Infinite rank of elliptic curves over \mathbb{Q}^{ab}

by

BO-HAE IM (Seoul) and MICHAEL LARSEN (Bloomington, IN)

1. Introduction. In [FJ1], G. Frey and M. Jarden proved that every elliptic curve E/\mathbb{Q} has infinite rank over \mathbb{Q}^{ab} and asked whether the same is true for all abelian varieties. For a general number field K (not necessarily contained in \mathbb{Q}^{ab}), the question would be whether every abelian variety A over K is of infinite rank over $K\mathbb{Q}^{ab}$. An affirmative answer to this question would follow from an affirmative answer to the original question, since every \mathbb{Q}^{ab} -point of the Weil restriction of scalars $\operatorname{Res}_{K/\mathbb{Q}} A$ gives a $K\mathbb{Q}^{ab}$ -point of A. We specialize the question to dimension 1.

QUESTION 1.1. If E is an elliptic curve over a number field K, must E have infinite rank over $K\mathbb{Q}^{ab}$?

Specializing further to the case that K is abelian over \mathbb{Q} , the question can be reformulated as:

QUESTION 1.2. Does every elliptic curve over \mathbb{Q}^{ab} have infinite rank over \mathbb{Q}^{ab} ?

In a recent paper [K], E. Kobayashi considered Question 1.2 when $[K : \mathbb{Q}]$ is odd. In this setting, she gave an affirmative answer, conditional on the Birch–Swinnerton-Dyer conjecture.

We give an affirmative answer to Question 1.1 when E is defined over a field K of degree ≤ 4 over \mathbb{Q} and satisfies some auxiliary condition. In all of our results, we can replace \mathbb{Q}^{ab} by $\mathbb{Q}(2)$, the compositum of all quadratic extensions of \mathbb{Q} . Our strategy for finding points over $\mathbb{Q}(2)$ entails looking for \mathbb{Q} -points on the Kummer variety $\operatorname{Res}_{K/\mathbb{Q}} E/(\pm 1)$ by looking for curves of genus ≤ 1 on that variety. When K is a quadratic field, $\operatorname{Res}_{K/\mathbb{Q}} E$ is an abelian surface isomorphic, over \mathbb{C} , to a product of two elliptic curves. Our construction of a curve on the Kummer surface $\operatorname{Res}_{K/\mathbb{Q}} E/(\pm 1)$ is modeled on the construction of a rational curve on $(E_1 \times E_2)/(\pm 1)$ due to

²⁰¹⁰ Mathematics Subject Classification: Primary 11G05; Secondary 14H52. Key words and phrases: elliptic curves.

J.-F. Mestre [M] and to M. Kuwata and L. Wang [KW]. For $[K : \mathbb{Q}] = 3$, our proof depends on an analogous construction of a rational curve on $(E_1 \times E_2 \times E_3)/(\pm 1)$ which is presented in [I2]. We do not know of any rational curve on $(E_1 \times E_2 \times E_3 \times E_4)/(\pm 1)$ for general choices of the E_i , but [I2, Lemma 1] constructs a curve of genus 1 in this variety.

2. A geometric construction. We now recall a geometric construction of a curve in

(2.1)
$$(E_1 \times \cdots \times E_n)/(\pm 1),$$

where (± 1) acts diagonally on the product [I2, Lemma 1].

LEMMA 2.1 ([I2, Lemma 1]). Let \bar{K} be a separably closed field with char $(\bar{K}) \neq 2$, and for an integer $n \geq 2$, let E_1, \ldots, E_n be pairwise nonisomorphic elliptic curves over \bar{K} . Then $(E_1 \times \cdots \times E_n)/(\pm 1)$ contains a curve C_n with genus

$$g_n := 2^{n-3}(n-4) + 1.$$

In particular, $g_2 = g_3 = 0$ and $g_4 = 1$.

Proof. Let E_i be written in Legendre form ([S2, p. 54, Proposition 1.7]): for i = 1, ..., n,

$$E_i: y_i^2 = x_i(x_i - 1)(x_i - \lambda_i), \quad \lambda_i \in \overline{K}.$$

Since the E_i are non-isomorphic over \overline{K} , the λ_i are distinct.

We consider $E_1 \times \cdots \times E_n$ as a $(\mathbb{Z}/2\mathbb{Z})^n$ -cover of

$$E_1/(\pm 1) \times \cdots \times E_n/(\pm 1) \cong (\mathbb{P}^1)^n,$$

via $(P_1, \ldots, P_n) \mapsto (x(P_1), \ldots, x(P_n))$ where $x(P_i)$ is the *x*-coordinate of a point P_i of E_i if $P_i \neq O$ and $x(P_i) = \infty$ if $P_i = O$. We denote by X_n the inverse image in $(E_1 \times \cdots \times E_n)/(\pm 1)$ of the diagonal curve $\mathbb{P}^1 \subset (\mathbb{P}^1)^n$, i.e., the set of *n*-tuples where all coordinates are equal.

There exists an affine open subset of X_n with the following defining equations:

$$\begin{cases} z_{12}^2 = x^2(x-1)^2(x-\lambda_1)(x-\lambda_2), \\ \vdots \\ z_{1n}^2 = x^2(x-1)^2(x-\lambda_1)(x-\lambda_n), \end{cases}$$

with $z_{12} = y_1y_2$, $z_{13} = y_1y_3$, ..., $z_{1n} = y_1y_n$ fixed under the action of (± 1) . We can identify a point on this curve with an orbit of $E_1 \times \cdots \times E_n$ under the diagonal action of ± 1 as follows:

$$(x, z_{12}, \dots, z_{1n}) \mapsto ((x, y_1), (x, z_{12}/y_1), (x, z_{13}/y_1), \dots, (x, z_{1n}/y_1)),$$

where $y_1 = \pm \sqrt{x(x-1)(x-\lambda_1)}.$

The function field of X_n is

 $\bar{K}(x,\sqrt{(x-\lambda_1)(x-\lambda_2)},\sqrt{(x-\lambda_1)(x-\lambda_3)},\ldots,\sqrt{(x-\lambda_1)(x-\lambda_n)}),$ which is a finite extension of $\bar{K}(x)$ of degree 2^{n-1} . If we let $L_1 = \bar{K}(x)$ and $L_i = L_{i-1}(\sqrt{(x-\lambda_1)(x-\lambda_i)})$ for $i = 2,\ldots,n$, then L_i is a quadratic extension of L_{i-1} for each $i = 2,\ldots,n$.

Therefore, there exists a non-singular projective curve C_n such that $\overline{K}(C_n) = L_n$ and there exists a non-constant morphism of degree 2^{n-1} , $\phi: C_n \to \mathbb{P}^1$, induced from the inclusion of $\overline{K}(x)$ into L_n . (See [H, Ch. I, §6] for details.)

Then ϕ is ramified at $P = [\lambda_i; 1] \in \mathbb{P}^1$ for each $i = 1, \ldots, n$ with the ramification degree 2 by investigating the local behavior of $\sqrt{(x - \lambda_1)(x - \lambda_i)}$ at each extension L_i over L_{i-1} . So by the Riemann-Hurwitz formula, the genus g_n of C_n is given by

$$2g_n - 2 = 2^{n-1}(2 \cdot 0 - 2) + n2^{n-2}(2 - 1).$$

If n = 2 or n = 3, then $g_n = 0$, and if n = 4, then $g_n = 1$.

It is difficult to tell when this construction produces a curve with infinitely many rational points over \mathbb{Q} since a curve so obtained may not be defined over \mathbb{Q} . We do not use Lemma 2.1 directly in what follows, but it motivates the apparently *ad hoc*, explicit constructions of the remainder of the paper. Each of the following sections deals with one such construction.

3. The quadratic case. We begin with a lemma.

LEMMA 3.1. Let k be a non-negative integer and $Q(u,v) \in \mathbb{Q}[u,v]$ a homogeneous polynomial of degree 2(2k+1) satisfying the functional equation

$$Q(mu, v) = m^{2k+1}Q(v, u)$$

for a fixed square-free integer $m \neq 1$. Then Q(u, v) cannot be a perfect square in $\mathbb{C}[u, v]$.

Proof. Let *i* be the largest integer such that v^i divides Q(u, v). If *i* is odd, Q(u, v) cannot be a perfect square in $\mathbb{C}[u, v]$. We therefore assume that i = 2j. Without loss of generality, we may assume that the $u^{4k+2-2j}v^{2j}$ -coefficient is 1. If q(u, v) is a square root of Q(u, v) over \mathbb{C} , then the $u^{2k+1-j}v^j$ -coefficient of q(u, v) is ± 1 . Every automorphism σ of the complex numbers sends q(u, v) to $\pm q(u, v)$. However, σ fixes the $u^{2k+1-j}v^j$ coefficient of q(u, v), so σ fixes q(u, v), which means $q(u, v) \in \mathbb{Q}[u, v]$. From the given functional relation, q(u, v) satisfies

$$q(mu,v) = \pm \sqrt{m} \left(m^k q(v,u) \right),$$

which gives a contradiction since $\sqrt{m} \notin \mathbb{Q}$.

THEOREM 3.2. Let $E: y^2 = P(x) := x^3 + \alpha x + \beta$ be an elliptic curve defined over a quadratic extension K of \mathbb{Q} . If the *j*-invariant of E is not 0 or 1728, then $E(\mathbb{Q}^{ab})$ has infinite rank.

Proof. Let $K = \mathbb{Q}(\sqrt{m})$, where $m \in \mathbb{Z}$ is a square-free integer and $m \neq 1$. By the hypothesis on the *j*-invariant, $\alpha \neq 0$ and $\beta \neq 0$. Replacing α and β by $\lambda^4 \alpha$ and $\lambda^6 \beta$ for suitable $\lambda \in K$, we may assume without loss of generality that $\alpha, \beta \notin \mathbb{Q}$.

Let $\alpha = a + c\sqrt{m}$ and $\beta = b + d\sqrt{m}$ for $a, b, c, d \in \mathbb{Q}$, $c, d \neq 0$. Then for $x_1 := -d/c \in \mathbb{Q}$, we have $P(x_1) \in \mathbb{Q}$, so

$$(x_1, \sqrt{P(x_1)}) \in E(K(\sqrt{P(x_1)}) \subseteq E(\mathbb{Q}^{\mathrm{ab}}).$$

Now replacing α by $\gamma^4 \alpha$ and β by $\gamma^6 \beta$ for $\gamma \in K$ such that $\gamma^4 \alpha, \gamma^6 \beta \notin \mathbb{Q}$, we get an isomorphism ϕ_{γ} over K from E to the elliptic curve

$$E_{\gamma} \colon y^2 = P_{\gamma}(x) \coloneqq x^3 + \gamma^4 \alpha x + \gamma^6 \beta,$$

mapping (x, y) onto $(\gamma^2 x, \gamma^3 y)$.

Applying the above argument for E_{γ} rather than E, we find a point $(x_{\gamma,1}, \sqrt{P_{\gamma}(x_{\gamma,1})}) \in E_{\gamma}(K(\sqrt{P_{\gamma}(x_{\gamma,1})}))$ with $x_{\gamma,1} \in \mathbb{Q}$ and $P_{\gamma}(x_{\gamma,1}) \in \mathbb{Q}$. Applying ϕ_{γ}^{-1} to the latter point, we get a point

(3.1)
$$(\gamma^{-2}x_{\gamma,1},\gamma^{-3}\sqrt{P_{\gamma}(x_{\gamma,1})}) \in E(K(\sqrt{P_{\gamma}(x_{\gamma,1})})) \subseteq E(\mathbb{Q}^{\mathrm{ab}}),$$

where $x_{\gamma,1} \in \mathbb{Q}$ and $P_{\gamma}(x_{\gamma,1}) \in \mathbb{Q}$.

Now we show that there are infinitely many quadratic fields L such that $\mathbb{Q}(\sqrt{P_{\gamma}(x_{\gamma})}) = L$ for some $\gamma \in K$.

For $\gamma = u + v\sqrt{m}$ with variables u and v which will be specialized later, we write

$$x^{3} + (u + v\sqrt{m})^{4}\alpha x + (u + v\sqrt{m})^{6}\beta = P_{\gamma}(x) = R + I\sqrt{m},$$

where

$$I = xT_1(u, v) + S_1(u, v)$$
 and $R = x^3 + xT_2(u, v) + S_2(u, v)$

and T_i and S_i are homogeneous polynomials in u and v over \mathbb{Q} of degree 4 and 6 respectively. In fact, by using MAPLE 16 (refer to the quadratic case of the Appendix for the computation), we get

$$\begin{split} I &= x(u^4c + 4u^3va + 6u^2v^2mc + 4uv^3ma + v^4m^2c) \\ &+ u^6d + 6u^5vb + 15u^4v^2md + 20u^3v^3mb \\ &+ 15u^2v^4m^2d + 6uv^5m^2b + v^6m^3d, \\ R &= x^3 + x(u^4a + 4u^3vmc + 6u^2v^2ma + 4uv^3m^2c + v^4m^2a) \\ &+ u^6b + 6u^5vmd + 15u^4v^2mb + 20u^3v^3m^2d \\ &+ 15u^2v^4m^2b + 6uv^5m^3d + v^6m^3b. \end{split}$$

So we have

$$(3.2) \begin{aligned} T_1(u,v) &= u^4c + 4u^3va + 6u^2v^2mc + 4uv^3ma + v^4m^2c, \\ S_1(u,v) &= u^6d + 6u^5vb + 15u^4v^2md + 20u^3v^3mb \\ &+ 15u^2v^4m^2d + 6uv^5m^2b + v^6m^3d, \\ T_2(u,v) &= u^4a + 4u^3vmc + 6u^2v^2ma + 4uv^3m^2c + v^4m^2a, \\ S_2(u,v) &= u^6b + 6u^5vmd + 15u^4v^2mb + 20u^3v^3m^2d \\ &+ 15u^2v^4m^2b + 6uv^5m^3d + v^6m^3b. \end{aligned}$$

Since $(mu + v\sqrt{m})^4 = m^2(v + u\sqrt{m})^4$ and $(mu + v\sqrt{m})^6 = m^3(v + u\sqrt{m})^6$, the T_i 's and the S_i 's satisfy the following relations:

(3.3)
$$T_i(mu, v) = m^2 T_i(v, u), \quad S_i(mu, v) = m^3 S_i(v, u).$$

We solve the equation $I = xT_1(u, v) + S_1(u, v) = 0$ for x and get

$$x_{\gamma} := -\frac{S_1(u,v)}{T_1(u,v)}.$$

We then substitute this value of x into the rational part R of $P_{\gamma}(x)$, and after clearing the denominator by multiplying by $(T_1(u, v))^4$, we obtain the polynomial

$$-T_1(u,v)(S_1(u,v)^3 + S_1(u,v) T_1(u,v)^2 T_2(u,v) - S_2(u,v) T_1(u,v)^3),$$

which we denote by Q. Thus, Q is homogeneous of degree 22 over \mathbb{Q} and from the relation (3.3), it satisfies

(3.4)
$$Q(mu, v) = m^{11}Q(v, u).$$

Note that by direct computation referring to (3.2) or by using MAPLE 16 (refer to the quadratic case of the Appendix for the computation), the coefficients of the u^{22} -term and $u^{21}v$ -term in Q(u, v) are, respectively,

 $A_0 = c(-d^3 - adc^2 + bc^3), \quad A_1 = 2(-6a^2dc^2 - 2ad^3 + 5abc^3 + mc^4d - 9cd^2b).$ If Q(u, v) is identically 0, then $A_0 = A_1 = 0$. Since $c \neq 0$ and $d \neq 0$, we solve $A_0 = 0$ for a and substitute

$$a = \frac{bc^3 - d^3}{c^2d}$$

into $A_1 = 0$. Then we get

$$-b^2c^6 - 4c^3d^3b - 4d^6 + mc^6d^2 = 0,$$

whose discriminant in b is $4mc^{12}d^2$ (refer to the Appendix for the computation), which is not a square in \mathbb{Q} . Hence $A_1 \neq 0$. This shows that Q(u, v)cannot be identically zero. By Lemma 3.1, Q(u, v) cannot be a perfect square in $\mathbb{C}[u, v]$.

Hence $y^2 - Q(u, v)$ is irreducible over \mathbb{C} .

Let $f(t) \in \mathbb{Q}[t]$ be the polynomial of degree 22 in the variable t = u/vobtained by replacing Q(u, v) by $Q(u, v)v^{-22}$. For a finite extension L of K, we let

$$H(f,L) := \{t' \in \mathbb{Q} : f(t') - y^2 \text{ is irreducible over } L\},\$$

the intersection of \mathbb{Q} with the Hilbert set of f over L. By the Hilbert irreducibility theorem ([FJ2, Corollary 12.2.3]), such an intersection is non-empty.

Hence there exists $\gamma_0 = u_0 + v_0 \sqrt{m} \in K$ such that

$$L_0 := \mathbb{Q}\left(\sqrt{P_{\gamma_0}(x_{\gamma_0})}\right) = \mathbb{Q}\left(\sqrt{Q(u_{\gamma_0}, v_{\gamma_0})}\right)$$

is a quadratic field not contained in L. Inductively, we get an infinite sequence of $\gamma_k = u_k + v_k \sqrt{m}$ such that the fields

$$L_k = \mathbb{Q}\left(\sqrt{P_{\gamma_k}(x_{\gamma_k})}\right) = \mathbb{Q}\left(\sqrt{Q(u_{\gamma_k}, v_{\gamma_k})}\right)$$

are not \mathbb{Q} -rational and are linearly disjoint over \mathbb{Q} .

Let V be the set

$$V := \left\{ \left(\gamma_k^{-2} x_{\gamma_k}, \gamma_k^{-3} \sqrt{P_{\gamma_k}(x_{\gamma_k})} \right) \in E\left(K\left(\sqrt{P(x_{\gamma_k})} \right) \right) \right\}_{k=0}^{\infty}$$

By [S1, Lemma], $\bigcup_{[L:K] \leq d} E(L)_{tor}$ is a finite set, where the union is over all finite extensions L of K whose degree over K is less than or equal to d. Therefore, V contains only finitely many torsion points. Then by linear disjointness of KL_i over K and by [I1, Lemma 3.12], infinitely many non-torsion points $(\gamma_k^{-2} x_{\gamma_k}, \gamma_k^{-3} \sqrt{P_{\gamma_k}(x_{\gamma_k})}) \in V$ are linearly independent in $E(K\mathbb{Q}^{ab})$. Therefore the rank of $E(K\mathbb{Q}(2))$ is infinite, so the rank of $E(K\mathbb{Q}^{ab}) \subseteq E(\mathbb{Q}^{ab})$ is infinite. \blacksquare

4. The cubic case

THEOREM 4.1. Let λ denote an element of a cubic extension K of \mathbb{Q} . Then $E: y^2 = x(x-1)(x-\lambda)$ has infinite rank over $K\mathbb{Q}^{ab}$.

Proof. If $\lambda \in \mathbb{Q}$, then we are done (by the proof of [FJ1, Theorem 2.2]), so we assume that $\mathbb{Q}(\lambda) = K$.

Let

$$L(t) := t^3 - at^2 + bt - c$$

denote the minimal polynomial of λ . Expanding, we have

$$\left(\frac{b-t^2}{2} + (t-a)\lambda + \lambda^2\right)^2 = M(t) - L(t)\lambda,$$

where

$$M(t) := \frac{t^4 - 2bt^2 + 8ct + b^2 - 4ac}{4}$$

Let

$$N(t) := L(t)M(t)(M(t) - L(t)).$$

Defining

$$x := \frac{M(t)}{L(t)}, \quad y := \frac{(b-t^2)/2 + (t-a)\lambda + \lambda^2}{L(t)^2} \sqrt{N(t)} = \frac{M(t) - L(t)\lambda}{L(t)^2} \sqrt{N(t)},$$

we have

$$x(x-1)(x-\lambda) = \frac{N(t)(M(t) - L(t)\lambda)}{L(t)^4} = y^2,$$

which verifies that $(x, y) \in K(t, \sqrt{N(t)})^2$ lies on E, that is, it belongs to $E(K(t, \sqrt{N(t)}))$. Note that deg N = 11, so $w^2 - N(t)$ is irreducible in $\mathbb{C}[w, t]$. Specializing t in \mathbb{Q} , and applying Hilbert irreducibility, as before, we obtain points of $E(KL_i)$ for an infinite sequence of linearly disjoint quadratic extensions L_i over \mathbb{Q} . It follows that by [S1, Lemma] and by [I1, Lemma 3.12], E has infinite rank over $K\mathbb{Q}(2)$ and therefore over $K\mathbb{Q}^{ab}$.

Note that the idea of the proof of Theorem 4.1 has been applied in [I2, Theorem 4].

5. The quartic case

THEOREM 5.1. Let λ denote an element generating a quartic extension K of \mathbb{Q} . Let P(x) be the (monic) minimal polynomial of λ over \mathbb{Q} (hence P has no multiple roots). If the curve defined by

(5.1)
$$v^2 = P(u) := u^4 + pu^3 + qu^2 + ru + s$$

has infinitely many \mathbb{Q} -rational points, then $E: y^2 = x(x-1)(x-\lambda)$ has infinite rank over $K\mathbb{Q}^{ab}$.

Proof. If (u, v) satisfies (5.1), then setting

$$\begin{split} A(u,v) &:= (2u^4 + pu^3 - ru - 2s)v \\ &+ \frac{8u^6 + 8pu^5 + (p^2 + 4q)u^4 - (8s + 2pr)u^2 - 8psu + r^2 - 4qs}{4}, \\ B(u,v) &:= (4u^3 + 3pu^2 + 2qu + r)v \\ &+ 4u^5 + 5pu^4 + (p^2 + 4q)u^3 + (4r + pq)u^2 + (4s + rp)u + ps, \end{split}$$

and

$$C(u,v) := \frac{-2uv - 2u^3 - pu^2 + r}{2} + (v + u^2 + pu + q)\lambda + (u + p)\lambda^2 + \lambda^3,$$

we have

$$C(u, v)^{2} = A(u, v) - B(u, v)\lambda$$

by explicit computation using MAPLE 16 (refer to the quartic case of the Appendix). Thus, if for $(u, v) \in \mathbb{Q}^2$ we let

$$x_{(u,v)} := \frac{A(u,v)}{B(u,v)} \quad \text{and} \quad y_{(u,v)} := C(u,v) \sqrt{\frac{A(u,v)(A(u,v) - B(u,v))}{B(u,v)^3}}$$

then

$$x_{(u,v)}(x_{(u,v)}-1)(x_{(u,v)}-\lambda) = \frac{C(u,v)A(u,v)(A(u,v)-B(u,v))}{B(u,v)^3} = y_{(u,v)}^2$$

So we have a point

(5.2)
$$P_{(u,v)} := (x_{(u,v)}, y_{(u,v)}) \in E(K\mathbb{Q}(\sqrt{D(u,v)})),$$

where

$$D(u,v) := A(u,v)B(u,v)(A(u,v) - B(u,v)) \in \mathbb{Q}[u,v].$$

We note that since P(u) has no multiple roots, (5.1) is an elliptic curve of genus 1 by [FJ2, Proposition 3.8.2].

There are two embeddings of the function field F of (5.1) in the field $F_{\infty} := \mathbb{C}((t))$ of Laurent series which map u to 1/t, determined by which square root of P(1/t) the element v maps to. We choose the embedding sending v to the Laurent series

$$t^{-2} + \frac{p}{2}t^{-1} + \left(\frac{q}{2} - \frac{p^2}{8}\right) + \cdots$$

This defines a discrete valuation on F with respect to which A(u, v), B(u, v)and A(u, v) - B(u, v) have value -6, -5, and -6 respectively. It follows that $F_{\infty}(\sqrt{D(u, v)}) = \mathbb{C}((t^{1/2}))$. This implies that $\sqrt{D(u, v)}$ does not lie in F. Therefore, $\sqrt{D(u, v)} \notin F$. Let X denote the projective non-singular curve over \mathbb{C} with function field $F[z]/(z^2 - D(u, v))$. Then there exists a morphism from X to the projective non-singular curve with function field F, which is ramified at the pole of t. Since the genus of F is 1, the genus of X is at least 2. By Faltings' theorem $[F], X(\mathbb{Q}(\sqrt{d}))$ is finite for all $d \in \mathbb{Q}$. If there are infinitely many \mathbb{Q} -points $\{Q_k := (u_k, v_k)\}_{k=1}^{\infty}$ on (5.1), their inverse images in X generate infinitely many different quadratic extensions of \mathbb{Q} , and so the points $\{P_{(u_k, v_k)}\}_{k=1}^{\infty}$ of E in (5.2) are defined over different quadratic extensions $K\mathbb{Q}(\sqrt{D(u_k, v_k)})$ of \mathbb{Q} . By [S1, Lemma] and by [I1, Lemma 3.12] again, it follows that $E(K\mathbb{Q}(2))$ has infinite rank. \bullet

Appendix. We present some machine computations, using MAPLE 16, which verify the assertions in the proofs of Theorems 3.2 and 5.1. The notations are compatible with those proofs, except that I in the proof of Theorem 3.2 is represented by J below.

The quadratic case (for the proof of Theorem 3.2):

> f := sort(expand(x^3 + (u + v*sqrt(m))^4*(a + c*sqrt(m))*x + (u + v*sqrt(m))^6* (b + d*sqrt(m))), m);

$$\begin{split} f &:= u^4 a x + 4u v^3 cm^2 x + 4u^3 v cm x + 6u^2 v^2 am x + v^6 bm^3 \\ &\quad + u^6 b + 20 u^3 v^3 dm^2 + 15u^2 v^4 bm^2 + 6u^5 v dm + 6u v^5 dm^3 \\ &\quad + 15u^4 v^2 bm + v^4 am^2 x + x^3 + xv^4 cm^{5/2} + 15u^2 v^4 dm^{5/2} + 6u v^5 bm^{5/2} \\ &\quad + 15u^4 v^2 dm^{3/2} + 20 u^3 v^3 bm^{3/2} + u^4 cx \sqrt{m} + 6u^5 v b \sqrt{m} \\ &\quad + v^6 dm^{7/2} + u^6 d \sqrt{m} + 4xu v^3 am^{3/2} + 6xu^2 v^2 cm^{3/2} + 4u^3 v ax \sqrt{m} \end{split}$$

> J := sort(expand((v^6*d*m^(7/2) + x*v^4*c*m^(5/2) + 15*u^2*v^4*d*m^(5/2) + 6*u*v^5*b*m^(5/2) + 4*x*u*v^3*a*m^(3/2) + 15*u^4*v^2*d*m^(3/2) + 6*x*u^2*v^2*c*m^(3/2) + 20*u^3*v^3*b*m^(3/2) + u^4*c*x*sqrt(m) + u^6*d*sqrt(m) + 6*u^5*v*b*sqrt(m) + 4*u^3*v*a*x*sqrt(m))/sqrt(m)), x);

$$\begin{split} J &:= 4muv^3ax + m^2v^4cx + 6mu^2v^2cx + 4u^3vax + u^4cx + 15mu^4v^2d \\ &+ 15m^2u^2v^4d + 6m^2uv^5b + m^3v^6d + u^6d + 6u^5vb + 20mu^3v^3b \end{split}$$

> R := sort(expand(f - J*sqrt(m)), x);

$$\begin{split} R &:= x^3 + 4u^3vcmx + 6u^2v^2amx + v^4am^2x + u^4ax + 4uv^3cm^2x \\ &\quad + 6u^5vdm + 6uv^5dm^3 + 15u^4v^2bm + u^6b + v^6bm^3 + 20u^3v^3dm^2 \\ &\quad + 15u^2v^4bm^2 \end{split}$$

>T1 := expand((4*m*u*v^3*a*x + m^2*v^4*c*x + 6*m*u^2*v^2*c*x + 4*u^3*v*a*x + u^4*c*x)/x);

$$T_1 := 4muv^3a + m^2v^4c + 6mu^2v^2c + 4u^3va + u^4c$$

> S1 := 15*m*u^4*v^2*d + 15*m^2*u^2*v^4*d + 6*m^2*u*v^5*b + m^3*v^6*d + u^6*d + 6*u^5*v*b + 20*m*u^3*v^3*b;

$$S_1 := 15mu^4v^2d + 15m^2u^2v^4d + 6m^2uv^5b + m^3v^6d + u^6d + 6u^5vb + 20mu^3v^3b$$

> T2 := expand((4*u^3*v*c*m*x + 6*u^2*v^2*a*m*x + v^4*a*m^2*x + u^4*a*x + 4*u*v^3*c*m^2*x)/x);

$$T_2 := 4u^3vcm + 6u^2v^2am + v^4am^2 + u^4a + 4uv^3cm^2$$

> S2 := 6*u⁵*v*d*m + 6*u*v⁵*d*m³ + 15*u⁴*v²*b*m + u⁶*b + v⁶*b*m³ + 20*u³*v³*d*m² + 15*u²*v⁴*b*m²;

$$S_{2} := 6u^{5}vdm + 6uv^{5}dm^{3} + 15u^{4}v^{2}bm + u^{6}b + v^{6}bm^{3} + 20u^{3}v^{3}dm^{2} + 15u^{2}v^{4}bm^{2}$$

$$\begin{array}{l} > \mathbf{Q} := -\mathbf{T1*}(\mathbf{S1^3} + \mathbf{S1*T1^2*T2} - \mathbf{S2*T1^3}); \\ Q := -(4muv^3a + m^2v^4c + 6mu^2v^2c + 4u^3va + u^4c)\Big((15mu^4v^2d \\ & + 15m^2u^2v^4d + 6m^2uv^5b + m^3v^6d + u^6d + 6u^5vb + 20mu^3v^3b)^3 \\ & + (15mu^4v^2d + 15m^2u^2v^4d + 6m^2uv^5b + m^3v^6d + u^6d + 6u^5vb \\ & + 20mu^3v^3b)(4muv^3a + m^2v^4c + 6mu^2v^2c + 4u^3va + u^4c)^2 \\ & \cdot (4u^3vcm + 6u^2v^2am + v^4am^2 + u^4a + 4uv^3cm^2) - (6u^5vdm \\ & + 6uv^5dm^3 + 15u^4v^2bm + u^6b + v^6bm^3 + 20u^3v^3dm^2 + 15u^2v^4bm^2) \\ & \cdot (4muv^3a + m^2v^4c + 6mu^2v^2c + 4u^3va + u^4c)^3 \Big) \end{array}$$

> A0 := factor(coeff(Q, u, 22));

$$A_0 := -c(-bc^3 + dac^2 + d^3)$$

> A1 := expand(coeff(Q, u, 21)/v); $A_1 := 10c^3ba - 12a^2dc^2 - 4ad^3 - 18cd^2b + 2c^4dm$ > discrim(-b^2*c^6 - 4*c^3*d^3*b - 4*d^6 + m*c^6*d^2, b); $4mc^{12}d^2$

The quartic case (for the proof of Theorem 5.1):

> A := (2*u⁴ + p*u³ - r*u - 2*s)*v + (8*u⁶ + 8*p*u⁵ + (p² + 4*q)*u⁴ - (8*s + 2*p*r)*u² - 8*p*s*u + r² - 4*q*s)*(1/4);

$$A := (2u^{4} + pu^{3} - ru - 2s)v + 2u^{6} + 2pu^{5} + \frac{1}{4}(p^{2} + 4q)u^{4} - \frac{1}{4}(8s + 2pr)u^{2} - 2psu + \frac{1}{4}r^{2} - qs$$

> B := (4*u³ + 3*p*u² + 2*q*u + r)*v + 4*u⁵ + 5*p*u⁴ + (p² + 4*q)*u³ + (4*r + p*q)*u² + (4*s + p*r)*u + p*s;

$$B := (4u^{3} + 3pu^{2} + 2qu + r)v + 4u^{5} + 5pu^{4} + (p^{2} + 4q)u^{3} + (4r + pq)u^{2} + (4s + pr)u + ps$$

> C := $(-2*u*v - 2*u^3 - p*u^2 + r)*(1/2) + (v + u^2 + p*u + q)*lambda + (u + p)*lambda^2 + lambda^3;$

$$C := -uv - u^{3} - \frac{1}{2}pu^{2} + \frac{1}{2}r + (v + u^{2} + pu + q)\lambda + (u + p)\lambda^{2} + \lambda^{3}$$

> 15 := expand(subs(lambda⁴ = -p*lambda³ - q*lambda² - r*lambda - s, expand(-lambda*(p*lambda³ + q*lambda² + r*lambda + s))));

$$l_5 := p^2 \lambda^3 + pq\lambda^2 + pr\lambda + ps - q\lambda^3 - r\lambda^2 - \lambda s$$

> 16 := expand(subs(lambda⁴ = -p*lambda³ - q*lambda² - r*lambda - s, expand(lambda*15)));

$$l_{6} := -p^{3}\lambda^{3} - p^{2}q\lambda^{2} - p^{2}r\lambda - p^{2}s + 2\lambda^{3}qp + r\lambda^{2}p + \lambda ps + \lambda^{2}q^{2} + r\lambda q + qs - r\lambda^{3} - \lambda^{2}s$$

> simplify(subs(v^2=u^4+p*u^3+q*u^2+r*u+s,lambda^4=-p*lambda^3
- q*lambda^2 - r*lambda - s,lambda^5=l5, lambda^6=l6,
expand(C^2 - A + B*lambda)));

Acknowledgments. We would like to thank the referee for a number of helpful suggestions. We would also like to thank Bartosz Naskręcki for confirming the correctness of our machine computations.

Bo-Hae Im was supported by the National Research Foundation of Korea grant funded by the Korean Government (MEST) (NRF-2011-0015557). Michael Larsen was partially supported by NSF grants DMS-0800705 and DMS-1101424.

References

- [F] G. Faltings, Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math. 73 (1983), 349–366.
- [FJ1] G. Frey and M. Jarden, Approximation theory and the rank of abelian varieties over large algebraic fields, Proc. London Math. Soc. (3) 28 (1974), 112–128.
- [FJ2] M. D. Fried and M. Jarden, *Field Arithmetic*, 3rd ed., Ergeb. Math. Grenzgeb. 11, Springer, Berlin, 2008.
- [H] R. Hartshorne, Algebraic Geometry, Grad. Texts in Math. 52, Springer, New York, 1977.
- B.-H. Im, Mordell-Weil groups and the rank of elliptic curves over large fields, Canad. J. Math. 58 (2006), 796–819.
- B.-H. Im, Positive rank quadratic twists of four elliptic curves, J. Number Theory 133 (2013), 492–500.
- [K] E. Kobayashi, A remark on the Mordell-Weil rank of elliptic curves over the maximal abelian extension of the rational number field, Tokyo J. Math. 29 (2006), 295–300.
- [KW] M. Kuwata and L. Wang, Topology of rational points on isotrivial elliptic surfaces, Int. Math. Res. Notices 1993, 113–123.
- [M] J.-F. Mestre, Rang de courbes elliptiques d'invariant donné, C. R. Acad. Sci. Paris Sér. I Math. 314 (1992), 919–922.
- [S1] J. H. Silverman, Integer points on curves of genus 1, J. London Math. Soc. (2) 28 (1983), 1–7.
- [S2] J. H. Silverman, The Arithmetic of Elliptic Curves, Springer, New York, 1986.

Bo-Hae Im	Michael Larsen
Department of Mathematics	Department of Mathematics
Chung-Ang University	Indiana University
221 Heukseok-dong, Dongjak-gu	Bloomington, IN 47405, U.S.A.
Seoul, 156-756, South Korea	E-mail: mjlarsen@indiana.edu
E-mail: imbh@cau.ac.kr	