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1. Introduction. We say that a field K has the property ci(d) if every
form defined over K of degree d in more than di variables has a nontrivial
zero.

E. Artin [1] has conjectured that p-adic fields have the property c2(d).
However G. Terjanian [5] exhibited an example establishing that Q2 does
not have the property c2(4), thus disproving Artin’s conjecture. J. Ax and
S. Kochen [2] showed the following result: For each integer d ≥ 1, there exists
a number p0(d) such that whenever p > p0(d), every polynomial defined over
Qp of degree d in more than d2 variables and without constant term, has a
nontrivial zero. E. M. Hanine [3] has obtained the analogous result which
states that for each integer d ≥ 1, there exists p(d) such that whenever
p > p(d), the congruence

f(x1, . . . , x2d+1) ≡ 0 (modp2)

has a primitive solution for every polynomial f ∈ Zp[X1, . . . ,X2d+1] of de-
gree d and without constant term.

The object of this paper is to determine explicitly an upper bound for
p(4).

In order to do this Hensel’s Lemma permits us to study only singular
polynomials of degree 4 over finite fields. We obtain the following result:

Let F ∈ Fq[X1, . . . ,Xn] be a singular polynomial of degree 4 without
constant term and in at least 9 variables over Fq with q > 36 odd. Then F
is one of the following :
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(i) F = ε(g2
1 − vg2

2), where ε ∈ {−1, 1}, v is a nonsquare element of Fq
and g1 and g2 are of degrees ≤ 2 defined over Fq and without constant term;

(ii) F = G(L1, . . . , Lk), where G is an anisotropic polynomial of degree
4 defined over Fq and Li, 1 ≤ i ≤ k, is a linear form and k ≤ 4.

This result permits us to show that the congruence

f(x1, . . . , x9) ≡ 0 (mod p2),

where f is a polynomial of degree 4 with coefficients in Zp and without
constant term, has a primitive solution whenever p > 36.

These results were already stated in [4] but the proofs were incorrect.
We say that (x1, . . . , xn) ∈ Znp is primitive if there exists i ∈ {1, . . . , n}

such that p does not divide xi.
A nonzero polynomial F is said to be singular if every nontrivial zero

of F is singular, i.e. all the partial derivatives of F vanish there. A nonzero
polynomial F is said to be nonsingular if it has a nonsingular zero, i.e. a
zero at which not all the partial derivatives of F vanish.

2. Singular polynomials of degree 4 in many variables. In this
section we consider singular polynomials of degree 4. First we need to show
the following lemma for quartic forms.

Lemma 2.1. Let F be a quartic form in at least two variables over a
field K. Assume that F has two singular projective K-rational zeros u and v.
Let 〈u, v〉 denote the projective line in P n(K) through u and v. Then at least
one of the following possibilities occurs:

(i) u and v are the only zeros of F in 〈u, v〉.
(ii) The restriction of F to 〈u, v〉 is the zero polynomial.

Proof. By a k-rational change of variables we may assume u=(1, 0, . . . , 0)
and v = (0, 1, 0, . . . , 0). Then F (x0, x1, 0, . . . , 0) = ax2

0x
2
1.

If a 6= 0, we have case (i). If a = 0, we have case (ii).

Remark 1. The proof of Lemma 3.2 of [4] is completely incorrect by
Lemma 2.1 above since for a quartic form and for any two K-rational pro-
jective zeros the quartic form could vanish identically on the line joining
them. Hence in this way we cannot find a plane section that contains just
two singular points. So the transformation to the K-rational affine zeros
in the proof of Lemma 3.2 of [4] is not justified. In addition the proof of
Theorem 3.1 is wrong mainly due to its use of Lemma 3.2.

Now let F ∈ Fq[X1, . . . ,Xn] be a singular polynomial of degree 4, without
constant term and in at least 9 variables over Fq with q odd.

Lemma 3.2 of [4] should be modified to the following lemma:
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Lemma 2.2. If q > 3, then either (i) or (ii) below can occur :

(i) There exists an invertible homogeneous linear transformation Xi =
Li(Y1, . . . , Yn) such that

F = G(Y1, . . . , Yn)

= Y 2
1 Q(Y2, . . . , Yn) + 2Y1C(Y2, . . . , Yn) + U(Y2, . . . , Yn),

where G, Q, C and U are defined over Fq and have the following properties:
G depends on Y1, Q is a quadratic form, C and U are of degrees respectively
≤ 3 and ≤ 4 and without homogeneous term of degree ≤ 1.

(ii) There exists an anisotropic polynomial G ∈ Fq[X1, . . . ,Xk] of degree
4 such that F = G(L1, . . . , Lk), where Li, 1 ≤ i ≤ k, with k ≤ 4 is a linear
form defined over Fq.

Proof. Since F is singular, F = F4+F3+F2, where Fi is the homogeneous
term of degree i of F . It then follows from the Chevalley–Warning Theorem
that there exists x ∈ Fnq , x 6= 0, such that F4(x) = 0 and (F3 + F2)(x) = 0.
Thus there exists an invertible homogeneous linear transformation Xi =
Li(Y1, . . . , Yn) that transforms x into (1, 0, . . . , 0). We may then write

F = G(Y1, . . . , Yn)

= aY 4
1 + bY 3

1 + cY 2
1 + Y 3

1 (a2Y2 + . . .+ anYn)

+ Y 2
1 (Q(Y2, . . . , Yn) + b2Y2 + . . .+ bnYn)

+ Y1(C∗(Y2, . . . , Yn) + c2Y2 + . . .+ cnYn) + U(Y2, . . . , Yn),

where G, Q, C∗ and U are defined over Fq and have the following properties:
G is singular, Q is a quadratic form, C∗ and U are of degrees respectively
≤ 3 and ≤ 4 and without homogeneous term of degree ≤ 1.

From the above, the homogeneous term of degree 4 of G satisfies
G4(1, 0, . . . , 0) = 0, hence a = 0. Moreover, we have the following relations:

G(1, 0, . . . , 0) = b+ c = 0,(1)
∂G

∂Yi
(1, 0, . . . , 0) = 3b+ 2c = 0.(2)

The relation (2) follows from the fact that G is singular. We then deduce
from (1) and (2) that b = c = 0.

Hence, G(x, 0, . . . , 0) = 0 for all x ∈ Fq; and since G is singular, we have

∂G

∂Yi
(x, 0, . . . , 0) = aix

3 + bix
2 + cix = 0 for all i ∈ {2, . . . , n}.

We then conclude that ai = bi = ci = 0 for all i ∈ {2, . . . , n} since q > 3.
If G depends on Y1, we have case (i) by putting C∗(Y2, . . . , Yn) =

2C(Y2, . . . , Yn).
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If G does not depend on Y1, we repeat the same process whenever the
polynomial obtained by a linear change of variables has a nontrivial zero in
Fmq , where m is the number of variables occurring in this polynomial.

This implies that after a finite number of changes of variables we have
either case (i) or F = G(L1, . . . , Lk), where G is an anisotropic polynomial
of degree 4 and Li, 1 ≤ i ≤ k, with k ≤ 4 is a linear form defined over Fq.
This completes the proof of the lemma.

By this lemma, Theorem 3.1 of [4] should be modified as follows:

Theorem 2.1. Let F ∈ Fq[X1, . . . ,Xn] be a singular polynomial of de-
gree 4, without constant term and in at least 9 variables over Fq with q > 36
odd. Then F is one of the following :

(i) F = ε(g2
1 − vg2

2), with ε ∈ {−1,+1}, v is a nonsquare element in Fq
and g1 and g2 are of degrees ≤ 2 defined over Fq and without constant term.

(ii) F = G(L1, . . . , Lk), where G is an anisotropic polynomial of degree
4 and Li, 1 ≤ i ≤ k, with k ≤ 4 is a linear form defined over Fq.

Proof. It follows from Lemma 2.2 that either we have case (ii) of the
theorem or there exists an invertible homogeneous linear transformation
Xi = Li(Y1, . . . , Yn) such that F = G(Y1, . . . , Yn) = Y 2

1 Q(Y2, . . . , Yn) +
2Y1C(Y2, . . . , Yn) +U(Y2, . . . , Yn), where G, Q, C and U are defined over Fq
and have the following properties: G depends on Y1, Q is a quadratic form,
C and U are of degrees respectively ≤ 3 and ≤ 4 and without homogeneous
term of degree ≤ 1. In this case by making use of the same argument of
case 1 and case 2 of the proof of Theorem 3.1 of [4], we have case (i) of the
theorem. This completes the proof.

3. Diophantine equations of degree 4 modulo p2. In this section
we make use of the main result from Section 2.

Theorem 3.1. Let p be a prime number > 36. Then for every polyno-
mial f ∈ Zp[X1, . . . ,X9] of degree 4 and without constant term, the congru-
ence

f(x1, . . . , x9) ≡ 0 (modp2)

has a primitive solution.

Proof. Consider F = f ∈ Fp[X1, . . . ,X9], where f denotes the reduction
of f modulo p.

First case. If F is the zero polynomial, then there exists h ∈ Zp[X1, . . .
. . . ,X9] such that f = ph. Thus it follows from the Chevalley–Warning The-
orem that the congruence h ≡ 0 (modp) has a primitive solution (x1, . . . , x9)
which satisfies

f(x1, . . . , x9) ≡ 0 (mod p2).
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Second case. If F is nonsingular, then there exist (x1, . . . , x9) ∈ F9
p and

1 ≤ i0 ≤ 9 such that

F (x1, . . . , x9) = 0 and
∂F

∂Xi0

(x1, . . . , x9) 6= 0.

Thus it follows from Hensel’s Lemma that there exists (y1, . . . , y9) ∈ Z9
p such

that (y1, . . . , y9) is primitive and

f(y1, . . . , y9) = 0,

which implies that
f(y1, . . . , y9) ≡ 0 (mod p2).

Third case. If F is singular of degree 4, then there are two subcases to
consider.

Assume that F = ε(G2
1−vG2

2), where G1, G2 ∈ Fq[X1, . . . ,X9] are of de-
grees ≤ 2 and without constant term. In this case let g1, g2 ∈ Zp[X1, . . . ,X9]
be of degrees ≤ 2 and without constant term such that g1 = G1 and g2 = G2.
Consider h ∈ Zp[X1, . . . ,X9] such that f = ε(g2

1 − vg2
2) + ph.

The system of congruences


g1(x1, . . . , x9) ≡ 0 (mod p),
g2(x1, . . . , x9) ≡ 0 (mod p),
h(x1, . . . , x9) ≡ 0 (modp)

satisfies the hypotheses of the Chevalley–Warning Theorem. So it has a
primitive solution (x1, . . . , x9) ∈ Z9

p that satisfies

f(x1, . . . , x9) ≡ 0 (mod p2).

Assume now that F = G(L1, . . . , Lk), where G is anisotropic, Li is a
linear form and k ≤ 4. Let g ∈ Zp[X1, . . . ,Xk] be a polynomial such that
g = G and let li ∈ Zp[X1, . . . ,X9] with 1 ≤ i ≤ k be a linear form such
that li = Li. Consider now the polynomial h ∈ Zp[X1, . . . ,X9] such that
f = g(l1, . . . , lk) + ph.

The system of congruences




l1(x1, . . . , x9) ≡ 0 (modp),
. . .
lk(x1, . . . , x9) ≡ 0 (mod p),
h(x1, . . . , x9) ≡ 0 (modp)

satisfies the hypotheses of the Chevalley–Warning Theorem. So it has a
primitive solution (x1, . . . , x9) ∈ Z9

p that satisfies

f(x1, . . . , x9) ≡ 0 (mod p2).

Fourth case. If F is singular of degree ≤ 3, then Lemmas 3.2 and 4.1 of
[3] permit us to show the theorem. This completes the proof.
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