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1. Introduction. Let K be an algebraic number field and d ≥ 2 be an
integer. We call

f(z) =
∞∑

h=0

σhz
dh , σh ∈ K×, log ‖σh‖ = o(dh),

a Fredholm series. The convergence radius of f(z) is 1. By Hadamard’s gap
theorem, the unit circle is the natural boundary of f(z). If α is an algebraic
number with 0 < |α| < 1, then f(α) is transcendental (cf. Theorem 2.10.1
in Nishioka [2]). Let

fd(z) =
∞∑

h=0

σdhz
dh , σdh ∈ K×, log ‖σdh‖ = o(dh), d = 2, 3, . . .

Then we may expect that fd(α), d = 2, 3, . . . , are algebraically independent.
When σdh = 1 for all d, h, this is proved in Nishioka [3]. Here we will prove
the following.

Theorem 1. If for every d, the σdh (h = 0, 1, . . .) are in a finite set
of nonzero algebraic numbers, then fd(α), d = 2, 3, . . . , are algebraically
independent for any algebraic number α with 0 < |α| < 1.

2. Mahler’s method. By N and N0 we denote the set of positive in-
tegers and the set of nonnegative integers respectively. If α is an algebraic
number, we denote by α the maximum of the absolute values of the con-
jugates of α and by den(α) the least positive integer such that den(α)α is
an algebraic integer, and we set ‖α‖ = max{α ,den(α)}. Then we have the
inequalities

|α| ≥ ‖α‖−2[Q(α):Q] and ‖α−1‖ ≤ ‖α‖2[Q(α):Q]
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(cf. Lemma 2.10.2 in [2]). If Ω = (ωij) is an n× n matrix with nonnegative
integer entries and z = (z1, . . . , zn) is a point of Cn, we define a transfor-
mation Ω : Cn → Cn by

Ωz =
( n∏

j=1

z
ω1j
j , . . . ,

n∏

j=1

z
ωnj
j

)
.

Let {Ω(k)}k≥0 be a sequence of matrices with nonnegative integer entries.
We put

Ω(k) = (ω(k)
ij ) and Ω(k)z = (z(k)

1 , . . . , z(k)
n ).

For λ = (λ1, . . . , λn), we define zλ = zλ1
1 . . . zλnn and |λ| = λ1 + . . .+λn. Let

{f (k)
1 (z)}k≥0, . . . ,{f (k)

m (z)}k≥0 be sequences of power series inK[[z1, . . . , zn]].
Let χ = (z1, . . . , zn) be the ideal generated by z1, . . . , zn in K[[z1, . . . , zn]].
We assume

f
(k)
i → fi (k →∞), i = 1, . . . ,m,

under the topology defined by χ. In what follows, c1, c2, . . . denote positive
constants independent of k.

Theorem 2. Suppose that the coefficients of f (k)
i are in a finite set S⊂K

for all i and k. If α = (α1, . . . , αn) ∈ Kn, 0 < |αi| < 1, i = 1, . . . , n,
and the following three properties are satisfied , then f

(0)
1 (α), . . . , f (0)

m (α) are
algebraically independent.

(I) There exists a sequence {rk}k≥0 of positive numbers such that

lim
k→∞

rk =∞, ω
(k)
ij ≤ c1rk, log |α(k)

i | ≤ −c2rk.

(II) If we put

f
(0)
i (α) = f

(k)
i (Ω(k)α) + b

(k)
i ,

then b
(k)
i ∈ K and

log ‖b(k)
i ‖ ≤ c3rk.

(III) For any power series F (z) represented as a polynomial in z1, . . . , zn,
f1, . . . , fm with complex coefficients,

F (z) =
∑

λ, µ=(µ1,...,µm)

aλµz
λf1(z)µ1 . . . fm(z)µm ,

where aλµ are not all zero, there exists λ0 ∈ (N0)n such that if k is suffi-
ciently large, then

|F (Ω(k)α)| ≥ c4|(Ω(k)α)λ0 |.
Proof of Theorem 2. The following lemma is easy to prove.
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Lemma 1. Let f(z) =
∑
λ1,...,λn

cλ1...λnz
λ1
1 . . . zλnn ∈ C[[z1, . . . , zn]] con-

verge around the origin. If z is sufficiently close to the origin, then
∑

|λ|≥H
|cλ1...λn | · |z1|λ1 . . . |zn|λn ≤ γH+1 max

i
|zi|H ,

where γ is a positive constant depending on f(z).

Lemma 2. (i) If f (k)
i − fi ∈ χH , then

|f (k)
i (Ω(k)α)− fi(Ω(k)α)| ≤ cH+1

5 e−c2rkH .

(ii) For F (z) in (III) we put

F (k)(z) =
∑

λ, µ=(µ1,...,µm)

aλµz
λf

(k)
1 (z)µ1 . . . f (k)

m (z)µm .

Then F (k)(Ω(k)α) 6= 0 if k is sufficiently large.

Proof. The assumption (I) and Lemma 1 imply (i). We choose a large
H satisfying

e−c2H <
( n∏

i=1

|αi|
)c1|λ0|

.

Using (i) we have

|F (k)(Ω(k)α)− F (Ω(k)α)| ≤ c6e−c2Hrk ≤
1
2
c4

( n∏

i=1

|αi|
)c1|λ0|rk

if k is sufficiently large. On the other hand, by (I) and (III),

|F (Ω(k)α)| ≥ c4|(Ω(k)α)λ0 | ≥ c4
( n∏

i=1

|αi|
)c1|λ0|rk

.

This implies the lemma.

We assume f (0)
1 (α), . . . , f (0)

m (α) are algebraically dependent and deduce
a contradiction. There exist a positive integer L and integers τµ, not all zero,
for µ = (µ1, . . . , µm) with 0 ≤ µi ≤ L such that

∑

µ

τµf
(0)
1 (α)µ1 . . . f (0)

m (α)µm = 0.

Let w1, . . . , wm, y1, . . . , ym and tµ (µ = (µ1, . . . , µm), 0 ≤ µi ≤ L) be vari-
ables and put

F (k)(z; t) =
∑

µ

tµf
(k)
1 (z)µ1 . . . f (k)

m (z)µm ,

F (z; t) =
∑

µ

tµf1(z)µ1 . . . fm(z)µm
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and ∑

µ

tµ(w1 + y1)µ1 . . . (wm + ym)µm =
∑

µ

Tµ(t; y)wµ1
1 . . . wµmm .

Then we obtain

0 = F (0)(α; τ) =
∑

µ

τµ(f (k)
1 (Ω(k)α) + b

(k)
1 )µ1 . . . (f (k)

m (Ω(k)α) + b(k)
m )µm

=
∑

µ

Tµ(τ ; b(k))f (k)
1 (Ω(k)α)µ1 . . . f (k)

m (Ω(k)α)µm

= F (k)(Ω(k)α;T (τ ; b(k))).

We put R = K[t] = K[{tµ}µ=(µ1,...,µm), 0≤µi≤L] and

V (τ) = {Q(t) ∈ R | Q(T (τ ; y)) = 0}.
Then V (τ) is a prime ideal of R.

Definition. For P (z; t) =
∑
λ Pλ(t)zλ ∈ R[[z1, . . . , zn]], we define

indexP (z; t) = min{|λ| | Pλ 6∈ V (τ)}.
If Pλ(t) ∈ V (τ) for any λ, then we define indexP (z; t) =∞.

Since R/V (τ) is an integral domain, we have

indexP1(z; t)P2(z; t) = indexP1(z; t) + indexP2(z; t).

Lemma 3. The following two properties are equivalent for any P (z; t) ∈
R[z].

(i) P (Ω(k)α;T (τ ; b(k))) = 0 for all large k.
(ii) indexP (z; t) =∞.

Proof. We put

P (z; t) =
∑

λ

Qλ(t)zλ, Qλ(t) ∈ R,

and
Qλ(T (τ ; f (0)(α)− w)) =

∑

µ

aλµw
µ1
1 . . . wµmm .

We assume (i). Since b(k)
i = f

(0)
i (α)− f (k)

i (Ω(k)α), we have

0 = P (Ω(k)α;T (τ ; b(k)))

=
∑

λ

∑

µ

aλµ(Ω(k)α)λf (k)
1 (Ω(k)α)µ1 . . . f (k)

m (Ω(k)α)µm ,

for all large k. Lemma 2 implies aλµ = 0 for all λ, µ. Hence

Qλ(T (τ ; f (0)(α)− w)) = 0.
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Since w1, . . . , wm are variables, Qλ(T (τ ; y)) = 0, which implies (ii). The
opposite is trivial.

Lemma 4. indexF (z; t) <∞.

Proof. By the property (III), there exists k0 such that F (Ω(k0)α; τ) 6= 0.
If indexF (z; t) =∞, then

F (z; t) =
∑

λ

Pλ(t)zλ, Pλ(t) ∈ V (τ).

Noting Tµ(τ ; 0) = τµ, we have

F (Ω(k0)α; τ) =
∑

λ

Pλ(τ)(Ω(k0)α)λ = 0,

which is a contradiction.

For a positive integer p, we define

R(p) = {g(t) ∈ R | degtµ g(t) ≤ p},
R(p) = R(p)/R(p) ∩ V (τ),

d(p) = dimK R(p).

Lemma 5. d(2p) ≤ 2(L+1)md(p).

Proof. If P (t) ∈ R(2p), it can be expressed as

P (t) =
∑

ε

Qε(t)
∏

µ

tε(µ)p
µ ,

where Qε(t) ∈ R(p), ε is a mapping from the set of µ to {0, 1} and the sum
is taken over all such mappings. If {Q1(t), . . . , Qd(p)(t)} is a base of R(p),
then the set {

Qi(t)
∏

µ

t
ε(µ)p
µ

}
1≤i≤d(p), ε

generates R(2p) and the lemma is proved.

Lemma 6. Let p be a sufficiently large integer. Then there exist polyno-
mials P0(z; t), . . . , Pp(z; t) ∈ K[z; t] with degree at most p in each variable
such that the following properties are satisfied.

(i) indexP0(z; t) <∞.
(ii) If we put Ep(z; t) =

∑p
h=0 Ph(z; t)F (z; t)h, then

indexEp(z; t) ≥ c7(p+ 1)1+1/n.

Proof. If we express

Ph(z; t) =
∑

λ

Phλ(t)zλ, h = 0, . . . , p,
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F (z; t)h =
∑

λ

Qhλ(t)zλ, h = 0, . . . , p,

then
p∑

h=0

Ph(z; t)F (z; t)h =
∑

ν

( ∑

h,λ,µ,λ+µ=ν

Phλ(t)Qhµ(t)
)
zν .

We will choose Phλ(t) satisfying
∑

h,λ,µ,λ+µ=ν

Phλ(t)Qhµ(t) = 0 in R(2p),

for any ν = (ν1, . . . , νn) (νi ≤ J − 1), where J will be defined below. We

define a linear map from R(p)
(p+1)n+1

to R(2p)
Jn

by

(Phλ(t))h,λ 7→
( ∑

h,λ,µ,λ+µ=ν

Phλ(t)Qhµ(t)
)
ν
.

Since

dimK R(p)
(p+1)n+1

= d(p)(p+ 1)n+1, dimK R(2p)
Jn

= d(2p)Jn,

if d(p)(p+ 1)n+1 > d(2p)Jn, then there is a nontrivial solution (Phλ(t))h,λ.
By Lemma 5, J = [2−(L+1)m/n(p+ 1)1+1/n]− 1 satisfies the inequality and

index
( p∑

h=0

Ph(z; t)F (z; t)h
)
≥ J ≥ c8(p+ 1)1+1/n.

If indexP0(z; t) <∞, the proof is complete. Otherwise, we set

r = min{h | indexPh(z; t) <∞}, Ep(z; t) =
p∑

h=r

Ph(z; t)F (z; t)h−r.

Since indexEp(z; t)F (z; t)r ≥ J , we have

indexEp(z; t) ≥ J − r indexF (z; t) ≥ c7(p+ 1)1+1/n.

Now we can complete the proof of Theorem 2. Let indexEp(z; t) = I
and γ1, γ2, . . . denote positive constants depending on Ep(z; t). Let k ≥ γ1,
where γ1 will be determined below. Let

Ep(z; t) =
∑

ν

gν(z)tν , gν(z) =
∑

λ

gνλz
λ.

Then gν(z) converges in the n-polydisc with radius 1 around the origin.
Since

lim
k→∞

f
(k)
i (Ω(k)α) = fi(0),

we have
|b(k)
i |, |Tµ(τ ; b(k))| ≤ c9.
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Thus by Lemma 1,

|Ep(Ω(k)α;T (τ ; b(k)))| ≤
∑

ν

( ∑

|λ|≥I
|gνλ| · |(Ω(k)α)λ|

)
|T (τ ; b(k))ν |

≤ γ2 max
i
|α(k)
i |I .

We choose a positive number θ with e−c2c7 < θ < 1. By the property (I) we
have

|Ep(Ω(k)α;T (τ ; b(k)))| ≤ 1
2
θrk(p+1)1+1/n

.

We put

E(k)
p (z; t) =

p∑

h=0

Ph(z; t)F (k)(z; t)h,

and choose a large H satisfying

e−c2H ≤ θ · θ(p+1)1+1/n
.

If f (k)
i − fi ∈ χH , by Lemma 2(i) we have

|Ep(Ω(k)α;T (τ ; b(k)))−E(k)
p (Ω(k)α;T (τ ; b(k)))| ≤ γ3e

−c2Hrk .

Then

|E(k)
p (Ω(k)α;T (τ ; b(k)))| ≤ γ3e

−c2Hrk +
1
2
θrk(p+1)1+1/n ≤ θrk(p+1)1+1/n

.

On the other hand,

E(k)
p (Ω(k)α;T (τ ; b(k))) = P0(Ω(k)α;T (τ ; b(k))) = (say) βk ∈ K.

By the properties (I) and (II), we easily see ‖βk‖ ≤ crkp10 . By the fact that
indexP0(z; t) <∞, there are infinitely many k with βk 6= 0. For such k, we
have

rk(p+ 1)1+1/n log θ ≥ log |βk| ≥ −2[K : Q] log ‖βk‖ ≥ −2[K : Q]rkp log c10.

Dividing both sides by rk(p + 1)1+1/n and letting p tend to ∞, we obtain
log θ ≥ 0, a contradiction.

3. Proof of Theorem 1. The following lemma is proved in a similar
way to the proof of Lemma A.1 in Masser [1].

Lemma 7. Let b1 > . . . > bn ≥ 2 be pairwise multiplicatively independent
integers. Let θ = log b1 and θi = θ/log bi. Suppose that for each α in a finite
set A we are given real numbers λ1α, . . . , λnα not all zero, and define the
sequence

Sα(k) =
n∑

i=1

λiαb
[θik]
i , k = 0, 1, 2, . . .
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If {kl}l≥1 is an increasing sequence of positive integers with {kl+1 − kl}l≥1

bounded , then there exists δ > 0 such that

R(δ) = {kl | min
α
|Sα(kl)| ≥ δeθkl} = {ml}l≥1, ml < ml+1,

is an infinite set and {ml+1 −ml}l≥1 is bounded.

Proof. Let kl+1 − kl ≤ K, l ≥ 1. We prove the lemma by induction on
n. If n = 1, then {ml}l≥1 = {kl}l≥1 is the required sequence. Assume that
we have proved the result with n replaced by n− 1 for some n ≥ 2 and the
result is not true for n. Then for any δ > 0 and any positive integer M there
is kl such that for k = kl, kl+1, . . . , kl+M we have

S(k) = min
α
|Sα(k)| < δeθk.

We may assume that for each α ∈ A the numbers λ1α, . . . , λn−1,α are not
all zero. Let L = (maxi θi)|A|K + 1 and

J = {(p1, . . . , pn, q1, . . . , qn) | 0 ≤ pi, qi ≤ L, pn 6= qn}.
We take B = A×J and for each β = (α, p1, . . . , pn, q1, . . . , qn) ∈ B we define

µiβ = λiα(bqnn b
pi
i − bpnn bqii ), 1 ≤ i ≤ n− 1.

Since pn 6= qn, the pairwise multiplicative independence shows that µ1β , . . . ,
µn−1,β are not all zero. We define

Tβ(k) =
n−1∑

i=1

µiβb
[θik]
i , k = 0, 1, . . .

For any positive integer k there is α = α(k) ∈ A such that S(k) = |Sα(k)|.
By the Box Principle, for any j with l ≤ j ≤ l +M − |A| there exist α ∈ A
and integers l1, l2 such that j ≤ l1 < l2 ≤ j + |A| and

S(kl1) = |Sα(kl1)|, S(kl2) = |Sα(kl2)|.
Put

pi = [θikl1 ]− [θikj ], qi = [θikl2 ]− [θikj ].

Then 0 ≤ pi, qi ≤ L. Since θn > 1 and l1 < l2 imply pn < qn, we have
β = (α, p1, . . . , pn, q1, . . . , qn) ∈ B and

Tβ(kj) = bqnn Sα(kl1)− bpnn Sα(kl2).

By the assumption, for j = l, l + 1, . . . , l +M − |A| we have

|Tβ(kj)| < cδeθkj ,

where c is a positive constant. This contradicts the induction hypothesis.

Lemma 8. Let b1, . . . , bn be integers as in Lemma 7. Then there exist an
infinite set Λ of positive integers, a sequence {δ(l)}l≥1 of positive numbers
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and a total order in (N0)n such that if λ > µ, |λ|, |µ| ≤ l, then
n∑

i=1

λib
[θiq]
i −

n∑

i=1

µib
[θiq]
i ≥ δ(l)eθq

for every sufficiently large q ∈ Λ. Moreover any subset of (N0)n has the
least element.

Proof. We put

A(l) = {(λ, µ) | λ, µ ∈ (N0)n, |λ|, |µ| ≤ l, λ 6= µ}.
For (λ, µ) ∈ A(l) we set

S(λ,µ)(q) =
n∑

i=1

(λi − µi)b[θiq]i .

We inductively define δ(l) and Λ(l) as follows. We put Λ(0) = N. By Lemma
7 there exists a positive number δ(l) such that

Λ(l) = {q ∈ Λ(l − 1) | min
(λ,µ)∈A(l)

|S(λ,µ)(q)| ≥ δ(l)eθq}

is an infinite set and the differences of two consecutive elements of Λ(l)
are bounded. We can choose a sequence {ql}l≥1 satisfying ql ∈ Λ(l) and
ql < ql+1. There exists a subsequence {q(1)

l }l≥1 of {ql}l≥1 such that the signs
of S(λ,µ)(q

(1)
l ), |λ|, |µ| ≤ 1, are fixed for all l ≥ 1. There exists a subsequence

{q(2)
l }l≥2 of {q(1)

l }l≥2 such that the signs of S(λ,µ)(q
(2)
l ), |λ|, |µ| ≤ 2, are

fixed for all l ≥ 2. Continuing this process, we obtain a sequence {q(m)
l }l≥m

for every m ≥ 1. We set

Λ = {q(1)
1 , q

(2)
2 , . . . , q

(l)
l , . . .},

and for λ, µ ∈ (N0)n we define λ > µ if and only if S(λ,µ)(q) > 0 for all large

q ∈ Λ. Noting Λ(l) ⊃ Λ(l + 1) and q
(l)
l ∈ Λ(l) completes the proof of the

first part of the lemma. For the second part, we use the following fact (cf.
[2], Lemma 2.6.4): if S is a subset of (N0)n, then there is a finite subset T of
S such that for any (λ1, . . . , λn) ∈ S, there is an element (µ1, . . . , µn) ∈ T
with µi ≤ λi, i = 1, . . . , n. If µ is the least element of T , we can easily see
it is also the least element of S.

Lemma 9. Let d ≥ 2 and

fj(z) =
∞∑

h=0

sj,jhz
djh , sj,jh ∈ C×, j = 1, 2, . . .

Then fj , j = 1, 2, . . . , are algebraically independent over C(z).
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Proof. If f1, . . . , ft are algebraically dependent over C(z), then there
exist aλµ ∈ C, not all zero, such that

F (z) =
∑

λ, µ=(µ1,...,µt)

aλµz
λf1(z)µ1 . . . ft(z)µt = 0.

We choose a positive integer l satisfying

max{λ | aλµ 6= 0 for some µ} < dl.

We define

M = max{|µ| | aλµ 6= 0 for some λ} ≥ 1,

A = {µ | |µ| = M, aλµ 6= 0 for some λ}.
Let ν = (ν1, . . . , νt) be the largest element of A for the lexicographical order
and κ be the largest integer such that aκν 6= 0. Letting

p = κ+ dt!l+1 + dt!2l+1 + . . .+ dt!ν1l+1 + dt!(ν1+1)l+2 + . . .+ dt!(ν1+ν2)l+2

+ dt!(ν1+...+νt−1+1)l+t + . . .+ dt!(ν1+...+νt)l+t,

we will show that the Taylor coefficient of zp in F (z) is not zero. This
contradicts F (z) = 0 and completes the proof.

The d-adic expansion of p has the form

∗ . . . ∗ 0 el−1 . . . e0, 0 ≤ ei < d.

If a positive integer n has the d-adic expansion

eL . . . el+1el . . . e1e0, 0 ≤ ei < d,

we denote by w(n) the number of nonzero elements among eL, . . . , el+1. Then
w(p) = ν1 + . . .+ νt = M . For any a, b ∈ N0, we see w(a+ db) ≤ w(a) + 1.
If q is the degree of a term appearing in the development of

aλµz
λf1(z)µ1 . . . ft(z)µt ,

then
q = λ+ dh1 + . . .+ dhµ1 + d2hµ1+1 + . . .+ d2hµ1+µ2

+ dthµ1+...+µt−1+1 + . . .+ dthµ1+...+µt ,

where hi ∈ N0. If p = q,

M = w(p) = w(q) ≤ w(λ) + µ1 + . . .+ µt = |µ| ≤M,

and so |µ| = M . If w(λ+djhi) = 0, w(q) ≤M−1. Therefore w(λ+djhi) = 1
and so jhi ≥ l+1 since λ < dl. Hence we have λ = κ. If jhi = j′hi′ for some
(i, j) 6= (i′, j′), then w(λ+ djhi + dj

′hi′ ) = 1. This implies w(q) ≤M − 1, a
contradiction. Therefore jhi are distinct and

{t!l + 1, . . . , t!ν1l + 1, t!(ν1 + 1)l + 2, . . . , t!(ν1 + ν2)l + 2,

. . . , t!(ν1 + . . .+ νt−1 + 1)l + t, . . . , t!|ν|l+ t}
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= {h1, . . . , hµ1 , 2hµ1+1, . . . , 2hµ1+µ2 , . . . , thµ1+...+µt−1+1, . . . , th|µ|}.
There are exactly ν1 elements which are not divided by any of 2, . . . , t on
both sides above. Therefore µ1 ≥ ν1, which implies µ1 = ν1 since µ ≤ ν.
Then

{t!(ν1+1)l+2, . . . , t!(ν1+ν2)l+2, . . . , t!(ν1+. . .+νt−1 +1)l+t, . . . , t!|ν|l+t}
= {2hµ1+1, . . . , 2hµ1+µ2 , . . . , thµ1+...+µt−1+1, . . . , th|µ|}.

There are exactly ν2 elements which are not divided by any of 3, . . . , t on
both sides above. Therefore µ2 ≥ ν2, which implies µ2 = ν2 since µ ≤ ν and
µ1 ≤ ν1. Continuing, we obtain µ = ν. Therefore the Taylor coefficient of
zp in F (z) is

aκνν1! . . . νt!s1,t!l+1 . . . s1,t!ν1l+1 . . . st,t!(ν1+...+νt−1+1)l+t . . . st,t!|ν|l+t 6= 0.

Proof of Theorem 1. Let

D = {d ∈ N | d 6= an for any a, n ∈ N, n > 1}.
Then

N \ {1} =
⋃

d∈D
{d, d2, . . .} (disjoint union)

and any two elements of D are multiplicatively independent. Let d1 > . . . >
dn be elements of D, z = (z1, . . . , zn) and

f
(0)
ij (z) =

∞∑

h=0

σijhz
djhi
i , i = 1, . . . , n, j = 1, . . . , t,

where for any h, σijh ∈ Sij , which is a finite set of nonzero algebraic num-
bers. We will show that

∞∑

h=0

σijhα
djhi , i = 1, . . . , n, j = 1, . . . , t,

are algebraically independent for any algebraic α with 0 < |α| < 1. This
implies Theorem 1. Put bi = dt!i , θ = log b1, θi = θ/log bi, i = 1, . . . , n, and

Σq = (σijh)i=1,...,n, j=1,...,t, h≥(t!/j)[θiq] ∈
n∏

i=1

t∏

j=1

SNij

for q ∈ Λ (in Lemma 8). Since the right hand side is a compact set, there
exists a converging subsequence {Σqk}k≥1 of {Σq}q∈Λ. Let

lim
k→∞

Σqk = (sijh)i=1,...,n, j=1,...,t, h≥0

and

f
(k)
ij (z) =

∞∑

h=(t!/j)[θiqk]

σijhz
d
j(h−(t!/j)[θiqk])
i
i , fij(z) =

∞∑

h=0

sijhz
djhi
i .
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Then
lim
k→∞

f
(k)
ij (z) = fij(z).

We define

Ω(k) =



b
[θ1qk]
1 0

. . .
0 b

[θnqk]
n


 .

Then Ω(k), (α1, . . . , αn) = (α, . . . , α) and rk = bqk1 satisfy the assumptions
(I) and (II). If the assumption (III) is also satisfied, the assertion follows.
Noting z1, . . . , zn are distinct variables, by Lemma 9 we see

f11, . . . , f1t, . . . , fn1, . . . , fnt

are algebraically independent over C(z1, . . . , zn). Let

F (z) =
∑

λ,µ

aλµz
λfµ11

11 . . . fµ1t
1t . . . fµn1

n1 . . . fµntnt =
∑

λ∈(N0)n

cλz
λ

and λ0 be the least element in (N0)n in the order defined in Lemma 8 among
λ with cλ 6= 0. Let B = max{b1, . . . , bn} and l = (|λ0|+ 1)B. Then

B−1bqk1 ≤ b−1
i bqk1 < b

[θiqk]
i ≤ bqk1 .

If k is sufficiently large, then by Lemma 1,
∑

|λ|≥l
|cλ| · |α|b

[θ1qk]
1 λ1 . . . |α|b

[θnqk ]
n λn ≤ γl+1|α|b

qk
1 (|λ0|+1).

Since
λ01b

[θ1qk]
1 + . . .+ λ0nb

[θnqk]
n ≤ |λ0|bqk1 ,

we have
|∑|λ|≥l cλ(Ω(k)α)λ|
|(Ω(k)α)λ0 | ≤ γl+1|α|b

qk
1

if k is sufficiently large. If |λ| < l and λ 6= λ0, then by Lemma 8,

|cλ(Ω(k)α)λ|
|(Ω(k)α)λ0 | ≤ |cλ| · |α|

δ(l)eθqk

for all large k. Therefore

|F (Ω(k)α)/(Ω(k)α)λ0 − cλ0 | → 0 (k →∞).

This implies (III).
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