A set of squares without arithmetic progressions

by

Katalin Gyarmati and Imre Z. Ruzsa (Budapest)

To Andrzej Schinzel, with respect and gratitude

1. Introduction. The problem of finding arithmetic progressions in a partition of integers, or in a dense subset of the first N integers, is among the oldest and most investigated questions of combinatorial number theory. We focus on the analogous problem for the first N squares.

Let $Q(N)$ denote the maximal cardinality of sets $A \subset \{1^2, 2^2, \ldots, N^2\}$ which do not contain any nontrivial three-term arithmetic progression. The most fundamental question about this quantity, which we are unable to answer, is definitely the following.

Problem. Is $Q(N) = o(N)$?

We do not even have a convincing heuristic argument for one answer or the other. The only reason why we may be inclined to expect a positive answer is that so far we failed to construct such a set with positive density.

We are going to show that $Q(N)/N$ cannot tend to 0 too fast, which probably means that if it does so at all, this will be difficult to confirm.

Theorem. For every sufficiently large N there is a set $A \subset \{1, \ldots, N\}$ such that the equation

$$x^2 + y^2 = 2z^2$$

has no solution with $x, y, z \in A$ other than the trivial solutions $x = y = z$, and

$$|A| > cN/\sqrt{\log \log N}$$

with a positive constant c.

We are slightly more confident about the partition version.
Conjecture. If we split the set of positive integers into finitely many parts, then the equation \(x^2 + y^2 = 2z^2 \) has a nontrivial solution with \(x, y, z \) being in the same part.

2. Proof. We call a solution of our favourite equation

\[
(2.1) \quad x^2 + y^2 = 2z^2
\]

primitive if \(x, y, z \) are coprime. Clearly every nonzero solution can be written as \(x = dx', y = dy', z = dz' \), where \(d = \gcd(x, y, z) \) and \(x', y', z' \) is a primitive solution. We will call this primitive solution \((x', y', z')\) the stem of the solution \((x, y, z)\).

Lemma 1. If \(x, y, z \) form a primitive solution of \((2.1)\), then \(x, y \) consist exclusively of primes \(p \equiv \pm 1 \pmod{8} \), and \(z \) consists exclusively of primes \(p \equiv 1 \pmod{4} \).

This reformulates the well-known property of the quadratic character of 2 and \(-1\).

For an integer \(j \), \(1 \leq j \leq 7 \), let \(\nu_j(n) \) denote the number of prime divisors \(p \) of \(n \) satisfying \(p \equiv j \pmod{8} \), counted with multiplicity. These are completely additive functions.

Lemma 2. Let \(x, y, z \) be a solution of \((2.1)\). Write \(x = dx', y = dy', z = dz' \), where \(d = \gcd(x, y, z) \) and \((x', y', z')\) is its stem. We have

\[
(2.2) \quad \nu_5(x) - \nu_5(z) = -\nu_5(z'),
\]

\[
(2.3) \quad \nu_7(x) - \nu_7(z) = \nu_7(x').
\]

Proof. Indeed, \(\nu_5(x) = \nu_5(d) + \nu_5(x') = \nu_5(d) \) by the previous lemma and \(\nu_5(z) = \nu_5(d) + \nu_5(z') \); by subtracting we get \((2.2)\). Similarly \(\nu_7(x) = \nu_7(d) + \nu_7(x') \) and \(\nu_7(z) = \nu_7(d) + \nu_7(z') = \nu_7(d) \); by subtracting we get \((2.3)\). \(\square \)

Now we introduce the completely additive function

\[
\rho(n) = \nu_5(n) - \nu_7(n).
\]

Lemma 3. Let \(A \) be a set of integers with the property that \(\rho(n) = k \) for all \(n \in A \). Let \((x, y, z) \in A^3\) be a solution of \((2.1)\) with stem \((x', y', z')\). The three integers \(x', y', z' \) consist exclusively of primes \(p \equiv 1 \pmod{8} \).

Proof. By subtracting \((2.2)\) from \((2.3)\) we obtain

\[
\rho(z) - \rho(x) = \nu_7(x') + \nu_5(z').
\]

By the symmetric role of \(x \) and \(y \) we also have

\[
\rho(z) - \rho(y) = \nu_7(y') + \nu_5(z').
\]

On the left hand side of each equation we have 0 and on the right hand side a sum of nonnegative numbers, hence the numbers on the right hand side all
vanish. Since Lemma 1 already excludes the classes 3 and 5 (mod 8) for \(x' \) and \(y' \), as well as the classes 3 and 7 (mod 8) for \(z' \), only the class 1 (mod 8) remains.

By the Turán–Kubilius inequality we know that for most \(n \leq N \) the values of \(\rho(n) \) fall into an interval of length \(O(\sqrt{\log \log N}) \), so if we could exclude primitive solutions arising from primes in the congruence class 1 (mod 8) without much loss, we would be done. In what follows we achieve this.

Lemma 4. Let \((x, y, z) \) be a primitive solution of (2.1) with \(x > z > y \). There are coprime positive integers \(u, v \) of opposite parity such that
\[
x = u^2 - v^2 + 2uv, \quad y = |u^2 - v^2 - 2uv|, \quad z = u^2 + v^2.
\]

Proof. By looking at the residues modulo 4 we see that \(x, y, z \) must all be odd. We can now rewrite equation (2.1) as
\[
\left(\frac{x + y}{2} \right)^2 + \left(\frac{x - y}{2} \right)^2 = z^2
\]
and apply the familiar parametric representation of Pythagorean triples. ■

Let \(W \subset \mathbb{N}^2 \) be the set of pairs \((u, v)\) which generate a triplet \((x, y, z)\) in the representation described in Lemma 4 such that \(x, y, z \) consist exclusively of primes \(p \equiv 1 \) (mod 8).

Lemma 5.
\[
|W \cap [1, N]^2| = O(N^2 (\log N)^{-3/2}).
\]

Proof. For a fixed value of \(u \) write
\[
W_u = \{ v : 1 \leq v \leq N, (u, v) \in W \}.
\]
First we estimate \(|W_u| \).

Let \(p \) be an odd prime, \(p \not\equiv 1, 3 \) (mod 8). We show that certain residue classes modulo \(p \) are missing from \(W_u \).

If \(p \mid u \), then the class of 0 is missing by coprimality and we cannot claim anything more.

Assume now \(p \nmid u, p \equiv 5 \) (mod 8). Let \(i \) be the solution of the congruence
\[
i^2 \equiv -1 \pmod{p}.
\]
The assumption that \(p \nmid z = u^2 + v^2 \) can be rewritten as
\[
v \not\equiv \pm iu \pmod{p},
\]
which yields two excluded residue classes.

Assume next \(p \nmid u, p \equiv 7 \) (mod 8). Let \(i \) be the solution of the congruence
\[
i^2 \equiv 2 \pmod{p}.
\]
The assumption that
\[p \nmid x = u^2 - v^2 + 2uv = 2u^2 - (u - v)^2 \]
can be rewritten as
\[v \not\equiv (\pm i + 1)u \pmod{p}, \]
which yields two excluded residue classes.

The assumption that
\[p \nmid \pm y = u^2 - v^2 - 2uv = 2u^2 - (u + v)^2 \]
can be rewritten as
\[v \not\equiv (\pm i - 1)u \pmod{p}, \]
and it yields another two excluded residue classes. It is easily seen that these four classes are distinct, so altogether we have four excluded classes.

By a familiar sieve estimate (e.g. Theorem 2.2 in Halberstam and Richert’s book [2]) we obtain
\[
|W_u| < c_1 N \prod_{p | u} \left(1 - \frac{1}{p}\right) \prod_{p | u, p \equiv 5 \pmod{8}, p < \sqrt{N}} \left(1 - \frac{2}{p}\right) \prod_{p | u, p \equiv 7 \pmod{8}, p < \sqrt{N}} \left(1 - \frac{4}{p}\right),
\]
where
\[
f(u) = \prod_{p | u, p \equiv 5 \pmod{8}} \frac{p - 1}{p - 2} \prod_{p | u, p \equiv 7 \pmod{8}} \frac{p - 1}{p - 4}.
\]

By using Dirichlet’s classical estimate
\[
\sum_{p \leq x, p \equiv j \pmod{8}} \frac{1}{p} = \frac{1}{4} \log \log x + O(1)
\]
for \(j = 5 \) and \(7 \) we get
\[
|W_u| < c_2 f(u) N (\log N)^{-3/2}.
\]

Our function \(f(u) \) is unbounded, but it is bounded in mean:
\[
\sum_{u \leq N} f(u) < c_3 N.
\]

Estimates for sums of multiplicative functions that include the above one can be found in many places, for instance Corollary 5.1 in Tenenbaum’s book [6]. This implies the claim of the lemma.
Lemma 6.

\[\sum_{(u,v) \in W} \frac{1}{u^2 + v^2} < \infty. \]

Proof. This follows from the previous lemma by partial summation. ■

Lemma 7. Let \(V \) be a set of positive integers and let \(B \) be the set of those positive integers that are not divisible by any element of \(V \). The set \(B \) has an asymptotic density and it is at least

\[\prod_{v \in V} \left(1 - \frac{1}{v} \right). \]

This is the Heilbronn–Rohrbach inequality (see e.g. [3]).

Proof of the Theorem. Let \(B \) be the set of integers which are not divisible by any number of the form \(u^2 + v^2 \), \((u,v) \in W\). By the previous lemma this set has a positive asymptotic density, say \(c_3 \). Now put

\[A_k = \{ n \in B : n \leq N, \rho(n) = k \} \]

with a suitable \(k \). We claim that

(i) equation (2.1) has no nontrivial solution in any \(A_k \),
(ii) for a suitable \(k \) (depending on \(N \)) we have

\[|A_k| > cN/\sqrt{\log \log N}. \]

These claims together clearly imply the Theorem.

For claim (i), suppose on the contrary that there is a solution \(x, y, z \) with stem \(x', y', z' \). By Lemma 3 these latter three integers consist only of primes \(\equiv 1 \pmod{8} \). Hence they are generated by some \((u,v) \in W\) and we would have

\[u^2 + v^2 = z' \mid z \in A_k \subset B, \]

a contradiction with the definition of \(B \).

To show claim (ii), recall that the Turán–Kubilius inequality tells us

\[\sum_{n=1}^{N} (\rho(n) - m)^2 < c_4 N \sum_{p^k \leq N} p^{-k} \rho(p^k)^2 < c_5 N \log \log N, \]

where

\[m = \sum_{p \leq N} \rho(p)/p. \]

In particular, with a well-chosen \(c_6 \) there are \(< (c_3/2)N \) integers up to \(N \) such that

\[|\rho(n) - m| \geq c_6 \sqrt{\log \log N}. \]
Omit these from \(B \); the rest still has \(> (c_3/2)N \) elements up to \(N \), and for some of the at most \(2c_6\sqrt{\log \log N} \) possible values of \(\rho(n) \) at least one will appear \(cN/\sqrt{\log \log N} \) times. \(\square \)

3. Concluding remarks. Besides three-term progressions, characterized by the equation \(x + y = 2z \), one can consider the more general arithmetic-mean equation

\[
x_1 + \cdots + x_k = ky.
\]

Let \(Q_k(N) \) denote the maximal cardinality of sets \(A \subset \{1^2, 2^2, \ldots, N^2\} \) which do not contain any nontrivial solution of this equation (so that \(Q(N) = Q_2(N) \)). It is not difficult (though not quite obvious) to show \(Q_k(N) = o(N) \) for \(k \geq 6 \). Ben Green outlined to the authors a method that would prove this claim for \(k = 4 \), with the possibility of giving an effective estimate. This seems to be a limit to analytic methods.

It is not easy to estimate this quantity from below either. Let \(R_k(N) \) denote the maximal cardinality of sets \(A \subset [1, N] \) which do not contain any nontrivial solution of this equation. By a general theorem of Komlós, Sulyok and Szemerédi [4] (see also [5]) we know that \(Q_k(n) \gtrsim R_k(n) \). The best known lower estimate of \(R_k(N) \) is

\[
R_k(N) \gtrsim N \exp(-c_k \sqrt{\log N}),
\]

Behrend’s bound [1] with obvious changes. Can one do any better?

Problem. Is

\[
Q_3(N) \gtrsim N(\log N)^{-c}
\]

with some constant \(c \)?

While it is unlikely that the asymptotic behaviour of these quantities will be known in the near future, still it may be possible to compare them.

Problem. Given an integer \(k \geq 2 \), is there another integer \(l \) such that \(Q_l(N) \lesssim R_k(N) \)?

Acknowledgements. The authors were supported by ERC–AdG grant no. 228005 and Hungarian National Foundation for Scientific Research (OTKA) grants no. K67676, K72731, K81658 and PD72264.

References

A set of squares without arithmetic progressions

Katalin Gyarmati
Algebra and Number Theory Department
Eötvös Loránd University
H-1117 Budapest, Hungary
E-mail: gykati@cs.elte.hu

Imre Z. Ruzsa
Alfréd Rényi Institute of Mathematics
Pf. 127, H-1364 Budapest, Hungary
E-mail: ruzsa@renyi.hu

Received on 23.7.2011
and in revised form on 24.2.2012