Correction of
 "Polynômes singuliers à plusieurs variables sur un corps fini et congruences modulo p^{2} "
 (Acta Arith. 68 (1994), 1-10)

by
Lekbir Chakri (Rabat and Mahammadia) and
El Mostafa Hanine (Mahammadia)

1. Introduction. We say that a field K has the property $c_{i}(d)$ if every form defined over K of degree d in more than d^{i} variables has a nontrivial zero.
E. Artin [1] has conjectured that p-adic fields have the property $c_{2}(d)$. However G. Terjanian [5] exhibited an example establishing that \mathbb{Q}_{2} does not have the property $c_{2}(4)$, thus disproving Artin's conjecture. J. Ax and S. Kochen [2] showed the following result: For each integer $d \geq 1$, there exists a number $p_{0}(d)$ such that whenever $p>p_{0}(d)$, every polynomial defined over \mathbb{Q}_{p} of degree d in more than d^{2} variables and without constant term, has a nontrivial zero. E. M. Hanine [3] has obtained the analogous result which states that for each integer $d \geq 1$, there exists $p(d)$ such that whenever $p>p(d)$, the congruence

$$
f\left(x_{1}, \ldots, x_{2 d+1}\right) \equiv 0\left(\bmod p^{2}\right)
$$

has a primitive solution for every polynomial $f \in \mathbb{Z}_{p}\left[X_{1}, \ldots, X_{2 d+1}\right]$ of degree d and without constant term.

The object of this paper is to determine explicitly an upper bound for $p(4)$.

In order to do this Hensel's Lemma permits us to study only singular polynomials of degree 4 over finite fields. We obtain the following result:

Let $F \in \mathbb{F}_{q}\left[X_{1}, \ldots, X_{n}\right]$ be a singular polynomial of degree 4 without constant term and in at least 9 variables over \mathbb{F}_{q} with $q>36$ odd. Then F is one of the following:
(i) $F=\varepsilon\left(g_{1}^{2}-v g_{2}^{2}\right)$, where $\varepsilon \in\{-1,1\}$, v is a nonsquare element of \mathbb{F}_{q} and g_{1} and g_{2} are of degrees ≤ 2 defined over \mathbb{F}_{q} and without constant term;
(ii) $F=G\left(L_{1}, \ldots, L_{k}\right)$, where G is an anisotropic polynomial of degree 4 defined over \mathbb{F}_{q} and $L_{i}, 1 \leq i \leq k$, is a linear form and $k \leq 4$.

This result permits us to show that the congruence

$$
f\left(x_{1}, \ldots, x_{9}\right) \equiv 0\left(\bmod p^{2}\right)
$$

where f is a polynomial of degree 4 with coefficients in \mathbb{Z}_{p} and without constant term, has a primitive solution whenever $p>36$.

These results were already stated in [4] but the proofs were incorrect.
We say that $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}_{p}^{n}$ is primitive if there exists $i \in\{1, \ldots, n\}$ such that p does not divide x_{i}.

A nonzero polynomial F is said to be singular if every nontrivial zero of F is singular, i.e. all the partial derivatives of F vanish there. A nonzero polynomial F is said to be nonsingular if it has a nonsingular zero, i.e. a zero at which not all the partial derivatives of F vanish.
2. Singular polynomials of degree 4 in many variables. In this section we consider singular polynomials of degree 4 . First we need to show the following lemma for quartic forms.

Lemma 2.1. Let F be a quartic form in at least two variables over a field K. Assume that F has two singular projective K-rational zeros u and v. Let $\langle u, v\rangle$ denote the projective line in $P^{n}(K)$ through u and v. Then at least one of the following possibilities occurs:
(i) u and v are the only zeros of F in $\langle u, v\rangle$.
(ii) The restriction of F to $\langle u, v\rangle$ is the zero polynomial.

Proof. By a k-rational change of variables we may assume $u=(1,0, \ldots, 0)$ and $v=(0,1,0, \ldots, 0)$. Then $F\left(x_{0}, x_{1}, 0, \ldots, 0\right)=a x_{0}^{2} x_{1}^{2}$.

If $a \neq 0$, we have case (i). If $a=0$, we have case (ii).
REMARK 1. The proof of Lemma 3.2 of [4] is completely incorrect by Lemma 2.1 above since for a quartic form and for any two K-rational projective zeros the quartic form could vanish identically on the line joining them. Hence in this way we cannot find a plane section that contains just two singular points. So the transformation to the K-rational affine zeros in the proof of Lemma 3.2 of [4] is not justified. In addition the proof of Theorem 3.1 is wrong mainly due to its use of Lemma 3.2.

Now let $F \in \mathbb{F}_{q}\left[X_{1}, \ldots, X_{n}\right]$ be a singular polynomial of degree 4 , without constant term and in at least 9 variables over \mathbb{F}_{q} with q odd.

Lemma 3.2 of [4] should be modified to the following lemma:

Lemma 2.2. If $q>3$, then either (i) or (ii) below can occur:
(i) There exists an invertible homogeneous linear transformation $X_{i}=$ $L_{i}\left(Y_{1}, \ldots, Y_{n}\right)$ such that

$$
\begin{aligned}
F & =G\left(Y_{1}, \ldots, Y_{n}\right) \\
& =Y_{1}^{2} Q\left(Y_{2}, \ldots, Y_{n}\right)+2 Y_{1} C\left(Y_{2}, \ldots, Y_{n}\right)+U\left(Y_{2}, \ldots, Y_{n}\right)
\end{aligned}
$$

where G, Q, C and U are defined over \mathbb{F}_{q} and have the following properties: G depends on Y_{1}, Q is a quadratic form, C and U are of degrees respectively ≤ 3 and ≤ 4 and without homogeneous term of degree ≤ 1.
(ii) There exists an anisotropic polynomial $G \in \mathbb{F}_{q}\left[X_{1}, \ldots, X_{k}\right]$ of degree 4 such that $F=G\left(L_{1}, \ldots, L_{k}\right)$, where $L_{i}, 1 \leq i \leq k$, with $k \leq 4$ is a linear form defined over \mathbb{F}_{q}.

Proof. Since F is singular, $F=F_{4}+F_{3}+F_{2}$, where F_{i} is the homogeneous term of degree i of F. It then follows from the Chevalley-Warning Theorem that there exists $x \in \mathbb{F}_{q}^{n}, x \neq 0$, such that $F_{4}(x)=0$ and $\left(F_{3}+F_{2}\right)(x)=0$. Thus there exists an invertible homogeneous linear transformation $X_{i}=$ $L_{i}\left(Y_{1}, \ldots, Y_{n}\right)$ that transforms x into $(1,0, \ldots, 0)$. We may then write

$$
\begin{aligned}
F= & G\left(Y_{1}, \ldots, Y_{n}\right) \\
= & a Y_{1}^{4}+b Y_{1}^{3}+c Y_{1}^{2}+Y_{1}^{3}\left(a_{2} Y_{2}+\ldots+a_{n} Y_{n}\right) \\
& +Y_{1}^{2}\left(Q\left(Y_{2}, \ldots, Y_{n}\right)+b_{2} Y_{2}+\ldots+b_{n} Y_{n}\right) \\
& +Y_{1}\left(C^{*}\left(Y_{2}, \ldots, Y_{n}\right)+c_{2} Y_{2}+\ldots+c_{n} Y_{n}\right)+U\left(Y_{2}, \ldots, Y_{n}\right),
\end{aligned}
$$

where G, Q, C^{*} and U are defined over \mathbb{F}_{q} and have the following properties: G is singular, Q is a quadratic form, C^{*} and U are of degrees respectively ≤ 3 and ≤ 4 and without homogeneous term of degree ≤ 1.

From the above, the homogeneous term of degree 4 of G satisfies $G_{4}(1,0, \ldots, 0)=0$, hence $a=0$. Moreover, we have the following relations:

$$
\begin{align*}
G(1,0, \ldots, 0) & =b+c=0 \tag{1}\\
\frac{\partial G}{\partial Y_{i}}(1,0, \ldots, 0) & =3 b+2 c=0 \tag{2}
\end{align*}
$$

The relation (2) follows from the fact that G is singular. We then deduce from (1) and (2) that $b=c=0$.

Hence, $G(x, 0, \ldots, 0)=0$ for all $x \in \mathbb{F}_{q}$; and since G is singular, we have

$$
\frac{\partial G}{\partial Y_{i}}(x, 0, \ldots, 0)=a_{i} x^{3}+b_{i} x^{2}+c_{i} x=0 \quad \text { for all } i \in\{2, \ldots, n\}
$$

We then conclude that $a_{i}=b_{i}=c_{i}=0$ for all $i \in\{2, \ldots, n\}$ since $q>3$.
If G depends on Y_{1}, we have case (i) by putting $C^{*}\left(Y_{2}, \ldots, Y_{n}\right)=$ $2 C\left(Y_{2}, \ldots, Y_{n}\right)$.

If G does not depend on Y_{1}, we repeat the same process whenever the polynomial obtained by a linear change of variables has a nontrivial zero in \mathbb{F}_{q}^{m}, where m is the number of variables occurring in this polynomial.

This implies that after a finite number of changes of variables we have either case (i) or $F=G\left(L_{1}, \ldots, L_{k}\right)$, where G is an anisotropic polynomial of degree 4 and $L_{i}, 1 \leq i \leq k$, with $k \leq 4$ is a linear form defined over \mathbb{F}_{q}. This completes the proof of the lemma.

By this lemma, Theorem 3.1 of [4] should be modified as follows:
Theorem 2.1. Let $F \in \mathbb{F}_{q}\left[X_{1}, \ldots, X_{n}\right]$ be a singular polynomial of degree 4 , without constant term and in at least 9 variables over \mathbb{F}_{q} with $q>36$ odd. Then F is one of the following:
(i) $F=\varepsilon\left(g_{1}^{2}-v g_{2}^{2}\right)$, with $\varepsilon \in\{-1,+1\}$, v is a nonsquare element in \mathbb{F}_{q} and g_{1} and g_{2} are of degrees ≤ 2 defined over \mathbb{F}_{q} and without constant term.
(ii) $F=G\left(L_{1}, \ldots, L_{k}\right)$, where G is an anisotropic polynomial of degree 4 and $L_{i}, 1 \leq i \leq k$, with $k \leq 4$ is a linear form defined over \mathbb{F}_{q}.

Proof. It follows from Lemma 2.2 that either we have case (ii) of the theorem or there exists an invertible homogeneous linear transformation $X_{i}=L_{i}\left(Y_{1}, \ldots, Y_{n}\right)$ such that $F=G\left(Y_{1}, \ldots, Y_{n}\right)=Y_{1}^{2} Q\left(Y_{2}, \ldots, Y_{n}\right)+$ $2 Y_{1} C\left(Y_{2}, \ldots, Y_{n}\right)+U\left(Y_{2}, \ldots, Y_{n}\right)$, where G, Q, C and U are defined over \mathbb{F}_{q} and have the following properties: G depends on Y_{1}, Q is a quadratic form, C and U are of degrees respectively ≤ 3 and ≤ 4 and without homogeneous term of degree ≤ 1. In this case by making use of the same argument of case 1 and case 2 of the proof of Theorem 3.1 of [4], we have case (i) of the theorem. This completes the proof.
3. Diophantine equations of degree 4 modulo p^{2}. In this section we make use of the main result from Section 2.

Theorem 3.1. Let p be a prime number >36. Then for every polynomial $f \in \mathbb{Z}_{p}\left[X_{1}, \ldots, X_{9}\right]$ of degree 4 and without constant term, the congruence

$$
f\left(x_{1}, \ldots, x_{9}\right) \equiv 0\left(\bmod p^{2}\right)
$$

has a primitive solution.
Proof. Consider $F=\bar{f} \in \mathbb{F}_{p}\left[X_{1}, \ldots, X_{9}\right]$, where \bar{f} denotes the reduction of f modulo p.

First case. If F is the zero polynomial, then there exists $h \in \mathbb{Z}_{p}\left[X_{1}, \ldots\right.$ $\left.\ldots, X_{9}\right]$ such that $f=p h$. Thus it follows from the Chevalley-Warning Theorem that the congruence $h \equiv 0(\bmod p)$ has a primitive solution $\left(x_{1}, \ldots, x_{9}\right)$ which satisfies

$$
f\left(x_{1}, \ldots, x_{9}\right) \equiv 0\left(\bmod p^{2}\right)
$$

Second case. If F is nonsingular, then there exist $\left(x_{1}, \ldots, x_{9}\right) \in \mathbb{F}_{p}^{9}$ and $1 \leq i_{0} \leq 9$ such that

$$
F\left(x_{1}, \ldots, x_{9}\right)=0 \quad \text { and } \quad \frac{\partial F}{\partial X_{i_{0}}}\left(x_{1}, \ldots, x_{9}\right) \neq 0
$$

Thus it follows from Hensel's Lemma that there exists $\left(y_{1}, \ldots, y_{9}\right) \in \mathbb{Z}_{p}^{9}$ such that $\left(y_{1}, \ldots, y_{9}\right)$ is primitive and

$$
f\left(y_{1}, \ldots, y_{9}\right)=0
$$

which implies that

$$
f\left(y_{1}, \ldots, y_{9}\right) \equiv 0\left(\bmod p^{2}\right)
$$

Third case. If F is singular of degree 4 , then there are two subcases to consider.

Assume that $F=\varepsilon\left(G_{1}^{2}-v G_{2}^{2}\right)$, where $G_{1}, G_{2} \in \mathbb{F}_{q}\left[X_{1}, \ldots, X_{9}\right]$ are of degrees ≤ 2 and without constant term. In this case let $g_{1}, g_{2} \in \mathbb{Z}_{p}\left[X_{1}, \ldots, X_{9}\right]$ be of degrees ≤ 2 and without constant term such that $\bar{g}_{1}=G_{1}$ and $\bar{g}_{2}=G_{2}$. Consider $h \in \mathbb{Z}_{p}\left[X_{1}, \ldots, X_{9}\right]$ such that $f=\varepsilon\left(g_{1}^{2}-v g_{2}^{2}\right)+p h$.

The system of congruences

$$
\left\{\begin{array}{l}
g_{1}\left(x_{1}, \ldots, x_{9}\right) \equiv 0(\bmod p) \\
g_{2}\left(x_{1}, \ldots, x_{9}\right) \equiv 0(\bmod p) \\
h\left(x_{1}, \ldots, x_{9}\right) \equiv 0(\bmod p)
\end{array}\right.
$$

satisfies the hypotheses of the Chevalley-Warning Theorem. So it has a primitive solution $\left(x_{1}, \ldots, x_{9}\right) \in \mathbb{Z}_{p}^{9}$ that satisfies

$$
f\left(x_{1}, \ldots, x_{9}\right) \equiv 0\left(\bmod p^{2}\right)
$$

Assume now that $F=G\left(L_{1}, \ldots, L_{k}\right)$, where G is anisotropic, L_{i} is a linear form and $k \leq 4$. Let $g \in \mathbb{Z}_{p}\left[X_{1}, \ldots, X_{k}\right]$ be a polynomial such that $\bar{g}=G$ and let $l_{i} \in \mathbb{Z}_{p}\left[X_{1}, \ldots, X_{9}\right]$ with $1 \leq i \leq k$ be a linear form such that $\bar{l}_{i}=L_{i}$. Consider now the polynomial $h \in \mathbb{Z}_{p}\left[X_{1}, \ldots, X_{9}\right]$ such that $f=g\left(l_{1}, \ldots, l_{k}\right)+p h$.

The system of congruences

$$
\left\{\begin{array}{l}
l_{1}\left(x_{1}, \ldots, x_{9}\right) \equiv 0(\bmod p) \\
\ldots \\
l_{k}\left(x_{1}, \ldots, x_{9}\right) \equiv 0(\bmod p) \\
h\left(x_{1}, \ldots, x_{9}\right) \equiv 0(\bmod p)
\end{array}\right.
$$

satisfies the hypotheses of the Chevalley-Warning Theorem. So it has a primitive solution $\left(x_{1}, \ldots, x_{9}\right) \in \mathbb{Z}_{p}^{9}$ that satisfies

$$
f\left(x_{1}, \ldots, x_{9}\right) \equiv 0\left(\bmod p^{2}\right)
$$

Fourth case. If F is singular of degree ≤ 3, then Lemmas 3.2 and 4.1 of [3] permit us to show the theorem. This completes the proof.

References

[1] E. Artin, The Collected Papers, Addison-Wesley, Reading, MA, 1965.
[2] J. Ax and S. Kochen, Diophantine problems over local fields: III. Decidable fields, Ann. of Math. 83 (1966), 437-456.
[3] E. M. Hanine, Équations diophantiennes modulo p ${ }^{2}$, Colloq. Math. 64 (1993), 275286.
[4] -, Polynômes singuliers à plusieurs variables sur un corps fini et congruences modulo p^{2}, Acta Arith. 68 (1994), 1-10.
[5] G. Terjanian, Un contre exemple à une conjecture d'Artin, C. R. Acad. Sci. Paris 262 (1966), 612.

Department of Mathematics
Faculty of Sciences
P.O. Box 1014

Rabat, Morocco
E-mail: lchakri@hotmail.com

Department of Mathematics Faculty of Sciences and Technics P.O. Box 146

Mahammadia, Morocco
E-mail: hanine@uh2.ac.ma

Received on 17.03.2000
and in revised form on 2.02.2001

