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1. Introduction. In [FJ1], G. Frey and M. Jarden proved that every
elliptic curve E/Q has infinite rank over Qab and asked whether the same is
true for all abelian varieties. For a general number field K (not necessarily
contained in Qab), the question would be whether every abelian variety A
over K is of infinite rank over KQab. An affirmative answer to this question
would follow from an affirmative answer to the original question, since every
Qab-point of the Weil restriction of scalars ResK/QA gives a KQab-point
of A. We specialize the question to dimension 1.

Question 1.1. If E is an elliptic curve over a number field K, must E
have infinite rank over KQab?

Specializing further to the case that K is abelian over Q, the question
can be reformulated as:

Question 1.2. Does every elliptic curve over Qab have infinite rank
over Qab?

In a recent paper [K], E. Kobayashi considered Question 1.2 when [K : Q]
is odd. In this setting, she gave an affirmative answer, conditional on the
Birch–Swinnerton-Dyer conjecture.

We give an affirmative answer to Question 1.1 when E is defined over a
field K of degree ≤ 4 over Q and satisfies some auxiliary condition. In all
of our results, we can replace Qab by Q(2), the compositum of all quadratic
extensions of Q. Our strategy for finding points over Q(2) entails looking
for Q-points on the Kummer variety ResK/QE/(±1) by looking for curves
of genus ≤ 1 on that variety. When K is a quadratic field, ResK/QE is an
abelian surface isomorphic, over C, to a product of two elliptic curves. Our
construction of a curve on the Kummer surface ResK/QE/(±1) is mod-
eled on the construction of a rational curve on (E1 × E2)/(±1) due to
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J.-F. Mestre [M] and to M. Kuwata and L. Wang [KW]. For [K : Q] = 3,
our proof depends on an analogous construction of a rational curve on
(E1 × E2 × E3)/(±1) which is presented in [I2]. We do not know of any
rational curve on (E1 × E2 × E3 × E4)/(±1) for general choices of the Ei,
but [I2, Lemma 1] constructs a curve of genus 1 in this variety.

2. A geometric construction. We now recall a geometric construction
of a curve in

(2.1) (E1 × · · · × En)/(±1),

where (±1) acts diagonally on the product [I2, Lemma 1].

Lemma 2.1 ([I2, Lemma 1]). Let K̄ be a separably closed field with
char(K̄) 6= 2, and for an integer n ≥ 2, let E1, . . . , En be pairwise non-
isomorphic elliptic curves over K̄. Then (E1 × · · · × En)/(±1) contains a
curve Cn with genus

gn := 2n−3(n− 4) + 1.

In particular, g2 = g3 = 0 and g4 = 1.

Proof. Let Ei be written in Legendre form ([S2, p. 54, Proposition 1.7]):
for i = 1, . . . , n,

Ei : y
2
i = xi(xi − 1)(xi − λi), λi ∈ K̄.

Since the Ei are non-isomorphic over K̄, the λi are distinct.
We consider E1 × · · · × En as a (Z/2Z)n-cover of

E1/(±1)× · · · × En/(±1) ∼= (P1)n,

via (P1, . . . , Pn) 7→ (x(P1), . . . , x(Pn)) where x(Pi) is the x-coordinate of a
point Pi of Ei if Pi 6= O and x(Pi) = ∞ if Pi = O. We denote by Xn the
inverse image in (E1×· · ·×En)/(±1) of the diagonal curve P1 ⊂ (P1)n, i.e.,
the set of n-tuples where all coordinates are equal.

There exists an affine open subset of Xn with the following defining
equations: 

z212 = x2(x− 1)2(x− λ1)(x− λ2),
...

z21n = x2(x− 1)2(x− λ1)(x− λn),

with z12 = y1y2, z13 = y1y3, . . . , z1n = y1yn fixed under the action of (±1).
We can identify a point on this curve with an orbit of E1 × · · · × En under
the diagonal action of ±1 as follows:

(x, z12, . . . , z1n) 7→ ((x, y1), (x, z12/y1), (x, z13/y1), . . . , (x, z1n/y1)),

where y1 = ±
√
x(x− 1)(x− λ1).
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The function field of Xn is

K̄
(
x,
√

(x− λ1)(x− λ2),
√

(x− λ1)(x− λ3), . . . ,
√

(x− λ1)(x− λn)
)
,

which is a finite extension of K̄(x) of degree 2n−1. If we let L1 = K̄(x)

and Li = Li−1
(√

(x− λ1)(x− λi)
)
for i = 2, . . . , n, then Li is a quadratic

extension of Li−1 for each i = 2, . . . , n.
Therefore, there exists a non-singular projective curve Cn such that

K̄(Cn) = Ln and there exists a non-constant morphism of degree 2n−1,
φ : Cn → P1, induced from the inclusion of K̄(x) into Ln. (See [H, Ch. I, §6]
for details.)

Then φ is ramified at P = [λi; 1]∈ P1 for each i= 1, . . . , n with the ramifi-
cation degree 2 by investigating the local behavior of

√
(x− λ1)(x− λi) at

each extension Li over Li−1. So by the Riemann–Hurwitz formula, the genus
gn of Cn is given by

2gn − 2 = 2n−1(2 · 0− 2) + n2n−2(2− 1).

If n = 2 or n = 3, then gn = 0, and if n = 4, then gn = 1.

It is difficult to tell when this construction produces a curve with infinitely
many rational points over Q since a curve so obtained may not be defined
over Q. We do not use Lemma 2.1 directly in what follows, but it motivates
the apparently ad hoc, explicit constructions of the remainder of the paper.
Each of the following sections deals with one such construction.

3. The quadratic case. We begin with a lemma.

Lemma 3.1. Let k be a non-negative integer and Q(u, v) ∈ Q[u, v] a
homogeneous polynomial of degree 2(2k+1) satisfying the functional equation

Q(mu, v) = m2k+1Q(v, u)

for a fixed square-free integer m 6= 1. Then Q(u, v) cannot be a perfect square
in C[u, v].

Proof. Let i be the largest integer such that vi divides Q(u, v). If i is
odd, Q(u, v) cannot be a perfect square in C[u, v]. We therefore assume that
i = 2j. Without loss of generality, we may assume that the u4k+2−2jv2j-
coefficient is 1. If q(u, v) is a square root ofQ(u, v) overC, then the u2k+1−jvj-
coefficient of q(u, v) is ±1. Every automorphism σ of the complex numbers
sends q(u, v) to ±q(u, v). However, σ fixes the u2k+1−jvj coefficient of q(u, v),
so σ fixes q(u, v), which means q(u, v) ∈ Q[u, v]. From the given functional
relation, q(u, v) satisfies

q(mu, v) = ±
√
m (mkq(v, u)),

which gives a contradiction since
√
m 6∈ Q.
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Theorem 3.2. Let E : y2 = P (x) := x3 + αx + β be an elliptic curve
defined over a quadratic extension K of Q. If the j-invariant of E is not 0
or 1728, then E(Qab) has infinite rank.

Proof. Let K = Q(
√
m ), where m ∈ Z is a square-free integer and

m 6= 1. By the hypothesis on the j-invariant, α 6= 0 and β 6= 0. Replacing α
and β by λ4α and λ6β for suitable λ ∈ K, we may assume without loss of
generality that α, β /∈ Q.

Let α = a+ c
√
m and β = b+ d

√
m for a, b, c, d ∈ Q, c, d 6= 0. Then for

x1 := −d/c ∈ Q, we have P (x1) ∈ Q, so(
x1,
√
P (x1)

)
∈ E

(
K
(√

P (x1)
)
⊆ E(Qab).

Now replacing α by γ4α and β by γ6β for γ ∈ K such that γ4α, γ6β /∈ Q,
we get an isomorphism φγ over K from E to the elliptic curve

Eγ : y2 = Pγ(x) := x3 + γ4αx+ γ6β,

mapping (x, y) onto (γ2x, γ3y).
Applying the above argument for Eγ rather than E, we find a point(

xγ,1,
√
Pγ(xγ,1)

)
∈ Eγ

(
K
(√

Pγ(xγ,1)
))

with xγ,1 ∈ Q and Pγ(xγ,1) ∈ Q.
Applying φ−1γ to the latter point, we get a point

(3.1)
(
γ−2xγ,1, γ

−3
√
Pγ(xγ,1)

)
∈ E

(
K
(√

Pγ(xγ,1)
))
⊆ E(Qab),

where xγ,1 ∈ Q and Pγ(xγ,1) ∈ Q.
Now we show that there are infinitely many quadratic fields L such that

Q
(√

Pγ(xγ)
)

= L for some γ ∈ K.
For γ = u+ v

√
m with variables u and v which will be specialized later,

we write

x3 + (u+ v
√
m )4αx+ (u+ v

√
m )6β = Pγ(x) = R+ I

√
m,

where

I = xT1(u, v) + S1(u, v) and R = x3 + xT2(u, v) + S2(u, v)

and Ti and Si are homogeneous polynomials in u and v over Q of degree 4
and 6 respectively. In fact, by using Maple 16 (refer to the quadratic case
of the Appendix for the computation), we get

I = x(u4c+ 4u3va+ 6u2v2mc+ 4uv3ma+ v4m2c)

+ u6d+ 6u5vb+ 15u4v2md+ 20u3v3mb

+ 15u2v4m2d+ 6uv5m2b+ v6m3d,

R = x3 + x(u4a+ 4u3vmc+ 6u2v2ma+ 4uv3m2c+ v4m2a)

+ u6b+ 6u5vmd+ 15u4v2mb+ 20u3v3m2d

+ 15u2v4m2b+ 6uv5m3d+ v6m3b.
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So we have
T1(u, v) = u4c+ 4u3va+ 6u2v2mc+ 4uv3ma+ v4m2c,

S1(u, v) = u6d+ 6u5vb+ 15u4v2md+ 20u3v3mb

+ 15u2v4m2d+ 6uv5m2b+ v6m3d,

T2(u, v) = u4a+ 4u3vmc+ 6u2v2ma+ 4uv3m2c+ v4m2a,

S2(u, v) = u6b+ 6u5vmd+ 15u4v2mb+ 20u3v3m2d

+ 15u2v4m2b+ 6uv5m3d+ v6m3b.

(3.2)

Since (mu + v
√
m )4 = m2(v + u

√
m )4 and (mu + v

√
m )6 =

m3(v + u
√
m )6, the Ti’s and the Si’s satisfy the following relations:

(3.3) Ti(mu, v) = m2Ti(v, u), Si(mu, v) = m3Si(v, u).

We solve the equation I = xT1(u, v) + S1(u, v) = 0 for x and get

xγ := −S1(u, v)

T1(u, v)
.

We then substitute this value of x into the rational part R of Pγ(x), and
after clearing the denominator by multiplying by (T1(u, v))4, we obtain the
polynomial

−T1(u, v)(S1(u, v)3 + S1(u, v) T1(u, v)2 T2(u, v)− S2(u, v) T1(u, v)3),

which we denote by Q. Thus, Q is homogeneous of degree 22 over Q and
from the relation (3.3), it satisfies

(3.4) Q(mu, v) = m11Q(v, u).

Note that by direct computation referring to (3.2) or by using Maple 16
(refer to the quadratic case of the Appendix for the computation), the coef-
ficients of the u22-term and u21v-term in Q(u, v) are, respectively,

A0 = c(−d3−adc2 + bc3), A1 = 2(−6a2dc2−2ad3 +5abc3 +mc4d−9cd2b).

If Q(u, v) is identically 0, then A0 = A1 = 0. Since c 6= 0 and d 6= 0, we solve
A0 = 0 for a and substitute

a =
bc3 − d3

c2d
into A1 = 0. Then we get

−b2c6 − 4c3d3b− 4d6 +mc6d2 = 0,

whose discriminant in b is 4mc12d2 (refer to the Appendix for the compu-
tation), which is not a square in Q. Hence A1 6= 0. This shows that Q(u, v)
cannot be identically zero. By Lemma 3.1, Q(u, v) cannot be a perfect square
in C[u, v].

Hence y2 −Q(u, v) is irreducible over C.
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Let f(t) ∈ Q[t] be the polynomial of degree 22 in the variable t = u/v
obtained by replacing Q(u, v) by Q(u, v)v−22. For a finite extension L of K,
we let

H(f, L) := {t′ ∈ Q : f(t′)− y2 is irreducible over L},
the intersection of Q with the Hilbert set of f over L. By the Hilbert ir-
reducibility theorem ([FJ2, Corollary 12.2.3]), such an intersection is non-
empty.

Hence there exists γ0 = u0 + v0
√
m ∈ K such that

L0 := Q
(√

Pγ0(xγ0)
)

= Q
(√

Q(uγ0 , vγ0)
)

is a quadratic field not contained in L. Inductively, we get an infinite sequence
of γk = uk + vk

√
m such that the fields

Lk = Q
(√

Pγk(xγk)
)

= Q
(√

Q(uγk , vγk)
)

are not Q-rational and are linearly disjoint over Q.
Let V be the set

V :=
{(
γ−2k xγk , γ

−3
k

√
Pγk(xγk)

)
∈ E

(
K
(√

P (xγk)
))}∞

k=0
.

By [S1, Lemma],
⋃

[L:K]≤dE(L)tor is a finite set, where the union is
over all finite extensions L of K whose degree over K is less than or equal
to d. Therefore, V contains only finitely many torsion points. Then by lin-
ear disjointness of KLi over K and by [I1, Lemma 3.12], infinitely many
non-torsion points

(
γ−2k xγk , γ

−3
k

√
Pγk(xγk)

)
∈ V are linearly independent

in E(KQab). Therefore the rank of E(KQ(2)) is infinite, so the rank of
E(KQab) ⊆ E(Qab) is infinite.

4. The cubic case

Theorem 4.1. Let λ denote an element of a cubic extension K of Q.
Then E : y2 = x(x− 1)(x− λ) has infinite rank over KQab.

Proof. If λ ∈ Q, then we are done (by the proof of [FJ1, Theorem 2.2]),
so we assume that Q(λ) = K.

Let
L(t) := t3 − at2 + bt− c

denote the minimal polynomial of λ. Expanding, we have(
b− t2

2
+ (t− a)λ+ λ2

)2

= M(t)− L(t)λ,

where

M(t) :=
t4 − 2bt2 + 8ct+ b2 − 4ac

4
.
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Let
N(t) := L(t)M(t)(M(t)− L(t)).

Defining

x :=
M(t)

L(t)
, y :=

(b− t2)/2+(t−a)λ+λ2

L(t)2

√
N(t) =

M(t)−L(t)λ

L(t)2

√
N(t),

we have

x(x− 1)(x− λ) =
N(t)(M(t)− L(t)λ)

L(t)4
= y2,

which verifies that (x, y) ∈ K
(
t,
√
N(t)

)2 lies on E, that is, it belongs to
E
(
K
(
t,
√
N(t)

))
. Note that degN = 11, so w2 − N(t) is irreducible in

C[w, t]. Specializing t in Q, and applying Hilbert irreducibility, as before, we
obtain points of E(KLi) for an infinite sequence of linearly disjoint quadratic
extensions Li over Q. It follows that by [S1, Lemma] and by [I1, Lemma 3.12],
E has infinite rank over KQ(2) and therefore over KQab.

Note that the idea of the proof of Theorem 4.1 has been applied in
[I2, Theorem 4].

5. The quartic case

Theorem 5.1. Let λ denote an element generating a quartic extension K
of Q. Let P (x) be the (monic) minimal polynomial of λ over Q (hence P
has no multiple roots). If the curve defined by

(5.1) v2 = P (u) := u4 + pu3 + qu2 + ru+ s

has infinitely many Q-rational points, then E : y2 = x(x − 1)(x − λ) has
infinite rank over KQab.

Proof. If (u, v) satisfies (5.1), then setting

A(u, v) := (2u4 + pu3 − ru− 2s)v

+
8u6 + 8pu5 + (p2 + 4q)u4 − (8s+ 2pr)u2 − 8psu+ r2 − 4qs

4
,

B(u, v) := (4u3 + 3pu2 + 2qu+ r)v

+ 4u5 + 5pu4 + (p2 + 4q)u3 + (4r + pq)u2 + (4s+ rp)u+ ps,

and

C(u, v) :=
−2uv − 2u3 − pu2 + r

2
+ (v + u2 + pu+ q)λ+ (u+ p)λ2 + λ3,

we have
C(u, v)2 = A(u, v)−B(u, v)λ
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by explicit computation using Maple 16 (refer to the quartic case of the
Appendix). Thus, if for (u, v) ∈ Q2 we let

x(u,v) :=
A(u, v)

B(u, v)
and y(u,v) := C(u, v)

√
A(u, v)(A(u, v)−B(u, v))

B(u, v)3
,

then

x(u,v)(x(u,v) − 1)(x(u,v) − λ) =
C(u, v)A(u, v)(A(u, v)−B(u, v))

B(u, v)3
= y2(u,v).

So we have a point

(5.2) P(u,v) := (x(u,v), y(u,v)) ∈ E
(
KQ

(√
D(u, v)

))
,

where
D(u, v) := A(u, v)B(u, v)(A(u, v)−B(u, v)) ∈ Q[u, v].

We note that since P (u) has no multiple roots, (5.1) is an elliptic curve
of genus 1 by [FJ2, Proposition 3.8.2].

There are two embeddings of the function field F of (5.1) in the field
F∞ := C((t)) of Laurent series which map u to 1/t, determined by which
square root of P (1/t) the element v maps to. We choose the embedding
sending v to the Laurent series

t−2 +
p

2
t−1 +

(
q

2
− p2

8

)
+ · · · .

This defines a discrete valuation on F with respect to which A(u, v), B(u, v)
and A(u, v) − B(u, v) have value −6, −5, and −6 respectively. It follows
that F∞

(√
D(u, v)

)
= C((t1/2)). This implies that

√
D(u, v) does not lie

in F . Therefore,
√
D(u, v) 6∈ F . Let X denote the projective non-singular

curve over C with function field F [z]/(z2 − D(u, v)). Then there exists
a morphism from X to the projective non-singular curve with function
field F , which is ramified at the pole of t. Since the genus of F is 1, the
genus of X is at least 2. By Faltings’ theorem [F], X(Q(

√
d )) is finite for all

d ∈ Q. If there are infinitely many Q-points {Qk := (uk, vk)}∞k=1 on (5.1),
their inverse images in X generate infinitely many different quadratic ex-
tensions of Q, and so the points {P(uk,vk)}

∞
k=1 of E in (5.2) are defined

over different quadratic extensions KQ
(√

D(uk, vk)
)
of Q. By [S1, Lemma]

and by [I1, Lemma 3.12] again, it follows that E(KQ(2)) has infinite
rank.

Appendix. We present some machine computations, using Maple 16,
which verify the assertions in the proofs of Theorems 3.2 and 5.1. The nota-
tions are compatible with those proofs, except that I in the proof of Theo-
rem 3.2 is represented by J below.
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The quadratic case (for the proof of Theorem 3.2):

> f := sort(expand(x^3 + (u + v*sqrt(m))^4*(a + c*sqrt(m))*x + (u + v*sqrt(m))^6*
(b + d*sqrt(m))), m);

f := u4ax+ 4uv3cm2x+ 4u3vcmx+ 6u2v2amx+ v6bm3

+ u6b+ 20u3v3dm2 + 15u2v4bm2 + 6u5vdm+ 6uv5dm3

+ 15u4v2bm+ v4am2x+ x3 + xv4cm5/2 + 15u2v4dm5/2 + 6uv5bm5/2

+ 15u4v2dm3/2 + 20u3v3bm3/2 + u4cx
√
m+ 6u5vb

√
m

+ v6dm7/2 + u6d
√
m+ 4xuv3am3/2 + 6xu2v2cm3/2 + 4u3vax

√
m

> J := sort(expand((v^6*d*m^(7/2) + x*v^4*c*m^(5/2) + 15*u^2*v^4*d*m^(5/2)
+ 6*u*v^5*b*m^(5/2) + 4*x*u*v^3*a*m^(3/2) + 15*u^4*v^2*d*m^(3/2)
+ 6*x*u^2*v^2*c*m^(3/2) + 20*u^3*v^3*b*m^(3/2) + u^4*c*x*sqrt(m)
+ u^6*d*sqrt(m) + 6*u^5*v*b*sqrt(m) + 4*u^3*v*a*x*sqrt(m))/sqrt(m)), x);

J := 4muv3ax+m2v4cx+ 6mu2v2cx+ 4u3vax+ u4cx+ 15mu4v2d

+ 15m2u2v4d+ 6m2uv5b+m3v6d+ u6d+ 6u5vb+ 20mu3v3b

> R := sort(expand(f - J*sqrt(m)), x);

R := x3 + 4u3vcmx+ 6u2v2amx+ v4am2x+ u4ax+ 4uv3cm2x

+ 6u5vdm+ 6uv5dm3 + 15u4v2bm+ u6b+ v6bm3 + 20u3v3dm2

+ 15u2v4bm2

> T1 := expand((4*m*u*v^3*a*x + m^2*v^4*c*x + 6*m*u^2*v^2*c*x + 4*u^3*v*a*x
+ u^4*c*x)/x);

T1 := 4muv3a+m2v4c+ 6mu2v2c+ 4u3va+ u4c

> S1 := 15*m*u^4*v^2*d + 15*m^2*u^2*v^4*d + 6*m^2*u*v^5*b + m^3*v^6*d + u^6*d
+ 6*u^5*v*b + 20*m*u^3*v^3*b;

S1 := 15mu4v2d+ 15m2u2v4d+ 6m2uv5b

+m3v6d+ u6d+ 6u5vb+ 20mu3v3b

> T2 := expand((4*u^3*v*c*m*x + 6*u^2*v^2*a*m*x + v^4*a*m^2*x + u^4*a*x
+ 4*u*v^3*c*m^2*x)/x);

T2 := 4u3vcm+ 6u2v2am+ v4am2 + u4a+ 4uv3cm2

> S2 := 6*u^5*v*d*m + 6*u*v^5*d*m^3 + 15*u^4*v^2*b*m + u^6*b + v^6*b*m^3
+ 20*u^3*v^3*d*m^2 + 15*u^2*v^4*b*m^2;

S2 := 6u5vdm+ 6uv5dm3 + 15u4v2bm+ u6b+ v6bm3

+ 20u3v3dm2 + 15u2v4bm2
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> Q := -T1*(S1^3 + S1*T1^2*T2 - S2*T1^3);

Q := − (4muv3a+m2v4c+ 6mu2v2c+ 4u3va+ u4c)
(
(15mu4v2d

+ 15m2u2v4d+ 6m2uv5b+m3v6d+ u6d+ 6u5vb+ 20mu3v3b)3

+ (15mu4v2d+ 15m2u2v4d+ 6m2uv5b+m3v6d+ u6d+ 6u5vb

+ 20mu3v3b)(4muv3a+m2v4c+ 6mu2v2c+ 4u3va+ u4c)2

· (4u3vcm+ 6u2v2am+ v4am2 + u4a+ 4uv3cm2)− (6u5vdm

+ 6uv5dm3 + 15u4v2bm+ u6b+ v6bm3 + 20u3v3dm2 + 15u2v4bm2)

· (4muv3a+m2v4c+ 6mu2v2c+ 4u3va+ u4c)3
)

> A0 := factor(coeff(Q, u, 22));

A0 := −c(−bc3 + dac2 + d3)

> A1 := expand(coeff(Q, u, 21)/v);

A1 := 10c3ba− 12a2dc2 − 4ad3 − 18cd2b+ 2c4dm

> discrim( -b^2*c^6 - 4*c^3*d^3*b - 4*d^6 + m*c^6*d^2, b);

4mc12d2

The quartic case (for the proof of Theorem 5.1):
> A := (2*u^4 + p*u^3 - r*u - 2*s)*v + (8*u^6 + 8*p*u^5 + (p^2 + 4*q)*u^4
- (8*s + 2*p*r)*u^2 - 8*p*s*u + r^2 - 4*q*s)*(1/4);

A := (2u4 + pu3 − ru− 2s)v + 2u6 + 2pu5 + 1
4
(p2 + 4q)u4

− 1
4
(8s+ 2pr)u2 − 2psu+ 1

4
r2 − qs

> B := (4*u^3 + 3*p*u^2 + 2*q*u + r)*v + 4*u^5 + 5*p*u^4 + (p^2 + 4*q)*u^3
+ (4*r + p*q)*u^2 + (4*s + p*r)*u + p*s;

B := (4u3 + 3pu2 + 2qu+ r)v + 4u5 + 5pu4 + (p2 + 4q)u3

+ (4r + pq)u2 + (4s+ pr)u+ ps

> C := (-2*u*v - 2*u^3 - p*u^2 + r)*(1/2) + (v + u^2 + p*u + q)*lambda
+ (u + p)*lambda^2 + lambda^3;

C := − uv − u3 − 1
2
pu2 + 1

2
r + (v + u2 + pu+ q)λ+ (u+ p)λ2 + λ3

> l5 := expand(subs(lambda^4 = -p*lambda^3 - q*lambda^2 - r*lambda - s,
expand( -lambda*(p*lambda^3 + q*lambda^2 + r*lambda + s))));

l5 := p2λ3 + pqλ2 + prλ+ ps− qλ3 − rλ2 − λs

> l6 := expand(subs(lambda^4 = -p*lambda^3 - q*lambda^2 - r*lambda - s,
expand(lambda*l5)));

l6 := − p3λ3 − p2qλ2 − p2rλ− p2s+ 2λ3qp+ rλ2p

+ λps+ λ2q2 + rλq + qs− rλ3 − λ2s

> simplify(subs(v^2 = u^4 + p*u^3 + q*u^2 + r*u + s, lambda^4 = -p*lambda^3
- q*lambda^2 - r*lambda - s, lambda^5 = l5, lambda^6 = l6,
expand(C^2 - A + B*lambda)));

0
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