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Algebraic independence of Fredholm series
by

KumIKO NisHIOKA (Yokohama)

1. Introduction. Let K be an algebraic number field and d > 2 be an
integer. We call

i h
f(z) =) onz",  oneK*, log|on| = o(d"),
h=0

a Fredholm series. The convergence radius of f(z) is 1. By Hadamard’s gap
theorem, the unit circle is the natural boundary of f(z). If « is an algebraic
number with 0 < |a| < 1, then f(«) is transcendental (cf. Theorem 2.10.1
in Nishioka [2]). Let

oo
h
fd<2) = E Udhzd , Odh € KX, log HUth = O(dh), d= 2,3,. ..
h=0

Then we may expect that fi(«), d =2,3,..., are algebraically independent.
When o4y, = 1 for all d, h, this is proved in Nishioka [3]. Here we will prove
the following.

THEOREM 1. If for every d, the ogqn (h = 0,1,...) are in a finite set
of nonzero algebraic numbers, then fq(a), d = 2,3,..., are algebraically
independent for any algebraic number o with 0 < |a| < 1.

2. Mahler’s method. By N and Ny we denote the set of positive in-
tegers and the set of nonnegative integers respectively. If o is an algebraic
number, we denote by [a] the maximum of the absolute values of the con-
jugates of o and by den(«) the least positive integer such that den(a)a is
an algebraic integer, and we set ||«| = max{[a],den(a)}. Then we have the
inequalities

—2 : -1 2 :
la] > [laf| R@Cand o™t < [|of¥@
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316 K. Nishioka

(cf. Lemma 2.10.2 in [2]). If 2 = (w;;) is an n X n matrix with nonnegative
integer entries and z = (z1,...,2,) is a point of C", we define a transfor-
mation {2 : C" — C" by

n n
_ w1 Wnj
Qz-(”zj ""’”Zj )
j=1 j=1

Let {2"},50 be a sequence of matrices with nonnegative integer entries.
We put

20 = @) and  0®z= (5", 0.

For A = (A1,..., \n), we define 2* = 22 ...z and |A\| = A +...+ Ap,. Let

{fl(k)(z)}kzo, e ,{fy(nk) (2) }x>0 be sequences of power series in K{[z1, ..., zp]].
Let x = (21,...,2n) be the ideal generated by z1,...,z, in K[[z1,...,2,]].
We assume
fi(k)—>fi (k—o00), i=1,...,m,

under the topology defined by x. In what follows, ¢1, ca, ... denote positive
constants independent of k.

THEOREM 2. Suppose that the coefficients of fi(k) are in a finite set SCK
for all i and k. If « = (a1,...,a,) € K™, 0 < |og] < 1, i = 1,...,n,

and the following three properties are satisfied, then fl(o)(a), . 7(,?)(04) are
algebraically independent.

(I) There exists a sequence {ri}r>0 of positive numbers such that

lim 7y, = oo, wgk) <crg, log \agk)\ < —CcoTg.
k—o0 J

(IT) If we put
17 (@) = £ (2% a) + b,
then bgk) € K and
log |b7]| < eary.

(III) For any power series F(z) represented as a polynomial in z1,. .., zp,
fis-- o, fm with complex coefficients,

F(z) = > axg 2 fL(2)M L f (2)P

where ay, are not all zero, there exists \g € (No)™ such that if k is suffi-
ciently large, then

[F(QPa) > el (2P a)].

Proof of Theorem 2. The following lemma, is easy to prove.
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LEMMA 1. Let f(z) =3\, .\, a2tz € Cllz1, .+, 2n]] con-
verge around the origin. If z is sufficiently close to the origin, then

D7 lonaaal -l oz <9 max )
A=H

where 7y is a positive constant depending on f(z).
Lemma 2. (i) If £ — f € x®, then
£ (@Wa) = fi(@Wa)| < eff et
(ii) For F(z) in (III) we put
FOE = ST a2 PP 2y

Then FF) (K ) #£ 0 if k is sufficiently large.
Proof. The assumption (I) and Lemma 1 imply (i). We choose a large

H satisfying
H n CIP\O‘
e 2t < (H|a1]> .
i=1

Using (i) we have

1 n c1|Xolr
IF® QW a) — F(QWa)| < cgem2Hm < 504(1_[ |ai|) o
i=1

if k& is sufficiently large. On the other hand, by (I) and (III),
n c1|A |r
IF(QWa)| > eq (2P a) | >c4<H\al) B

This implies the lemma.

We assume fl(o)(oz), o O () are algebraically dependent and deduce
a contradiction. There exist a positive integer L and integers 7, not all zero,
for = (p1, ..., pm) with 0 < p; < L such that

D@ D (@) = 0.

Let wi,..., Wm,Y1,.-.,Ym and t, (u = (pt1,-.., ftm), 0 < p; < L) be vari-

ables and put
F®) (2:8) Zt K) (gym L R ()b

t) :Ztufl 2 fm(2)F
m
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and

Ztu(wl +y)!" (W Ym)i = ZT#(iE;y)w‘f1 Cowhm

W w
Then we obtain

0=FO(a;r) = 3 mu(A7(@Wa) +07) . (P (W) + )
)7

— ZT () f(k)(_()(k) YL FR) (QR) gy

= F(k)(Q(k)a; T(7; ™)),
We put R = K[t] = K[{t,}u=(us,... um), 0<ps<r] and
V(r) ={Q@) € R Q(T(r;y)) = 0}.
Then V(1) is a prime ideal of R.
DEFINITION. For P(z;t) =", P\(t)z* € R[[z1,. .., 2,]], we define
index P(z;t) = min{|A| | Px € V(7)}.
If P\(t) € V(7) for any A, then we define index P(z;t) = oc.
Since R/V(7) is an integral domain, we have
index Py (z;t)Py(z;t) = index Py (z;t) + index Py(z;t).

LEMMA 3. The following two properties are equivalent for any P(z;t) €
R[z].

(i) P(2®a; T(r;0%))) = 0 for all large k.
(ii) index P(z;t) = oo

Proof. We put
P(zt)=> @Qxt)z", Qi(t)eR

A
and

AxT(7 f(o) Zaww Soowhm

We assume (i). Since b( ) = fi(o)(a) - fi(k)((}(k)a), we have
0=P(0RWa; T(T' b(’“)))
=32 ol P fB(@Waya . () (oW,

for all large k. Lemma 2 implies ay, = 0 for all A, 4. Hence

QAT (1; f V() —w)) = 0.
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Since wy,...,w,, are variables, Qx(T(7;y)) = 0, which implies (ii). The
opposite is trivial.
LEMMA 4. index F(z;t) < 0o

Proof. By the property (IIT), there exists ko such that F/(£2(0)a; 1) # 0.
If index F'(z;t) = oo, then

t)=> P(t)z", Pa(t) € V(r).
A

Noting 7),(7;0) = 7,, we have
F( (ko)a 7) ZPA (ko)a)A =0,

which is a contradiction.
For a positive integer p, we define
R(p) = {g(t) € R | deg,, g(t) < p},
R(p) = R(p)/R(p) N V(7),
d(p) = dimg R(p).
LEMMA 5. d(2p) < 2E+D"q(p).
Proof. 1f P(t) € R(2p), it can be expressed as

= Z Q-(t) th(#)pv
E 2

where Q:(t) € R(p), € is a mapping from the set of p to {0,1} and the sum
is taken over all such mappings. If {Q1(t),...,Qaup) ()} is a base of R(p),

then the set
i t ts(#)p}
{Q ( )1;[ " 1<i<d(p), e

generates R(2p) and the lemma is proved.

LEMMA 6. Let p be a sufficiently large integer. Then there exist polyno-
mials Po(z;t),...,Py(2z;t) € K[z;t] with degree at most p in each variable
such that the following properties are satisfied.

(i) index Py(z;t) < oo.
(ii) If we put Ey(z;t) = >0 _o Pu(z;t)F(2;t)", then

index E,(2;t) > c7(p + 1)11/™,
Proof. 1f we express

tht th)‘ , hZO,...,p,
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:ZQhA(t)Z)\’ h:O,...,p,
A

then
th zZ; t Z ( Z Ph)\(t)Qh#(w)ZV
v A A+ p=v

We will choose P (t) satisfying

Z PuA(t) Qnu(t) =0 in R(2p),

ho\ A+ pu=v
for any v = (v1,...,vp) (i < J — 1), where J will be defined below. We
n+1 n
define a linear map from R(p )(pﬂ) to R(2p)J by
(Paa(t))nx — ( Z Ppa(t) th(t)) :
Ry A A+ p=v v
Since
(p+1)" ! n+1 . Hod" n
dimg R(p) =d(p)(p+1)""", dimg R(2p) =d(2p)J",

if d(p)(p+ 1)"*1 > d(2p)J", then there is a nontrivial solution (Ppx(t))n x-
By Lemma 5, J = [2-EHAD"/7(p 4 1)1+1/7] — 1 satisfies the inequality and

P
index (Z Pr(z;t)F(z; t)h) > J>cg(p+ 1)

h=0
If index Py(z;t) < oo, the proof is complete. Otherwise, we set

P
r = min{h | index Py (z;t) < 0o},  Ep(z;t) = Z Pu(z;t)F(z; )"

Since index E,(z;t)F(z;t)" > J, we have
index E,(z;t) > J — rindex F(z;t) > c7(p 4+ 1)1F1/™,
Now we can complete the proof of Theorem 2. Let index E,(z;t) = I

and 71,72, ... denote positive constants depending on E,(z;t). Let k > 1,
where ~; will be determined below. Let

t) = Zgy(z)t”, gv(2) = Zgw\z/\-
v A

Then g¢,(z) converges in the n-polydisc with radius 1 around the origin.
Since

lim f7(2%a) = £i(0),

we have
161, 1T (75 68| < co.
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Thus by Lemma 1,
B (Vs T(r b)) < 37 (3 Igunl - (20 )] ) (5507
voOAT

< 72 max |af”|".
K3

We choose a positive number § with e~“2°7 < § < 1. By the property (I) we

have
)1+1/n

|Ep(2Wa; T(r;b))| < %Grk(p+1
We put
E (2;t) = zp: Pi(z ) F®) (z;1)",
h=0
and choose a large H satisfying
e < gt

If fi(k) — fi € X, by Lemma 2(i) we have

|Ep(2W a; T(r;6®)) = EP (2W a; T(m;6®))| < yge= 27,
Then

BB QW) 05 T(r; 50))| < e 4 Lra@an ™17 gruenytor/»
) 3 = 9 ~ .

On the other hand,
EI(,k)(Q(k)a;T(T;b(k))) = PU(Q(k)OL;T(T;b(k))) = (say) Ok € K.

By the properties (I) and (II), we easily see ||Bx| < cii?. By the fact that
index Py(z;t) < 0o, there are infinitely many k with 3y # 0. For such k, we
have

re(p + 1)1+1/" log 8 > log|Bk| > —2[K : Q]log ||Bk|| > —2[K : Q]rgplog cio.

Dividing both sides by r(p 4+ 1)+1/™ and letting p tend to oo, we obtain
log# > 0, a contradiction.

3. Proof of Theorem 1. The following lemma is proved in a similar
way to the proof of Lemma A.1 in Masser [1].

LEMMA 7. Letby > ... > b, > 2 be pairwise multiplicatively independent
integers. Let  =logby and 0; = 0/logb;. Suppose that for each o in a finite
set A we are given real numbers Aiq, ..., Ana not all zero, and define the
sequence

Sa(k) = Niab™,  k=0,12,...
i=1
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If {ki}i1>1 is an increasing sequence of positive integers with {kjy1 — ki}i>1
bounded, then there exists 6 > 0 such that

R(8) = {ky | min |Sa (k)| > 6¢”} = {mu}is1,  mu < mupa,

is an infinite set and {m;y1 —my};>1 is bounded.

Proof. Let kj41 — k; < K, 1 > 1. We prove the lemma by induction on
n. If n =1, then {m;};>1 = {ki};>1 is the required sequence. Assume that
we have proved the result with n replaced by n — 1 for some n > 2 and the
result is not true for n. Then for any 6 > 0 and any positive integer M there
is k; such that for k = ki, ki1, . .., ki we have

S(k) = min | S, (k)| < deb*.

We may assume that for each o € A the numbers Aiq,...,A\p—1,, are not
all zero. Let L = (max; 6;)|A|K + 1 and

J:{(p17"'7pn7q17”'7Qn) ’0§p7,7ql§Lapn7éqn}
We take B = Ax J and for each § = (o, p1,...,Pn,q1,--.,qn) € B we define
Hig = )\wé(b%"bfb — bﬁ"bgl), 1< <n—1.

Since p,, # ¢n, the pairwise multiplicative independence shows that 113, ...,
tn—1,5 are not all zero. We define

n—1
Ta(k) = Y mgh™, k=0.1,...
i=1

For any positive integer k there is & = a(k) € A such that S(k) = |S4(k)|.
By the Box Principle, for any j with [ < j <14 M — |A] there exist a € A
and integers 1, lo such that 7 <13 <ly < j+|A| and

S(ki,) = |Salky)l;  S(ki,) = [Sa(ki,)I-
Put
pi = [0iki, ] = [0:k;], a5 = [Biki,] — [0ik;].
Then 0 < p;,q; < L. Since 6, > 1 and I3 < ly imply p, < ¢, we have
B=(a,p1,- s Pn,q1,---,qn) € B and

Ts(k;) = b3 Sa(ki,) — by Sa (ki)
By the assumption, for j = 1,1+ 1,...,l + M — |A| we have
| T5(k;)| < coe’™,
where c is a positive constant. This contradicts the induction hypothesis.

LEMMA 8. Let by,...,b, be integers as in Lemma 7. Then there exist an
infinite set A of positive integers, a sequence {3(1)}i>1 of positive numbers
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and a total order in (No)™ such that if X > u, ||, |p] <1, then
Z)\ibyiq} . Zuibgﬂiq] > (5(l)e'9q
i=1 i=1

for every sufficiently large ¢ € A. Moreover any subset of (No)™ has the
least element.

Proof. We put

A = {(\ ) | A e No)™, AL |l <1, X # .
For (A, u) € A(l) we set

n

i=1
We inductively define §(1) and A(l) as follows. We put A4(0) = N. By Lemma
7 there exists a positive number 6() such that

A ={qge A(l—1 i S > §(1)e%
(1) = {q € A( )I(A’;r)lég(l)lu,m(q)l_()6}

is an infinite set and the differences of two consecutive elements of A(l)
are bounded. We can choose a sequence {¢;};>1 satisfying ¢; € A(l) and
q1 < qi+1- There exists a subsequence {ql(l)}lzl of {¢;};>1 such that the signs
1
{ai”hi>2 of {g/"}i>2 such that the signs of S(x(q\”), AL, |u| < 2, are

fixed for all [ > 2. Continuing this process, we obtain a sequence {ql(m)}IZm
for every m > 1. We set

) (2 !
A:{qg ),qé ),...,ql(),...},
and for A, 4 € (Np)™ we define A > p if and only if S, ,,)(¢q) > 0 for all large

g € A. Noting A(l) D A(l + 1) and ql(l) € A(l) completes the proof of the
first part of the lemma. For the second part, we use the following fact (cf.
[2], Lemma 2.6.4): if S is a subset of (Ny)", then there is a finite subset T" of
S such that for any (A1,...,A,) € S, there is an element (u1,...,un) € T
with pu; < A, ¢ =1,...,n. If u is the least element of T, we can easily see
it is also the least element of S.

o |Aly [p] < 1, are fixed for all | > 1. There exists a subsequence

LEMMA 9. Letd > 2 and

[ee]

ih ,
fi(z) = Z Sj,jhzd . sjp€eCT, j=1,2,...
h=0

Then f;, j =1,2,..., are algebraically independent over C(z).
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Proof. If f1,..., ft are algebraically dependent over C(z), then there
exist ay, € C, not all zero, such that

F(z) = Z GAMZ/\f1(Z)M - Ji(2) =0
Ay = (s it)
We choose a positive integer [ satisfying
max{\ | ax, # 0 for some u} < d'.
We define
M = max{|p| | ar, # 0 for some A} > 1,
A={pl|p| =M, ax, # 0 for some A}.

Let v = (v1,...,14) be the largest element of A for the lexicographical order
and x be the largest integer such that a,, # 0. Letting

D= kA4 UL gt L gl g2 g ee) 42
e e S VA SN (7S S SO
we will show that the Taylor coefficient of zP in F(z) is not zero. This
contradicts F'(z) = 0 and completes the proof.
The d-adic expansion of p has the form

x...x0e_1...¢0, 0<¢e; <d.

If a positive integer n has the d-adic expansion
er...e41€...e1e9, 0<e; <d,

we denote by w(n) the number of nonzero elements among ey, ..., e;+1. Then
w(p) = vy +...4+ v = M. For any a,b € Ny, we see w(a + d°) < w(a) + 1.
If ¢ is the degree of a term appearing in the development of

ax, 2 fr(2)" L fu(2)M

then
g=A+d" 4. 4 dhm P 4 P

I dthm+~-~+m7
where h; € Ny. If p =g,
M =w(p) =w(q) Sw(A) +p1+ ...+ pe = [p| < M,
and so |u| = M. If w(A+d’") = 0, w(q) < M —1. Therefore w(A+d/") = 1
and so jh; > [+ 1 since A < d'. Hence we have A\ = k. If jh; = j'h; for some
(i,7) # (i',5"), then w(\ + d"i 4+ d7") = 1. This implies w(q) < M — 1, a
contradiction. Therefore jh; are distinct and
{th+1,.. i+ 1L, + DI+ 2, .t (v +v2)l + 2,
N A1 CZ T S o R I S D VA A 1 | 21 2
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- {hl, ceey hm,th+1, ey 2hﬂ1+ﬂ27 . e 7thM1+---+/Lt—1+17 . e ,th|#‘}

There are exactly v; elements which are not divided by any of 2,...,t on
both sides above. Therefore p1 > v, which implies p; = vq since pu < v.
Then

{tN 1+ 1)1+2,. .., tH 1 +)l+2, ..t (1 +. . v+ )42, . |l +2)

= {2h/"‘1+17 e ’2h/—’41+ﬂ2’ e 7th#l+--~+#t—1+17 e ,th|#|}
There are exactly vo elements which are not divided by any of 3,...,¢ on
both sides above. Therefore s > vo, which implies po = 15 since u < v and
p1 < v1. Continuing, we obtain p = v. Therefore the Taylor coefficient of
2P in F(z) is

AoVt VST 1 STy - S (et 1)t - St it 7 O
Proof of Theorem 1. Let
D={deN|d#a" for any a,n € N;n > 1}.
Then
N\ {1} = U {d,d* ...} (disjoint union)
deD

and any two elements of D are multiplicatively independent. Let d; > ... >
d,, be elements of D, z = (z1,...,2,) and

o
0 din . .
fi(j)(z): E oiinz;t . t=1,...,n, j=1,...,t,
h=0

where for any h, 0,5, € S;j, which is a finite set of nonzero algebraic num-
bers. We will show that

OijhQ " 1=1,....,n, 3=1,...,t,
h=0
are algebraically independent for any algebraic a with 0 < |a| < 1. This
implies Theorem 1. Put b; = d;‘:!7 0 =logby, 0; =0/logb;, i =1,...,n, and

n t
Yy = (Uijh)izl,...,n,j:l,...,t7hz(t!/j)[Giiﬂ € H H SS

i=1j=1
for ¢ € A (in Lemma 8). Since the right hand side is a compact set, there
exists a converging subsequence {X,, }x>1 of {¥;}4ea. Let

lim Yy, = (Sijn)i=1,...,n, j=1,..t, h>0
k—oo

and
oo . . oo
k J(h—=(t1/5)103a,]) dih
15@= 3 o C Ty =D s
h=0

h=(t!/5)[0:qx]
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Then "

khjgo fij (2) = fi;(2).
We define

b[191(1k} 0
k) — .
O b’E’Lenqk:]
Then 2, (ay,...,a,) = (a,...,a) and rj, = b¥* satisfy the assumptions
(I) and (II). If the assumption (III) is also satisfied, the assertion follows.
Noting 21, ..., 2z, are distinct variables, by Lemma 9 we see
fll)-"aflta"'afnla-"afnt
are algebraically independent over C(z1,...,2,). Let
F(z) = Za,\uz)‘ S = Z ezt
A AE(Ng)n

and Ao be the least element in (Ny)™ in the order defined in Lemma 8 among
A with ¢y # 0. Let B = max{b1,...,b,} and [ = (|\¢| + 1)B. Then

B_lb({k S bz_lb(fk < bEQiQk] S btllk
If k is sufficiently large, then by Lemma 1,

D leal- P At A < g (Dol

|A[>1
Since
Aorbt M 4 Aol a) < |02,
we have oo
| 22> ex(2®a)| < ,Yl+1|a|b§k
@Pape] =
if k is sufficiently large. If |A| < [ and A # Ao, then by Lemma 8,
ex(2Fa)|

NRTIOrEE
](Q(k)a)%] S|C)\| |a|

for all large k. Therefore
IF(2Wa)/(2Fa)* —cy | -0 (k— ).
This implies (III).
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