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1. Introduction. A long standing issue in number theory is to find
conditions on series to decide if their sums are rational or not. Very occa-
sionally, spectacular special results like R. Apéry’s proof of the irrationality
of ζ(3) =

∑∞
n=1 1/n3 come along [1]. General methods are however very

rare. Motivated by investigations in this vein Erdős [3] called a sequence
{an}∞n=1 irrational if the set

X{an}∞n=1 =

{ ∞∑
n=1

1

ancn
: cn ∈ N

}
,

which we refer to henceforth as its expressible set, contains no rational
numbers. Sequences that are not irrational are called rational. In [3] it is

shown that if lim infn→∞ a
1/2n

n > 1, lim supn→∞ a
1/2n

n =∞ and an ∈ N then∑∞
n=1 1/an is an irrational number. From this we can deduce that the se-

quence {22n} is irrational. In [5] it is shown that if for given ε > 0 we have
an < 2(2−ε)

n

and an ∈ R+ for all n ∈ N then the sequence {an}∞n=1 is ra-
tional and in fact that X{an}∞n=1 contains an interval. It appears to be the
case that, in general, evaluating the Lebesgue measure of the set X{an}∞n=1

is not easy. This has led to a number of studies under particular hypotheses.
For instance Hančl, Schinzel and Šustek [7] studied the case of geometric
sequences. Also Hančl and Šustek [8] studied boundedly expressible sets.
In [6] we give conditions on {an}∞n=1 to ensure that the Lebesgue measure
of the set X{an}∞n=1 is zero. In particular the following is shown. Let α, δ
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and ε be positive real numbers with 0 < α < 1 and let {an}∞n=1 and {bn}∞n=1

be sequences of positive integers with {an}∞n=1 nondecreasing. Suppose also

that lim supn→∞ a
1/3n

n =∞, that an ≥ n1+ε and that bn ≤ 2log
α
2 an for every

sufficiently large n. Then the expressible set of the sequence {an/bn}∞n=1 has
Lebesgue measure zero.

For a set E ⊆ R we call (Ui)
∞
i=1 a δ-cover of E if E ⊆

⋃∞
i=1 Ui and

diamUi = supx,y∈Ui |x− y| < δ. We define an outer measure by

Hsδ(E) = sup

∞∑
i=1

(diamUi)
s,

where the supremum is taken over all δ-covers. We also define Hs(E) =
lims→0Hsδ(E). There is a nonnegative real number s0 such that if s > s0
then Hs(E) = 0 and if s < s0 then Hs(E) = ∞. We call s0 the Hausdorff
dimension of E. We denote s0 by dimH(E). See [4] for a more systematic
discussion of the relevant ideas.

In this paper we prove the following refinement of our theorem from [6].

Theorem 1.1. Let α, δ and ε be positive real numbers with 0 < α < 1
and let {an}∞n=1 and {bn}∞n=1 be sequences of positive integers with {an}∞n=1

nondecreasing. Also suppose that

lim sup
n→∞

a1/(3+δ)
n

n =∞

and that

an ≥ n1+ε, bn ≤ 2log
α
2 an

for every sufficiently large n. Then

dimH

(
X

{
an
bn

}∞
n=1

)
≤ 2

2 + δ
.

We hope to return to the issue of lower bounds on another occasion.

2. Our main tool. Theorem 1.1 is an immediate consequence of the
following more general result.

Theorem 2.1. Let L be a positive integer and let α, β and ε be real
numbers with 0 < α < 1, 0 < ε and 0 ≤ β < ε/(1 + ε). Assume that
x1, . . . , xL,M1, . . . ,ML are real numbers such that xi 6= 0 and Mi ≥ 1 for
every i = 1, . . . , L. Let {an}∞n=1 be a nondecreasing sequence of positive
integers. Suppose that {bi,n}∞n=1, i = 1, . . . , L, are sequences of integers such
that for every i = 1, . . . , L and every sufficiently large n,

(2.1) |bi,n| ≤ 2log
α
2 anaMi

n .
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Assume that for every n,

(2.2) bn =
L∑
i=1

bi,nxi 6= 0.

For every sufficiently large n, let

(2.3) |bn| ≤ 2log
α
2 anaβn

and let

(2.4) an ≥ n1+ε.
Suppose that

(2.5) P = sup
{
M : lim sup

n→∞
a
1/( 1+M

1−β +1)n

n =∞
}
>

L∑
i=1

Mi.

Then

(2.6) dimH

(
X

{
an
bn

}∞
n=1

)
≤

1 +
∑L

i=1Mi

1 + P
.

3. Proof. For the proof of Theorem 2.1 we need the following two lem-
mas.

Lemma 3.1. Assume that sequences {an}∞n=1, {bn}∞n=1 and {bi,n}∞n=1 sat-
isfy the assumptions (2.1)–(2.4) of Theorem 2.1. Let M ≥ 1 be a real number
such that

(3.1) lim sup
n→∞

a
1/( 1+M

1−β +1)n

n =∞.

Then for every sequence {cn}∞n=1 of positive integers the inequality∣∣∣∣ ∞∑
n=1

bn
ancn

−
∑L

i=1 pixi
q

∣∣∣∣ < 1

(q log22 q)2
L log

(1+2α)/3
2 qqM

has infinitely many solutions p1, . . . , pL ∈ Z, q ∈ N with

pi = O(2log
(1+2α)/3
2 qqMi) for every i = 1, . . . , L.

Lemma 3.2. Let {Hj : j ∈ N} be a family of hypercubes. Suppose S ⊂ Rn
is a set such that

S ⊆ {t ∈ Rn : t ∈ Hj for infinitely many j ∈ N
}
.

If

(3.2)
∞∑
j=1

(diamHj)
m <∞

for some m > 0, then dimH(S) ≤ m.



88 J. Hančl et al.

Lemma 3.1 is the same as Lemma 6 in [6]. Lemma 3.2 is known as the
Hausdorff–Cantelli lemma and its proof can be found in [2].

Proof of Theorem 2.1. From assumption (2.5) we obtain (3.1) for every

M ∈ (
∑L

i=1Mi, P ). Hence we can use Lemma 3.1. For brevity let

hi(q) := 2log
(1+2α)/3
2 qqMi .

From Lemma 3.1 we deduce that for every sequence {cn}∞n=1 of positive
integers the inequality∣∣∣∣ ∞∑

n=1

bn
ancn

−
∑L

i=1 pixi
q

∣∣∣∣ < 1

qM+12L log
(1+2α)/3
2 q

has infinitely many solutions p1, . . . , pL ∈ Z, q ∈ N with

pi = O(hi(q))

for every i = 1, . . . , L. This implies that the expressible set of the sequence
{an/bn}∞n=1 is a subset of the set

S :=
∞⋂
N=1

∞⋃
q=N

bEh1(q)c⋃
p1=−bEh1(q)c

. . .

bEhL(q)c⋃
pL=−bEhL(q)c

Jp1,...,pL,q,

where E is a positive real constant not depending on q and

Jp1,...,pL,q

:=

(∑L
i=1 pixi
q

− 1

qM+12L log
(1+2α)/3
2 q

,

∑L
i=1 pixi
q

+
1

qM+12L log
(1+2α)/3
2 q

)
.

Every element ξ ∈ S lies in infinitely many sets Jp1,...,pL,q. The family

J := {Jp1,...,pL,q : p1, . . . , pL ∈ Z, q ∈ N, |pi| ≤ bEhi(q)c}
is a cover of the set S. The diameter of every set J ∈ J is

J =
2

qM+12L log
(1+2α)/3
2 q

.

Then, for every m with

(3.3)
1 +

∑L
i=1Mi

1 +M
< m < 1

we have∑
J∈J

(diam J)m =
∞∑
q=1

bEh1(q)c∑
p1=−bEh1(q)c

· · ·
bEhL(q)c∑

pL=−bEhL(q)c

2m

q(M+1)m2Lm log
(1+2α)/3
2 q

≤ D
∞∑
q=1

q
∑L
i=1Mi−(M+1)m2L(1−m) log

(1+2α)/3
2 q <∞.
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Here D is a suitable positive constant not depending on q, since

L∑
i=1

Mi − (M + 1)m < −1.

From Lemma 3.2 it follows that dimH(S) ≤ m. This fact holds for every
m satisfying (3.3). Hence

dimH

(
X

{
an
bn

}∞
n=1

)
≤ dimH(S) ≤

1 +
∑L

i=1Mi

1 +M
.

The fact that this inequality holds for every M ∈ (
∑L

i=1Mi, P ) gives

dimH

(
X

{
an
bn

}∞
n=1

)
≤

1 +
∑L

i=1Mi

1 + P

if P <∞ and

dimH

(
X

{
an
bn

}∞
n=1

)
= 0

if P =∞, and concludes the proof of Theorem 2.1.
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[7] J. Hančl, A. Schinzel and J. Šustek, On expressible sets of geometric sequences, Funct.

Approx. Comment. Math. 39 (2008), 71–95.
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