.8\sqrt{N}}{|\gamma|^{1+N+1}} \left(\frac{N\alpha}{e} \right)^{N/2} \right). \]

Proof. By Lemma 2.5, we expect \(|J(\varrho)| \) is about \(|\varrho|^{-1} e^{(\beta-1/2)\omega-\gamma^2/(2\alpha)} \).

Suppose without loss of generality that \(\varrho > 100 \). As in [Leh], we begin by considering the function

\[f(s) := \varrho s e^{-\varrho s} \ln(e^{\varrho s}) e^{-\alpha(s-\omega)^2/2} \]

in the region \(-\pi/4 \leq \arg s \leq \pi/4 \), \(|s| > 1 \). This function is analytic in this sector because \(\gamma > 100 \). Then

\[J(\varrho) = \frac{1}{\varrho} \sqrt{\frac{\alpha}{2\pi}} I_1, \quad I_1 = \int_{\omega-\eta}^{\omega+\eta} e^{(\varrho-1/2)u} f(u) \, du. \]

By repeated integration by parts,

\[I_1 = \sum_{n=0}^{N} \frac{(-1)^n e^{(\varrho-1/2)\omega}}{(\varrho-1/2)^{n+1}} (e^{(\varrho-1/2)\eta} f^{(n)}(\omega + \eta) - e^{-(\varrho-1/2)\eta} f^{(n)}(\omega - \eta)) \]

\[+ \frac{(-1)^N}{(\varrho-1/2)^N} \int_{\omega-\eta}^{\omega+\eta} e^{(\varrho-1/2)u} f^{(N)}(u) \, du. \]

Choose \(r \leq \omega/10 \). Then

\begin{equation}
\int_{|s-u|=r} \frac{f(s)}{(s-u)^{n+1}} \, ds.
\end{equation}

By (2.3) we have

\[f(s) = e^{-\alpha(s-\omega)^2/2} \left(1 + \frac{1}{\varrho s} + \vartheta \left(\frac{2|\varrho s|}{|\Im \varrho s|^3} \right) \right). \]

Since \(|\varrho s| \geq 2000 \) and \(|\Im \varrho s| \geq \frac{1}{2} |\varrho s| \), it follows that

\[|f(s)| \leq 1.001 e^{-(\alpha/2)\Re(s-\omega)^2}. \]

Writing \(s = u + re^{i\phi} \) and using (2.7), we deduce

\begin{equation}
|f^{(n)}(u)| \leq \frac{1.001n!}{2\pi r^n} \int_{-\pi}^{\pi} e^{(\alpha/2)(r^2-r^2\cos^2\phi-(r\cos\phi+u-\omega)^2)} d\phi.
\end{equation}
When \(u = \omega \pm \eta \), we take \(r = \eta/2 \) and get

\[
|f^{(n)}(u)| \leq \frac{1,001n!}{2\pi(\eta/2)^n} e^{-\alpha \eta^2/8} \int_{-\pi}^{\pi} e^{-(\alpha \eta^2/4)(1-\cos \phi)^2} d\phi \\
\leq 1,001n!(2/\eta)^n e^{-\alpha \eta^2/8},
\]

since the integrand above is \(\leq 1 \). We then obtain

\[
|I_1| \leq e^{(\beta-1/2)(\omega+\eta)} \left(\frac{2,002 e^{-\alpha \eta^2/8}}{\gamma} \sum_{n=0}^{N} n! \left(\frac{2}{\gamma \eta} \right)^n + \gamma^{-N} \int_{\omega-\eta}^{\omega+\eta} |f^{(N)}(u)| \, du \right).
\]

Since \(n! \leq 2(N/2)^n \) for \(n \leq N \) and \(N/(\gamma \eta) \leq 1/2 \), the sum on \(n \) is \(\leq 3 \). By (2.8),

\[
\int_{\omega-\eta}^{\omega+\eta} |f^{(N)}(u)| \, du \leq \frac{1,001N!}{2\pi r^N} e^{\alpha r^2/2} \int_{-\pi}^{\pi} e^{-\alpha \eta^2/8} \sum_{n=0}^{N} n! \left(\frac{2}{\gamma \eta} \right)^n + \gamma^{-N} \int_{-\pi}^{\pi} e^{-\alpha t^2/2} \, dt \, d\phi \\
\leq \frac{1,001N!}{2\pi r^N} e^{\alpha r^2/2} \int_{-\infty}^{\infty} e^{-\alpha \eta^2/8} \, dt \, d\phi \\
= \frac{1,001N!}{r^N} e^{\alpha r^2/2} \sqrt{2\pi}/\alpha.
\]

Taking \(r = \sqrt{N/\alpha} \) and using the inequality \(N! \leq e^{1-N} N^{N+1/2} \) gives

\[
\int_{\omega-\eta}^{\omega+\eta} |f^{(N)}(u)| \, du \leq 1,001 e^{\sqrt{2\pi N/\alpha}} (\alpha e/N)^{-N/2}.
\]

The lemma now follows.

Theorem 1. Suppose \(\chi \) is a primitive Dirichlet character of conductor \(k \), and all the non-trivial zeros \(\rho = \beta + i\gamma \) of \(L(s, \chi) \) with \(|\gamma| \leq A \) have real part \(\beta = 1/2 \). Suppose that

(2.9) \(150 \leq T \leq A, \quad \omega \geq 30, \quad \eta \leq \omega/30, \quad 2A/\eta \leq \alpha \leq A^2. \)

Then

\[
\sum_{\rho} J(\rho) = \sum_{|\gamma| \leq T} e^{i\gamma \omega - \gamma^2/(2\alpha)} \left(\frac{1}{\rho} + \frac{1}{\omega \rho^2} + \frac{2}{\omega^2 \rho^3} \right) + 4 \sum_{i=1}^{R} R_i(\chi, T),
\]

where

\[
|R_1(\chi, T)| \leq \frac{6}{(\omega - \eta)^3} \sum_{\rho} \min \left(\frac{1}{\gamma^4}, \frac{64 \sqrt{2}}{(1 + 2|\gamma|)^4} \right),
\]

\[
|R_2(\chi, T)| \leq \left(\frac{2.2K(\eta; \alpha)}{\alpha \eta} + \frac{1.27}{\alpha \omega^2} \right) \sum_{|\gamma| \leq A} \frac{1}{|\rho|} + \frac{1.25}{\alpha \omega^3} \sum_{\rho} \frac{1}{|\rho|^2},
\]

\[
\text{with } K(\eta; \alpha) = \frac{1}{\alpha} \left(\frac{4}{\pi \alpha} \right)^{1/2} \frac{305}{\sqrt{12}}(\cos \frac{\eta}{\alpha} - i \sin \frac{\eta}{\alpha}).
\]
\[|R_3(\chi, T)| \leq e^{-T^2/(2\alpha)} \log(kT) \left(\frac{\alpha}{\pi T^2} + \frac{4.3}{T} \right), \]
\[|R_4(\chi, T)| \leq e^{(\omega+\gamma)/2} \log(kA) \left(\frac{0.8\sqrt{\alpha}e^{-\alpha\gamma^2/8}}{A} + 2.56A\alpha^{-1/2}e^{-A^2/(2\alpha)} \right). \]

If the Riemann Hypothesis is true for \(L(s, \chi) \) (i.e. all the non-trivial zeros have real part 1/2), then the term \(R_4 \) may be omitted, as may the condition \(\alpha \leq A^2 \). Also, if \(A = T \), then \(R_3(\chi, T) = 0 \).

Proof. The main terms in the theorem come from the main terms of Lemma 2.5 for \(|\gamma| \leq T \). The first part of the theorem follows by taking
\[
R_i = R_i(\chi, T) = \sum_{|\gamma| \leq A} Q_i(\gamma) \quad (i = 1, 2),
\]
\[
R_3 = R_3(\chi, T) = \sum_{T < |\gamma| \leq A} e^{i\gamma\omega-\gamma^2/(2\alpha)} \left(\frac{1}{\varrho} + \frac{1}{\omega \varrho^2} + \frac{2}{\omega^2 \varrho^3} \right),
\]
\[
R_4 = R_4(\chi, T) = \sum_{|\gamma| > A} J(\varrho).
\]
The upper bounds for \(R_1 \) and \(R_2 \) follow from Lemma 2.5. Since \(\omega \geq 30 \), we have
\[
\left| \frac{1}{\varrho} + \frac{1}{\omega \varrho^2} + \frac{2}{\omega^2 \varrho^3} \right| \leq \frac{1}{\gamma}.
\]
Thus, by Corollary 2.3, we find that
\[
|R_3| \leq \sum_{|\gamma| > T} e^{-\gamma^2/(2\alpha)} \gamma
\leq \int_T^\infty \frac{e^{-t^2/(2\alpha)}}{\pi t} \log \left(\frac{kt}{2\pi} \right) dt + \frac{2e^{-T^2/(2\alpha)}}{T} \left(C_2 \log(kT) + C_3 \right)
+ C_2 \int_T^\infty \frac{e^{-t^2/(2\alpha)}}{t^2} dt.
\]
If \(g(t) \) is positive and decreasing for \(t \geq T \) we have
\[
\int_T^\infty g(t)e^{-bt^2} dt < \frac{g(T)}{T} \int_T^\infty te^{-bt^2} dt = \frac{g(T)e^{-bT^2}}{2bT}.
\]
Therefore,
\[
|R_3| \leq e^{-T^2/(2\alpha)} \left(\frac{\alpha \log(kT/(2\pi))}{\pi T^2} + \frac{2C_2 \log(kT) + 2C_3}{T} + \frac{\alpha C_2}{T^3} \right).
\]
The desired bound for R_3 now follows from the bounds $kT \geq 100$ and
\[
\frac{\alpha C_2}{T^3} \leq \frac{\alpha \log(2\pi)}{\pi T^2}.
\]
Lastly, Corollary 2.4 and Lemma 2.6 give
\[
|R_4| \leq \sum_{|\gamma| > A} |J(\gamma)|
\leq e^{(\omega + n)/2} \log(kA) \left(\frac{0.8 \sqrt{\alpha} e^{-\alpha n^2/8}}{A} + 0.94 \sqrt{N \left(\frac{N \alpha}{eA^2} \right)^{N/2}} \right).
\]
We take $N = [A^2/\alpha]$ and note that (2.9) implies (2.6).

Finally, we need explicit formulas for the number of primes in an arithmetic progression. For a primitive Dirichlet character χ modulo $k \geq 3$, let $a = 0$ if $\chi(-1) = 1$ and $a = 1$ if $\chi(-1) = -1$. By an analog of the Riemann–von Mangoldt formula ([La, p. 532]), if $L(s, \chi)$ has no positive real zeros then
\begin{equation}
S(\chi; x) := \sum_{p, m} \frac{\chi(p)^m}{m} \sum_{p^m \leq x} = -\sum_{q} \operatorname{li}(x^q) + \int_{x}^{\infty} \frac{dy}{y^{1-a}(y^2-1) \log y} + (1-a) \log \log x + K_a,
\end{equation}
where
\[
K_0 = C - \log \left(\frac{\tau(\chi) \pi}{2k} L(1, \chi) \right),
\]
\[
K_1 = \log \left(\frac{\tau(\chi)}{i\pi} L(1, \chi) \right),
\]
and
\[
\tau(\chi) = \sum_{m=1}^{k} \chi(m) e^{2\pi im/k}.
\]
Here $C = 0.5772\ldots$ is the Euler–Mascheroni constant and \log \ refers to the principal branch of the logarithm. The values of $L(1, \chi)$ are computed easily by means of the formula
\[
\tau(\chi)L(1, \chi) = -\sum_{j=1}^{k-1} \chi(j) \log(1 - e^{2\pi ij/k}).
\]
Also, the integral in (2.10) is less than $1/x$ for $x > 10$. The last formula we
need is
\begin{equation}
\pi_{q,a}(x) = \frac{1}{\phi(q)} \sum_{\chi \mod q} \overline{\chi(a)} S(\chi; x) - \sum_{p, m \leq x, m \geq 2 \atop p^m \equiv a \mod q} \frac{1}{m}.
\end{equation}

In practice the $m = 2$ terms will be very significant, while the terms with $m \geq 3$ will be negligible. In fact, we have
\begin{equation}
\sum_{p^m \leq x, m \geq 3} \frac{1}{m} \leq \frac{1.3x^{1/3}}{\log x} \quad (x \geq e^{30})
\end{equation}
which follows easily from the inequality
\[
\pi(x) \leq \frac{x}{\log x} + \frac{1.5x}{\log^2 x} \quad (x > 1)
\]
given by Theorem 1 of Rosser and Schoenfeld [RoS]. Lastly, if χ_0 is the primitive character (of order k_0) which induces χ, then
\begin{equation}
|S(\chi_0; x) - S(\chi; x)| \leq \sum_{p^m \leq x \atop p \mid k, p \mid k_0} \frac{1}{m} \leq \sum_{p \mid k, p \mid k_0} \left(1 + \log \frac{\log x}{\log p}\right)
\end{equation}
\[
\leq \left|\{p : p \mid k, p \mid k_0\}\right| \log \log x + 1 - \log 2.
\]
Here we have used the inequality $\sum_{n \leq x} 1/n \leq 1 + \log x$.

3. Primes in progressions modulo 3, 4, 8, 12 and 24. For brevity, write
\[
\Delta_{q,b,1}(x) := \pi_{q,b}(x) - \pi_{q,1}(x).
\]
In this section we give new results on the location of negative values of $\Delta_{q,b,1}(x)$. Throughout we assume $q \mid 24$, $1 < b < q$ and $(b, q) = 1$. As noted previously, such negative values are quite rare. The smallest x giving $\Delta_{4,3,1}(x) < 0$ is $x = 26861$, discovered by Leech [Lee] in 1957. Shanks [Sh] computed $\Delta_{8,b,1}(x)$ for $b = 3, 5, 7$ and $x \leq 10^6$ and found that none of the functions takes negative values. Extensive computations by Bays and Hudson in the 1970s ([BH1]–[BH4]) for $x \leq 10^{12}$ led to the discovery of several more “negative regions” for $\Delta_{4,3,1}(x)$, as well as a single region for $\Delta_{3,2,1}(x)$, a single region for $\Delta_{24,13,1}(x)$ and two regions for $\Delta_{8,5,1}(x)$. By “negative region” we mean an interval $[x_1, x_2]$ where the corresponding function is negative a large percentage of time. It is not well defined, but reflects the observation that negative values of the functions $\Delta_{q,b,1}(x)$ occur in “clumps”. For example, $\Delta_{3,2,1}(x) < 0$ for about 15.9% of the integers in the interval [608981813029, 610968213796]. On the other hand, the computations show that
\[
\Delta_{q,b,1}(x) \geq 0 \quad (x \leq 10^{12})
\]
Sign changes in $\pi_{q,a}(x) - \pi_{q,b}(x)$

for

$$q = 8, \ b \in \{3, 7\} \quad \text{and} \quad q = 24, \ b \in \{5, 7, 11, 17, 19, 23\}.$$

With modern computers, the search could easily be extended to 10^{14} or even 10^{15}, and we will show that in fact there are regions in this range where $\Delta_{q,b,1}(x) < 0$ for some of the pairs q, b given in (3.1). Our method, though, takes only seconds versus weeks for an exhaustive search.

From a theoretical standpoint, Littlewood [Li] proved in 1914 that $\Delta_{4,3,1}(x)$ and $\Delta_{3,2,1}(x)$ change sign infinitely often. Knapowski and Turán (Part II of [KT1]) generalized this substantially, showing that $\Delta_{q,b,1}(x)$ changes sign infinitely often whenever $q | 24, 1 < b < q$ and $(b, q) = 1$ (in addition to other q, b). Later papers ([KT1], [KT2]) deal with the frequency of sign changes, but the bounds for the first sign change are of the “towering exponentials” type, similar to Skewes’ results.

In what follows, χ_k denotes the unique primitive character modulo k and $\chi_{k,i}$ ($i = 1, \ldots, h$) denote the primitive characters modulo k if there are more than one. In particular, $\chi_{8,1}(-1) = -1$ and $\chi_{24,1}(-1) = -1$. Table 1 below lists some parameters which we will need. Here

$$\Sigma_1 = \sum_{\gamma} \frac{1}{|\gamma|^2}, \quad \Sigma_2 = \sum_{\gamma} \min \left(\frac{1}{\gamma^4}, \frac{64\sqrt{2}}{(1 + 2|\gamma|)^4} \right), \quad \Sigma_3 = \sum_{|\gamma| \leq 10000} \frac{1}{|\gamma|}.$$

The entries in the second, third, and fourth columns are rigorous upper bounds, obtained from Rumely’s lists of zeros [Ru2] and Corollary 2.4. The number N denotes the number of zeros with $0 < \gamma < 10000$. It is desirable in applications to know the zeros of all the required L-functions to the same height. Rumely [Ru1] originally computed zeros to height 10000 for characters with conductor ≤ 13 and to height 2600 for other characters. For the two primitive characters modulo 24, Rumely’s original programs were run to compute the zeros to height $T = 10000$, and the output was checked against his original list of zeros to height 2600. In all of our computations, we take $T = 10000$ for every character. Recently Rumely [Ru2] has extended the computations to height 100000 for characters of conductor < 10. So for such characters we may take $A = 100000$.

When $q | 24$, all the characters modulo q are real, and furthermore the only quadratic residue modulo q is 1. When $x \geq e^{32.3}$, for each character in Table 1,

$$|(1 - a) \log \log x + K_a| \leq |\log \log x + \log 3| \leq 0.00312 \frac{x^{1/3}}{\log x}.$$

Further, if χ_0 is the primitive character (modulo k_0) which induces χ (for
one of the seven characters in Table 1), then

$$(\log \log x + 0.31)|\{p : p | k, \ p \nmid k^0\}| \leq \log \log x + 0.31 \leq 0.0026 \frac{x^{1/3}}{\log x}.$$

Together with (2.10)–(2.13), we obtain the formula

$$(3.2) \quad \pi_{q,b}(x) - \pi_{q,1}(x) = \frac{2}{\phi(q)} \sum_{\chi \bmod q} \sum_{\rho \in \chi(b) = -1} \log(x^\rho) + \frac{\pi(\sqrt{x})}{2} + \vartheta\left(\frac{1.31x^{1/3}}{\log x}\right).$$

We need a tight upper bound on $\pi(\sqrt{x})$, given by the next lemma.

Lemma 3.1. For $x \geq 10^{14}$, we have $\pi(x) \leq 1.000011 \ln(x)$.

Proof. From Table 3 of [Ri], we have $\pi(10^{14}) < \ln(10^{14})$. Defining $\theta(x) = \sum_{p \leq x} \log p$, we have

$$|\theta(x) - x| \leq 0.0000055x \quad (x \geq e^{32}),$$

which follows from Theorem 5.1.1 of [RR], upon taking $x = e^{32}$, $m = 18$, $H = 70000000$, and $\delta = 6.59668 \cdot 10^{-8}$. By partial summation, for $x \geq 10^{14}$ we obtain

$$\pi(x) \leq \ln(10^{14}) + \int_{10^{14}}^{x} \frac{d\theta(t)}{\log t} \leq (1 + 2(0.0000055)) \ln(x).$$

Define

$$W(\chi; x) = \sum_{\rho} \log(x^\rho),$$

where the sum is over zeros ρ of $L(s, \chi)$ lying in the critical strip. Since we are primarily interested in locations where $\pi_{q,b}(x) - \pi_{q,1}(x)$ is negative, we apply Lemma 3.1 to obtain from (3.2) the inequality

$$\pi_{q,b}(x) - \pi_{q,1}(x) \leq \frac{2}{\phi(q)} \sum_{\chi \bmod q \chi(b) = -1} W(\chi; x) + \frac{1}{2}(1.000011) \ln(\sqrt{x}) + \frac{1.31x^{1/3}}{\log x}.$$

It is easy to show that
\[\text{li}(x) \leq \frac{x}{\log x} \left(1 + \frac{1}{\log x} + \frac{2}{\log^2 x} + \frac{h(x)}{\log^3 x} \right), \]

where

\[h(x) = \begin{cases}
8.326, & e^{16} \leq x < e^{21}, \\
7.538, & e^{21} \leq x \leq e^{29.3}, \\
7, & x \geq e^{29.3}.
\end{cases} \]

By Theorem 1, we therefore have

Theorem 2. Suppose that \(\omega - \eta \geq 32.3 \) and \(0 < \eta \leq \omega/30 \). Suppose \(q \mid 24 \), \((b, q) = 1 \) and \(1 < b < q \). For each Dirichlet character \(\chi \mod q \) with \(\chi(b) = -1 \), suppose that all the zeros of \(L(s, \chi) \) which lie in the rectangle \(0 < \Re s < 1 \), \(-A_{\chi} \leq \Im s \leq A_{\chi} \), actually lie on the critical line \(\Re s = 1/2 \). Further suppose that

\[150 \leq T_{\chi} \leq A_{\chi}, \quad 2A_{\chi}/\eta \leq \alpha \leq A_{\chi}^2 \]

for every \(\chi \). Then

\[
\begin{align*}
&\int_{\omega - \eta}^{\omega + \eta} K(u - \omega; \alpha)ue^{-u/2}(\pi_{q,b}(e^u) - \pi_{q,1}(e^u)) \, du \\
&\quad \leq (1.000011) \left(1 + \frac{2}{\omega - \eta} + \frac{8}{(\omega - \eta)^2} + \frac{8h(e^{(\omega - \eta)/2})}{(\omega - \eta)^3} \right) + 1.31e^{-(\omega - \eta)/6} \\
&\quad + \frac{2}{\phi(q)} \sum_{\chi \mod q, \chi(b) = -1} \left(\sum_{|\gamma| \leq T_{\chi}} e^{i\gamma\omega - \gamma^2/(2\alpha)} \left(\frac{1}{\varrho} + \frac{1}{\omega \varrho^2} + \frac{2}{\omega^2 \varrho^3} \right) \right) \\
&\quad + \sum_{i=1}^{4} |R_i(\chi, T_{\chi})|.
\end{align*}
\]

The error terms \(R_i(\chi, T_{\chi}) \) are as given in Theorem 1, with \(T = T_{\chi} \) and \(A = A_{\chi} \). Furthermore, if \(A_{\chi} = T_{\chi} \) then the corresponding \(R_3(\chi, T) \) is 0, and if the Riemann Hypothesis holds for \(L(s, \chi) \), then we have \(R_4(\chi, T) = 0 \) and the condition \(\alpha \leq A_{\chi}^2 \) may be omitted.

Locating likely candidates for regions where \(\Delta_{q,b,1}(x) \) takes negative values is relatively simple. We search for values of \(\omega \) for which

\[K^* = K^*(q, b; \omega) = \frac{\text{li}(\sqrt{x}) \log x}{2\sqrt{x}} + \frac{2}{\phi(q)} \sum_{\chi \mod q, \chi(b) = -1} \sum_{|\gamma| \leq T_{\chi}} e^{i\gamma\omega} \varrho < 0. \]

Heuristically, \(K^* \) is a good predictor for the average of \(ue^{-u/2}\Delta_{q,b,1}(e^u) \) for \(u \) near \(\omega \). For example, \(K^*(24, 13; \omega) \) reaches a relative minimum of \(-0.15873\) at about \(\omega = 27.617477 \), while Bays and Hudson [BH3] computed at \(x = \)
9.866 \cdot 10^{11} \approx e^{27.61753}$ the value $\Delta_{24,13,1}(x) = -6091 \approx -0.169357 \frac{\sqrt{x}}{\log x}$ (it is possible that $\Delta_{24,13,1}(x)$ takes smaller values in this vicinity, but this is the smallest value listed in the paper). Using K^* as an approximation for $ue^{-u/2}D_{q,b,1}(e^u)$ is also useful in computing a numerical value for Chebyshev’s bias (see [RS], [BFHR]).

In practice, since ω is large, η is small, and T is large (≥ 10000), the most critical of the error terms is $R_4(\chi, T\chi)$ because it controls the maximum practical value for α. We want to take α as large as possible, so the sums over $e^{i\gamma\omega - \gamma^2/(2\alpha)}/q$, which are required to be “large” negative, are not damped out too much by the $e^{-\gamma^2/(2\alpha)}$ factor.

The computations were performed with a C program running on a Sun Ultra-10 workstation using double precision floating point arithmetic, which provides about 16 digits of precision. The zeros of the L-functions in Rumely’s lists are all accurate to within 10^{-12}. Values computed for the right side of the inequality in Theorem 2 were rounded up in the 4th decimal place.

Theorem 3. For each row of Tables 2 and 3 for which a value of K is given, we have

(3.3) $\min_{\omega-\eta \leq u \leq \omega+\eta} ue^{-u/2}(\pi_{q,b}(e^u) - \pi_{q,1}(e^u)) \leq K.$

Proof. Take the indicated values of the parameters in Theorem 2. Here $T\chi = 10000$ for every χ, $A\chi = 100000$ in Table 2 and $A\chi = 10000$ in Table 3. In the case where a value of K is not given, we could not prove that $K < 0$ with any choice of parameters.

<table>
<thead>
<tr>
<th>q</th>
<th>b</th>
<th>ω</th>
<th>K^*</th>
<th>η</th>
<th>α</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>45.12686</td>
<td>-0.0798</td>
<td>0.02</td>
<td>10^7</td>
<td>-0.0650</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>58.36855</td>
<td>-0.1710</td>
<td>0.02</td>
<td>10^7</td>
<td>-0.1525</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2179.77584</td>
<td>-0.8109</td>
<td>0.05</td>
<td>400000</td>
<td>-0.7761</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>78683.67818</td>
<td>-1.0480</td>
<td>2.00</td>
<td>1200000</td>
<td>-0.8372</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>43.36630</td>
<td>-0.0249</td>
<td>0.02</td>
<td>10^7</td>
<td>-0.0013</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>54.94255</td>
<td>-0.0490</td>
<td>0.02</td>
<td>10^7</td>
<td>-0.0280</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>32.89388</td>
<td>-0.0716</td>
<td>0.02</td>
<td>10^7</td>
<td>-0.0503</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>34.46826</td>
<td>-0.0051</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>57.48058</td>
<td>-0.2136</td>
<td>0.02</td>
<td>10^7</td>
<td>-0.1915</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>32.89284</td>
<td>-0.0136</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>45.34991</td>
<td>-0.0868</td>
<td>0.02</td>
<td>10^7</td>
<td>-0.0508</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>48.79950</td>
<td>-0.1889</td>
<td>0.02</td>
<td>10^7</td>
<td>-0.1724</td>
</tr>
<tr>
<td>12</td>
<td>11</td>
<td>187.53674</td>
<td>-0.0410</td>
<td>0.02</td>
<td>10^7</td>
<td>-0.0191</td>
</tr>
<tr>
<td>12</td>
<td>11</td>
<td>191.89007</td>
<td>-0.0415</td>
<td>0.02</td>
<td>10^7</td>
<td>-0.0182</td>
</tr>
</tbody>
</table>
Example. The “error terms” \(R_3 \) and \(R_4 \) force \(\alpha \) to be less than \(\min(A^2/\omega, T^2) \) for practical purposes. For row 5 of Table 2, with the indicated values of the parameters, we compute (rounded in the last place after the decimal point)

<table>
<thead>
<tr>
<th>Char</th>
<th>Sum on (\varrho)</th>
<th>(R_1)</th>
<th>(R_2)</th>
<th>(R_3)</th>
<th>(R_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\chi_4)</td>
<td>-0.802723684</td>
<td>0.000000137</td>
<td>0.000000002</td>
<td>0.002303420</td>
<td>0</td>
</tr>
<tr>
<td>(\chi_{8,2})</td>
<td>-1.308816425</td>
<td>0.000000326</td>
<td>0.000000003</td>
<td>0.002454092</td>
<td>0</td>
</tr>
</tbody>
</table>

Here the second column is the sum over \(|\gamma| \leq T\chi\) in Theorem 2. The first line of the right side of the inequality in Theorem 2 is computed as \(1.0521043 \). All of these values are rounded in the 9th decimal place.

Corollary 4. For each \(b \in \{3, 5, 7\} \), \(\pi_{8,b}(x) < \pi_{8,1}(x) \) for some \(x < 5 \cdot 10^{19} \). For each \(b \in \{5, 7, 11\} \), \(\pi_{12,b}(x) < \pi_{12,1}(x) \) for some \(x < 10^{34} \). For each \(b \in \{5, 7, 11, 13, 17, 19, 23\} \), \(\pi_{24,b}(x) < \pi_{24,1}(x) \) for some \(x < 10^{353} \). Finally, if the zeros of \(L(s, \chi_4) \) lying in the critical strip to height \(A = 630000 \) all have real part equal to 1/2, then for some \(x \) in the vicinity of \(e^{76683.7} \) we have

\[
\pi_{4,1}(x) - \pi_{4,3}(x) > \sqrt{x}/\log x.
\]

The significance of the last statement is that we now know (once the zeros of \(L(s, \chi_4) \) are computed to height 630000) a specific region where \(\pi_{4,1}(x) \) runs ahead of \(\pi_{4,3}(x) \) as much as it usually runs behind (this is the smallest \(x \) for which \(K^* < -1 \)). The idea is that the terms on the right side of (3.2) corresponding to the zeros \(\varrho \) are oscillatory, so that on average \(\Delta_{q,b,1}(x) \) is about \(\pi(\sqrt{x})/2 \approx \sqrt{x}/\log x \). Subject to certain unproven hypotheses, this notion can be made very precise (e.g. \([RS]\)). The two rows for \(q = 4 \) were chosen because of the large negative values of \(K^* \).

In Tables 2 and 3, we have confined our calculations to locating regions with \(x \geq e^{32.3} \approx 10^{14} \), smaller \(x \) being easily dealt with by exhaustive computer search. The listed values of \(K^* \) and \(K \) are rounded up in the last decimal place. For each pair \((q, b)\) except \((4, 3)\), the first few likely regions of negative values of \(\Delta_{q,b,1}(x) \) are listed. The lists continue until a region is found where a negative value can be proved with \(A = 10000 \). In some regions, a negative value can be proved with a larger value of \(A \) and in other regions no negative value could be proved even with \(A = \infty \). These latter rows have no \(K \) value listed. However, when \(\omega \leq 44 \) or so, it is possible to find specific values of \(x \) with \(\Delta_{q,b,1}(x) < 0 \) by computing this function exactly by means of Hudson’s extension of Meissel’s formula \([H1]\). This formula makes it practical to compute exact values of \(\pi_{q,a}(x) \) for \(x \) as large as \(10^{20} \). The first author is currently writing a computer program for this, and one preliminary result can be announced now. At \(x = 1.9282 \cdot 10^{14} \)
we have $\Delta_{8,7,1}(x) = -105$, and this computation took 10 minutes on a Sun Ultra-10 workstation.

For all pairs q, b, the values of ω given in Tables 2 and 3 represent the minimum of K, and this does not necessarily correspond to the minimum of K^*. The difference $|K - K^*|$ varies substantially, and this is expected due to the factors $e^{-\gamma^2/(2\alpha)}$ in Theorem 2. To illustrate the difference, Graph 1 depicts the functions K and K^* for $q = 12, b = 11$ in the vicinity of $e^{187.536}$.

Also as expected, larger values of A, which permit larger values of α, narrow the difference appreciably.

A shortcoming of our method is the inability to compare three or more progressions. For example, Shanks [Sh] asked if $\pi_{8,1}(x)$ will ever be greater than each of $\pi_{8,3}(x), \pi_{8,5}(x)$ and $\pi_{8,7}(x)$ simultaneously. Based on computations of the functions K^*, it is likely that this occurs in the vicinity of $e^{389.3712}$, but this cannot be proved by the methods of this paper. It is, however, possible to detect negative values of any linear combination of the functions $\pi_{q,b}(x)$. For example, by Theorem 2 it follows that for some x with $|\log x - 158.64233| \leq 0.01$, we have

$$\pi_{8,1}(x) > \frac{1}{3}(\pi_{8,3}(x) + \pi_{8,5}(x) + \pi_{8,7}(x)).$$

We are really looking for negative values of $\frac{1}{3}(\Delta_{8,3,1}(x) + \Delta_{8,5,1}(x) + \Delta_{8,7,1}(x))$, and take $A = 100000, \alpha = 10^7$ and $\eta = 0.02$ and obtain $K < -0.0265$.

<table>
<thead>
<tr>
<th>q</th>
<th>b</th>
<th>ω</th>
<th>K^*</th>
<th>η</th>
<th>α</th>
<th>K</th>
</tr>
</thead>
</table>
| 12 | 5 | 39.12815 | -0.0071 | 12 | 5 | 69.00554 | -0.0210 | 12 | 5 | 73.93306 | -0.0117 | 12 | 5 | 88.98310 | -0.0104 | 12 | 5 | 102.08460 | -0.0344 | 12 | 5 | 103.73736 | -0.0611 | 0.02 1550000 | 0.0445 | 12 | 7 | 39.12144 | -0.2063 | 0.02 1550000 | -0.0140 | 12 | 7 | 45.87795 | -0.1468 | 0.02 1400000 | -0.0871 | 24 | 5 | 161.18837 | -0.1176 | 0.04 525000 | -0.0920 | 24 | 7 | 92.49622 | -0.0693 | 0.03 830000 | -0.0530 | 24 | 11 | 111.54595 | -0.0023 | 24 | 11 | 812.63677 | -0.0526 | 0.20 118000 | -0.0104 | 24 | 13 | 34.14425 | -0.4810 | 0.02 1700000 | -0.3521 | 24 | 17 | 34.05708 | -0.0387 | 24 | 17 | 34.19749 | -0.0208 | 0.02 1650000 | -0.0110 | 24 | 19 | 34.20322 | -0.1473 | 0.02 1650000 | -0.1362 | 24 | 23 | 43.45318 | -0.0204 | 24 | 23 | 94.46170 | -0.0376 | 0.03 800000 | -0.0113

Table 3
Sign changes in \(\pi_{q,a}(x) - \pi_{q,b}(x) \)

Acknowledgments
The authors would like to thank Robert Rumely for providing the lists of the zeros of \(L \)-functions and copies of his original programs. The authors also thank Peter Sarnak for valuable discussions and encouragement.

References

[BH2] —, —, *Details of the first region of integers \(x \) with \(\pi_{3,2}(x) < \pi_{3,1}(x) \)*, Math. Comp. 32 (1978), 571–576.

[BH3] —, —, *The appearance of tens of billion of integers \(x \) with \(\pi_{24,13}(x) < \pi_{24,1}(x) \) in the vicinity of \(10^{12} \)*, J. Reine Angew. Math. 299/300 (1978), 234–237.

[BH5] —, —, *A new bound for the smallest \(x \) with \(\pi(x) > li(x) \)*, Math. Comp. 69 (2000), 1285–1296.

Department of Mathematics
University of South Carolina
Columbia, SC 29208, U.S.A.
E-mail: hudson@math.sc.edu

Current address of K. Ford:
Department of Mathematics
University of Illinois at Urbana-Champaign
Urbana, IL 61801, U.S.A.
E-mail: ford@math.uiuc.edu

Received on 4.8.1999
and in revised form on 21.3.2001