
ACTA ARITHMETICA
C.4 (2001)

On the tails of the limiting distribution function of
the error term in the Dirichlet divisor problem
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Yuk-Kam Lau (Hong Kong)

1. Introduction. Let d(n) =
∑

d|n 1 be the divisor function and define

∆(t) =
∑

n≤t
d(n)− t(log t+ 2γ − 1).

We are concerned with the limiting distribution function D(·) of t−1/4∆(t),
more explicitly,

D(u) = lim
T→∞

T−1µ{t ∈ [1, T ] : t−1/4∆(t) ≤ u}(1.1)

where µ{. . .} denotes the Lebesgue measure on R. The existence of D(u)
was first established by Heath-Brown [4]. In that paper, he proved that

D(u) =
u�

−∞
f(α) dα

where the density function f(α) can be extended to an entire function on
the complex plane and satisfies the growth condition

dk

dαk
f(α)�A,k (1 + |α|)−A.

Concerning the properties of f(α), Heath-Brown [5] gave a further dis-
cussion and, in particular, he found that for any ε > 0,

f(α)� exp(−|α|4−ε).(1.2)

Define

tailD(u) =

{
D(u) if u < 0,

1−D(u) if u ≥ 0.

Then (1.2) gives tailD(u)� exp(−|u|4−ε). (1.2) can also be shown by Theo-
rem 4.1 of [2] due to Bleher, Cheng, Dyson and Lebowitz; part of their work
in [2] is a generalization of [5]. The main focus of [2] is the error term Pa(x)
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in the shifted circle problem (centered at a ∈ R2). It is proved in [2] that
the limiting distribution function Da(u) of the normalized Pa(x) satisfies

exp(−|u|4+ε)� tailDa(u)� exp(−|u|4−ε).
Their argument for the lower bound can be applied to the case ∆(t) as well.
So, one can have

exp(−|u|4+ε)� tailD(u)� exp(−|u|4−ε).(1.3)

Our purpose is to refine (1.3). Throughout the paper, c, ci and c′i (i =
1, 2, . . .) denote some unspecified positive constants, and the value of c may
be different at each occurrence.

Theorem 1. Let D(u) be defined as in (1.1). Then for |u| ≥ 2,

exp
(
−c1

|u|4
(log |u|)β

)
� tailD(u)� exp

(
−c2

|u|4
(log |u|)β

)
(1.4)

where β = 3(24/3 − 1) ≈ 4.5595.

This is derived by using the limiting behaviour of the Laplace transform
of D(u) at infinity; see [3] and [7] for further information of this approach.

Acknowledgements. The referee points out that Professor Hugh Mont-
gomery has also considered this problem, and has obtained some results
(which are as strong as, or even stronger than, the results in this paper),
but has not published them. The author wishes to thank the referee for this
notification.

2. Some preparations. We need two lemmas to prove our result. Our
first lemma is related to Balasubramanian and Ramachandra [1].

Consider a positive multiplicative function g(n) satisfying (i) g(p) = 1/γ
for all primes p, where γ is a positive constant and (ii) g(n)� n−1/16. Define
εk(n) = 1 if n is k-free and 0 otherwise. (n is k-free if there is no prime p
such that pk |n.) Then we have

∑

ng(n)≤x
εk(n) = c′kx(log x)γ−1 +O(x(logx)γ−11/10).(2.1)

With εk(n) replaced by the constant function 1, the result (2.1) is proved in
[1] (see [1, Theorems 3 and 4]). But our case can be proved in the same way,
with the function f(s) in [1, p. 314] replaced by f(s)=

∑∞
n=1 εk(n)(ng(n))−s.

The corresponding Φ(s) in our situation is

Φ(s) = f(s)ζ(s)−γ
s

=
∏

p

(
1 +

∞∑

n=2

cn(s)p−ns
)
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where

cn(s) =
∑

r+l=n
0≤r<k

(−1)r

g(pl)s

(
γs

r

)
.

So, |cn(s)| ≤ pnσ/16(1 − 2−σ/16)−γ
σ

(σ = Re s) and the product in Φ(s)
converges absolutely in σ ≥ 3/4.

Lemma 2.1. Let g(n) and εk(n) be defined as above. Then
∑

ng(n)>Y

εk(n)(ng(n))−3/2 � Y −1/2(logY )γ−1

and ∑

ng(n)≤Y
(ng(n))−3/4 � Y 1/4(log Y )γ−1.

Proof. Stieltjes integration with (2.1) gives
∑

ng(n)>Y

εk(n)(ng(n))−3/2 = c′k

∞�

Y

(log t)γ−1

t3/2
dt+O(Y −1/2(log Y )γ−11/10)

and
∑

ng(n)≤Y
(ng(n))−3/4 = c′k

Y�

0

(log t)γ−1

t3/4
dt+O(Y 1/4(log Y )γ−11/10).

Our result follows.

The next lemma is a weak form of the results in [7] but it is sufficient
for our purpose.

Lemma 2.2. Let X be a real random variable with probability distribution
D(x) and let φ(x) be a regularly varying function with index 0 < α < 1, and
ψ(x) an asymptotic inverse of x/φ(x). Suppose that D(x) > 0 for any x > 0.
There are positive constants Li, Ki (i = 1, 2, 3, 4) such that

(a) if lim supλ→∞ ψ(λ)−1 logE(exp(−λX)) ≤ L1, then

lim sup
x→∞

x−1 logD(−φ(x)) ≤ −K1;

furthermore, if also lim infλ→∞ ψ(λ)−1 logE(exp(−λX)) ≥ L2, then

lim inf
x→∞

x−1 logD(−φ(x)) ≥ −K2;

(b) if lim supλ→∞ ψ(λ)−1 logE(exp(λX)) ≤ L3, then

lim sup
x→∞

x−1 log(1−D(φ(x))) ≤ −K3;

furthermore, if also lim infλ→∞ ψ(λ)−1 logE(exp(λX)) ≥ L4, then

lim inf
x→∞

x−1 log(1−D(φ(x))) ≥ −K4.



332 Y. K. Lau

Remarks. (i) A function φ(x) is called a regularly varying function with
index α if it is a positive measurable function defined for all sufficiently large
positive x and limx→∞ φ(λx)/φ(x) = λα for any λ > 1. (Note that this is
equivalent to the condition that the limit exists for any λ > 0.)

(ii) ψ(x) is called an asymptotic inverse of φ(x) if limx→∞ ψ(φ(x))/x = 1.

Proof of Lemma 2.2. We consider the case (a) only. Its first part follows
from [8, Lemma 3.1(b)]. To show the second part, we fix ξ such that 0 <
ξ < (L2/8)1/α. Then

E

(
exp
(
− η

φ(η)
X

))
=
−φ(ξη)�

−∞
exp
(
− η

φ(η)
x

)
dD(x)

+
∞�

−φ(ξη)

exp
(
− η

φ(η)
x

)
dD(x)

≤
−φ(ξη)�

−∞
exp
(
− η

φ(η)
x

)
dD(x) + exp

(
η
φ(ξη)
φ(η)

)
.

(Note that � ∞−∞ dD(x) = 1.) Since lim infλ→∞ ψ(λ)−1 logE(exp(−λX)) ≥
L2 and φ is of index α, for all large η ≥ η0 = η0(ξ) we have

logE
(

exp
(
− η

φ(η)
X

))
≥ L2

2
η ≥ 2ξαη + log 2 ≥ φ(ξη)

φ(η)
η + log 2.

(Here we need the fact that λ = η/φ(η) → ∞ as η → ∞, which is assured
by [9, Section 1.1].) Thus, when η ≥ η0,

1
2
E

(
exp
(
− η

φ(η)
X

))
≤
−φ(ξη)�

−∞
exp
(
− η

φ(η)
x

)
dD(x)

≤ E
(

exp
(
−2

η

φ(η)
X

))1/2

D(−φ(ξη))1/2

by the Cauchy–Schwarz inequality. For any ε > 0, we get

2η−1 logE
(

exp
(
− η

φ(η)
X

))
≤ η−1 logD(−φ(ξη)) + 21/(1−α)L1 + ε,

for all η ≥ η1(ε, ξ) (≥ η0). Here we have used

lim sup
λ→∞

ψ(λ)−1 logE(exp(−2λX)) ≤ 21/(1−α)L1.

Our result then follows after taking lim inf.

Finally, we quote a result [2, Theorem 1.2] about functions satisfying the
following hypothesis.
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Hypothesis (H0). Let a1(t), a2(t), . . . be continuous R-valued periodic
functions of period 1 such that

1�

0

an(t) dt = 0 and
∞∑

n=1

1�

0

an(t)2 dt <∞.

Suppose that there are positive constants γ1, γ2, . . . which are linearly inde-
pendent over Q such that

lim
N→∞

lim sup
T→∞

1
T

T�

1

min
(

1,
∣∣∣F (t)−

∑

n≤N
an(γnt)

∣∣∣
)
dt = 0.

Theorem [BCDL]. Let F (t) satisfy Hypothesis (H0). Then for every
bounded continuous function g(x) on R,

lim
T→∞

1
T

T�

1

g(F (t)) dt =
∞�

−∞
g(x) ν(dx)

where ν(dx) is the distribution of the random series η =
∑∞

n=1 an(tn) and
tn’s are independent random variables uniformly distributed on [0, 1].

Now take F (t) = t−1/2∆(t2) and

an(t) =
1

π
√

2
· µ(n)2

n3/4

∞∑

r=1

d(nr2)
r3/2

cos(2πrt− π/4)

where µ(·) is the Möbius function. Moreover, we choose γn = 2
√
n for square-

free n, and for other n we take any positive numbers such that {γ1, γ2, . . .}
is linearly independent over Q. Then, by Heath-Brown’s result and Theo-
rem [BCDL], we see that D(u) (defined in (1.1)) is the probability distribu-
tion of the random variable X =

∑∞
n=1 an(tn) where tn’s are independent

random variables uniformly distributed on [0, 1]. (Note that the infinite sum
converges almost surely by Kolmogorov’s theorem.)

3. Proof of Theorem 1. Since X =
∑∞

n=1 an(tn) and tn’s are inde-
pendent random variables uniformly distributed on [0,1], we have

E(exp(±λX)) =
∞∏

n=1

E(exp(±λan(t))) =
∞∏

n=1

1�

0

exp(±λan(t)) dt.

Our task is to bound logE(exp(±λX)) from above and below for λ ≥ 1. We
first recall some simple inequalities: ex ≤ 1 +x+x2 if x ≤ 1, ex ≥ 1 +x and
ex ≥ 1 + x+ x2/2 + x3/6 for all x. Also, for squarefree n, we have

|an(t)| ≤ cd(n)n−3/4,
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1�

0

an(t)2 dt =
µ(n)2

4π2n3/2

∞∑

r=1

d(nr2)2

r3 �
(
d(n)
n3/4

)2

,

1�

0

an(t)3 dt =
3µ(n)2

16π3n9/4

∞∑

r,s=1

d(nr2)d(ns2)d(n(r + s)2)
r3/2s3/2(r + s)3/2

�
(
d(n)
n3/4

)3

where all the implied constants are absolute. Let ε0 > 0 be sufficiently small.
When λd(n)/n3/4 < ε0, from � 1

0 an(t) dt = 0 we have

1 +
λ2

4

1�

0

an(t)2 dt ≤ 1± λ
1�

0

an(t) dt+
λ2

2

1�

0

an(t)2 dt± λ3

6

1�

0

an(t)3 dt

≤
1�

0

exp(±λan(t)) dt ≤ 1 + λ2
1�

0

an(t)2 dt.

Thus, as log(1 + y) ≤ y for y ≥ 0 and log(1 + y) ≥ y/2 if 0 ≤ y ≤ 1, we get

λ2

8

1�

0

an(t)2 dt ≤ log
1�

0

exp(±λan(t)) dt ≤ λ2
1�

0

an(t)2 dt.

If λd(n)/n3/4 ≥ ε0, then

1 =
1�

0

(1± λan(t)) dt ≤
1�

0

exp(±λan(t)) dt ≤ exp
(
cλ
d(n)
n3/4

)
.

Hence,

λ2
∑

λd(n)/n3/4<ε0

µ(n)2
(
d(n)
n3/4

)2

� logE(exp(±λX))

and

logE(exp(±λX))� λ2
∑

λd(n)/n3/4<ε0

µ(n)2
(
d(n)
n3/4

)2

+ λ
∑

λd(n)/n3/4≥ε0

d(n)
n3/4

where the implied constants depend on ε0. Now, we take

φ(x) = (x log3(γ−1) x)1/4, ψ(x) = x4/3 logγ−1 x where γ = 24/3.

Applying Lemma 2.1 with g(n) = d(n)−4/3 and Y = (ε−1
0 λ)4/3 (note that

d(n)�nε and so g(n)�n−ε), we see that logE(exp(±λX))�λ4/3(log λ)γ−1

= ψ(λ). Our result follows from Lemma 2.2.

4. Final remark. The above argument can be applied to E(t), ∆3(t)
and P (t) which are the error terms in the mean square formula of the Rie-
mann zeta-function on the critical line, in the Piltz divisor problem and the
circle problem respectively.



Limiting distribution function 335

Theorem 2. Write Dh(u) = limT→∞ T−1µ{t ∈ [1, T ] : h(t) ≤ u} for
the limiting distribution function of a real-valued function h. Then

1. when h(t) = t−1/4E(t), (1.4) holds with D(u) replaced by Dh(u);
2. when h(t) = t−1/3∆3(t), we have, with κ = 2(33/2 − 1),

exp(−c3|u|3/(log |u|)κ)� tailDh(u)� exp(−c4|u|3/(log |u|)κ);

3. when h(t) = t−1/4P (t), we have, with θ = 3(21/3 − 1),

exp(−c5|u|4/(log |u|)θ)� tailDh(u)� exp(−c6|u|4/(log |u|)θ).
Proof. For E(t), we take γn =

√
2n/π when n is squarefree and any

suitable value otherwise; and the function an(t) is given by

an(t) =
(

2
π

)1/4µ(n)2

n3/4

∞∑

r=1

(−1)nr
d(nr2)
r3/2

cos(2πrt− π/4).

(See [4, Section 6].) It is clear from the proof that the factor (−1)nr will not
affect the argument and hence the result.

In the case of ∆3(t), from [4, Section 7], we choose γn = n1/3 when
ε3(n) = 1 and

an(t) =
1

π
√

3
· ε3(n)
n2/3

∞∑

r=1

d3(nr3)
r2 cos(6πrt).

Accordingly, from (2.1) we obtain

λ2
∑

λd3(n)/n2/3<ε0

ε3(n)
(
d3(n)
n2/3

)2

� logE(exp(±λX))

� λ2
∑

λd3(n)/n2/3<ε0

ε3(n)
(
d3(n)
n2/3

)2

+λ
∑

λd3(n)/n2/3≥ε0

ε3(n)
d3(n)
n2/3

.

We see that both sides are � λ3/2(log λ)% where % = 33/2−1. Taking ψ(λ) =
λ3/2(log λ)% and φ(x) = x1/3(logx)2%/3 and applying Lemma 2.2 yields the
result.

Finally, from [4, Section 6] again, the choice of γn for P (t) is
√
n (n

squarefree) and

an(t) = − 1
π
· µ(n)2

n3/4

∞∑

l=1

r(nl2)
l3/2

cos(2πlt+ π/4).
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From [6, Section 6.7], we know that δ(n) = r(n)/4 is multiplicative and

r(pm)
4

=





1 if p = 2,

(1 + (−1)m)/2 if p ≡ 3 (mod 4),

m+ 1 if p ≡ 1 (mod 4).

(4.1)

Hence δ(pm+2k) ≤ δ(pm)δ(p2k). Together with r(n)� nε, we obtain r(n) ≤
r(nl2)� lεr(n), and therefore,

λ2
∑

λr(n)/n3/4<ε0

µ(n)2
(
r(n)
n3/4

)2

� logE(exp(±λX))(4.2)

� λ2
∑

λr(n)/n3/4<ε0

µ(n)2
(
r(n)
n3/4

)2

+λ
∑

λr(n)/n3/4≥ε0

µ(n)2 r(n)
n3/4

.

We now need an asymptotic formula for
∑

n/r(n)4/3≤x µ(n)2 where the
sum is restricted to r(n) > 0. Similarly to the proof of (2.1), we consider
f(s) =

∑∞
n=1 µ(n)2r(n)4s/3n−s; (4.1) yields that

f(s) = 44s/3(1 + 2−s)
∏

p≡1 (4)

(1 + 24s/3p−s).

Define the Dirichlet character χ4(n) = 1 or −1 according as n ≡ 1 or 3 (mod
4), and χ4(n) = 0 otherwise. The associated L-function is

L(s, χ4) =
∏

p≡1 (4)

(1− p−s)−1
∏

p≡3 (4)

(1 + p−s)−1

for Re s > 1. Thus, we have

ζ(s)L(s, χ4) = (1− 2−s)−1
∏

p≡1 (4)

(1− p−s)−2
∏

p≡3 (4)

(1− p−2s)−1.

Define

Φ(s) = f(s)(ζ(s)L(s, χ4))−2(4s−3)/3

= 44s/3(1 + 2−s)(1− 2−s)2(4s−3)/3 ∏

p≡3 (4)

(1− p−2s)2(4s−3)/3

×
∏

p≡1 (4)

(1 + 24s/3p−s)(1− p−s)24s/3
.

Then Φ(s) is holomorphic on the half-plane Re s ≥ 1 − ε0 for some small
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constant ε0 > 0. Repeating the argument of [1], we obtain
∑

n/r(n)4/3≤x
µ(n)2 = cx(logx)α +O(x(logx)α−ε)

with α = 21/3 − 1. By partial summation, (4.2) yields logE(exp(±λX)) �
λ4/3(log λ)α which will be our ψ(λ) (so φ(x) = x1/4(log x)3α/4).
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