Generators and integer points on the elliptic curve $y^{2}=x^{3}-n x$

by
Yasutsugu Fujita (Narashino) and Nobuhiro Terai (Ashikaga)

1. Introduction. Let E be an elliptic curve over the rationals \mathbb{Q}. Mordell's theorem asserts that the group $E(\mathbb{Q})$ of rational points on E is finitely generated, and Siegel's theorem states that for a fixed Weierstrass equation defining E, the set of integer points on E is finite. We are interested in determining the generators for $E(\mathbb{Q})$ and the integer points on E for some families of E. More precisely, in this paper, we treat the elliptic curve

$$
E: y^{2}=x^{3}-n x
$$

with a positive integer n, and examine the generators for the rank one or two part of $E(\mathbb{Q})$ and the integer points contained in the group generated by the generators and the torsion points.

First, we consider the case of rank at least one. Let N be a positive integer and E the elliptic curve defined by $y^{2}=x^{3}-N^{2} x$. Then the torsion subgroup $E(\mathbb{Q})_{\text {tors }}$ is $\left\{O, T_{1}, T_{2}, T_{3}\right\}$, where $T_{1}=(-N, 0), T_{2}=(0,0)$ and $T_{3}=(N, 0)$. Using height functions and elliptic divisibility sequences, Ingram showed the following.

Theorem 1.1 ([14, Theorem 2]). Let N be a square-free integer and E the elliptic curve defined by $y^{2}=x^{3}-N^{2} x$. Let P be an integer point on E of infinite order. Then there exists at most one integer $m>1$ such that $m P$ is integral.

We apply Theorem 1.1 to give a uniform upper bound for the number of integer points in the rank one case.

Theorem 1.2. Let N be a square-free integer and E the elliptic curve defined by $y^{2}=x^{3}-N^{2} x$. Let P be a non-torsion point in $E(\mathbb{Q})$ such that the x-coordinate of P is negative. Let Γ be the subgroup of $E(\mathbb{Q})$ generated

[^0]by the points P, T_{1} and T_{2}, and let Z be the set of integer points in Γ. Then there exist positive integers m_{1}, m_{2}, m_{3} with m_{1}, m_{2} odd and m_{3} even such that
\[

$$
\begin{aligned}
& Z \subset\left\{T_{1}, T_{2}, T_{3}, \pm P, \pm P+T_{1}, \pm P+T_{2}, \pm P+T_{3},\right. \\
& \left. \pm m_{1} P+T_{1}, \pm m_{2} P+T_{2}, \pm m_{3} P+T_{3}\right\} .
\end{aligned}
$$
\]

In particular, Z has at most 17 points.
Note that without loss of generality we may assume that "the x-coordinate of P is negative". If it is positive, then the x-coordinate of $P+T_{2}$ is negative and we can replace P by $P+T_{2}$.

We furthermore examine the congruent number elliptic curve with $N=$ $s t\left(s^{2}+t^{2}\right) / 2$, found by Serf [18].

Theorem 1.3. Let s and t be positive integers, and assume that the integer $N=\operatorname{st}\left(s^{2}+t^{2}\right) / 2$ is square-free and greater than one. Let E be the elliptic curve defined by $y^{2}=x^{3}-N^{2} x$, and $P=\left(-s^{2} t^{2}, s^{2} t^{2}\left(s^{2}-t^{2}\right) / 2\right)$ the point in $E(\mathbb{Q})$.
(1) The point P can be in a system of generators for $E(\mathbb{Q})$.
(2) Let Γ be the subgroup of $E(\mathbb{Q})$ generated by the points P, T_{1} and T_{2}, and let Z be the set of integer points in Γ. Then there exist positive integers m_{1} and m_{2} with m_{1} odd and m_{2} even such that

$$
Z \subset\left\{T_{1}, T_{2}, T_{3}, \pm P, \pm P+T_{2}, \pm m_{1} P+T_{2}, \pm Q\right\}
$$

where $Q \in\left\{P+T_{1}, m_{2} P+T_{3}\right\}$. Moreover, if $|s-t|=1$, then $Z=$ $\left\{T_{1}, T_{2}, T_{3}, \pm P, \pm P+T_{1}\right\}$.
Theorem 1.3 implies the following.
Corollary 1.4. Let s and t be positive integers, and N the square-free integer, greater than one, of the form either

$$
\text { (i) } N=\frac{1}{2}\left(s^{4}+t^{4}\right) \quad \text { or } \quad \text { (ii) } N=s^{4}+4 t^{4}
$$

Let E be the elliptic curve defined by $y^{2}=x^{3}-N^{2} x$, and P the point on E of the form either
(i) P $P=\left(-s^{2} t^{2}, \frac{1}{2}\right.$

- If (ii) $N=s^{4}+4 t^{4}$, then either $Z=\left\{T_{1}, T_{2}, T_{3}, \pm P\right\}$ or $Z=$ $\left\{T_{1}, T_{2}, T_{3}, \pm P, \pm P+T_{1}\right\}$; the latter case occurs if and only if $\left|s^{2}-2 t^{2}\right|=1$.
Secondly, consider the case of rank at least two. Let $n=s^{4}+t^{4}$ with distinct positive integers s, t and let E be the elliptic curve defined by $y^{2}=$ $x^{3}-n x$. Then the torsion subgroup $E(\mathbb{Q})_{\text {tors }}$ is $\{O, T\}$, where $T=(0,0)$. In the case where n is prime, Spearman [24] proved that the rank of $E(\mathbb{Q})$ is exactly two, and the authors [10] showed that the points $P_{1}=\left(-t^{2}, s^{2} t\right)$ and $P_{2}=\left(-s^{2}, s t^{2}\right)$ are independent modulo $E(\mathbb{Q})_{\text {tors }}$, and that if $t=1$, then the set of integer points on E is $\left\{T, \pm P_{1}, \pm P_{2}, \pm P_{1}+T\right\}$. The third theorem in the present paper is a generalization of these results.

Theorem 1.5. Let s and t be positive integers with $s>t$ and put $n=$ $s^{4}+t^{4}$. Let E be the elliptic curve defined by $y^{2}=x^{3}-n x$, and let $P_{1}=$ $\left(-t^{2}, s^{2} t\right)$ and $P_{2}\left(-s^{2}, s t^{2}\right)$ be the points in $E(\mathbb{Q})$.
(1) If n is fourth-power-free, then the points P_{1} and P_{2} can be in a system of generators for $E(\mathbb{Q})$.
(2) Assume that n is square-free. Let Γ be the subgroup of $E(\mathbb{Q})$ generated by the points T, P_{1} and P_{2}, and let Z be the set of integer points in Γ. Then there exist coprime integers m_{1} and m_{2} with $m_{1} \not \equiv m_{2}$ $(\bmod 2)$ such that

$$
Z \subset\left\{T, \pm P_{1}, \pm P_{2}, \pm\left(P_{1}-P_{2}\right), \pm\left(m_{1} P_{1}+m_{2} P_{2}\right)+T\right\}
$$

Moreover, if $n=s^{4}+1>17$, then $Z=\left\{T, \pm P_{1}, \pm P_{2}, \pm P_{1}+T\right\}$.
Remark 1.6.
(1) For the curve E in Theorem 1.5(1), if n is a prime number, then the rank of $E(\mathbb{Q})$ is two by the theorem in [24]. Therefore, $E(\mathbb{Q})=$ $(\mathbb{Z} / 2 \mathbb{Z}) T+\mathbb{Z} P_{1}+\mathbb{Z} P_{2}$ for n prime.
(2) In Theorem 1.5(2), $\pm\left(P_{1}-P_{2}\right) \in Z$ if and only if $t=s-1$, since $x\left(P_{1}-P_{2}\right)=\left(s^{2}-s t+t^{2}\right)^{2} /(s-t)^{2}$.
(3) If $n=2^{4}+1^{4}=17$ in Theorem 1.5, then the set Z has exactly nine elements:

$$
\begin{aligned}
Z & =\left\{T, \pm P_{1}, \pm P_{2}, \pm\left(P_{1}-P_{2}\right), \pm P_{1}+T\right\} \\
& =\{(0,0),(-1, \pm 4),(-4, \pm 2),(9, \pm 24),(17, \pm 68)\} .
\end{aligned}
$$

It is to be mentioned that Duquesne [8, 9] determined the generators and the integer points on some parameterized elliptic curves assuming $\operatorname{rank} E(\mathbb{Q})$ $=1$ or 2 , where the main tool is "height functions". Our strategy common to the proofs concerning integer points is to combine "computing height functions" and "considering integer points modulo $2 E(\mathbb{Q})$ ". As far as we know, the latter was used to examine integer points on elliptic curves first by Dujella and Pethő [7], who showed the following: Let $\left\{c_{k}\right\}$ be the recurrence
sequence defined by $c_{1}=8, c_{2}=120, c_{k+2}=14 c_{k+1}-c_{k}+8(k \geq 1)$ and E the elliptic curve defined by $y^{2}=(x+1)(3 x+1)\left(c_{k} x+1\right)$. Assume that the rank of $E(\mathbb{Q})$ is two. Then the integer points on E are $(-1,0),(0, \pm 1)$, $\left(c_{k-1}, \pm s_{k-1} t_{k-1}\left(2 c_{k}-s_{k} t_{k}\right)\right),\left(c_{k+1}, \pm s_{k+1} t_{k+1}\left(2 c_{k}+s_{k} t_{k}\right)\right)$, where s_{k} and t_{k} are positive integers defined by $c_{k}+1=s_{k}^{2}$ and $3 c_{k}+1=t_{k}^{2}$, respectively. Note that $\left\{1,3, c_{k}\right\}$ is a Diophantine triple, which means that both $c_{k}+1$ and $3 c_{k}+1$ are perfect squares.

In the rank one case, the following fact also plays an important role in examining integer points (see [20, Exercise 9.12]), which will be frequently used in Section 4.

Fact. If a point Q in $E(\mathbb{Q})$ is not integral (with respect to a Weierstrass equation for E), then neither is $m Q$ for any positive integer m.

We now fix the notation. Let E be an elliptic curve defined by $y^{2}=$ $x^{3}-n x$ with a positive integer n. In the case where $n=N^{2}$ for some positive integer N, let $T_{1}=(-N, 0), T_{2}=(0,0)$ and $T_{3}=(N, 0)$ be the 2 -torsion points, and in the case where n is non-square, let $T=(0,0)$ be the 2-torsion point in $E(\mathbb{Q})$. Denote by $x(Q)$ the x-coordinate of a point Q on E. For Q in $E(\mathbb{Q})$ with $x(Q)=a / b$ and $\operatorname{gcd}(a, b)=1$, the naïve height $h: E(\mathbb{Q}) \rightarrow \mathbb{R}$ is defined by $h(Q)=\log \max \{|a|,|b|\}$. The canonical height $\hat{h}: E(\mathbb{Q}) \rightarrow \mathbb{R}$ is defined by

$$
\hat{h}(Q)=\lim _{n \rightarrow \infty} \frac{1}{4^{n}} h\left(2^{n} Q\right)
$$

(note that this value is the same as defined in [3, 9] and is double that of [20, 21, (5). The canonical height has a decomposition into local heights:

$$
\hat{h}(Q)=\sum_{p: \text { prime or } \infty} \hat{\lambda}_{p}(Q) \quad\left(=\hat{h}_{\mathrm{fin}}(Q)+\hat{\lambda}_{\infty}(Q)\right) \quad \text { for } Q \in E(\mathbb{Q}) \backslash\{O\} .
$$

We normalize the symbols $\hat{\lambda}_{p}$ following [9] (which are double the definitions in [5], and satisfy $\hat{\lambda}_{p}=2\left(\hat{\lambda}_{p}^{\prime}+\log |\Delta|_{p} / 12\right)$, where $\hat{\lambda}_{p}^{\prime}$ denote the local heights defined in [21, [22]). By $E(\mathbb{R})^{0}$ we denote the identity component of $E(\mathbb{R})$. Finally, \square denotes the square of a rational number.
2. Preliminary results on Diophantine equations. In this section, we quote the results on Diophantine equations that are crucial to the proofs of our results.

Lemma 2.1 (cf. [25, Theorems 1, 2]). Let d be a positive integer. The system of simultaneous Pell equations

$$
X^{2}-d Y^{2}=1, \quad Z^{2}-2 d Y^{2}=1
$$

has at most one solution in positive integers. Moreover, if the system has a positive integer solution, then there exists a prime divisor p of d such that $p \equiv 3(\bmod 4)$ 。

Lemma 2.2 (cf. [6, Theorem]; see also [16]). Let d be a positive integer. If $d \neq 1785$, then the Diophantine equation

$$
X^{4}-d Y^{2}=1
$$

has at most one solution in positive integers. In the case where $d=1785$, it has exactly two positive integer solutions $(X, Y)=(13,4),(239,1352)$.

Lemma 2.3 (cf. [4, Theorem D]). Let d be an integer greater than two. Then the Diophantine equation

$$
X^{2}-d Y^{4}=-1
$$

has at most one solution in positive integers.
3. Proof of Theorem $\mathbf{1 . 2}$, By the following lemma, considering integer points P modulo $2 E(\mathbb{Q})$ reduces to considering $x(P)$ modulo squares.

Lemma 3.1 ([15, Proposition 4.6]). Let $\left\{\delta_{1}, \delta_{2}, \delta_{3}\right\}=\{-N, 0, N\}$. Then the $\operatorname{map} \varphi: E(\mathbb{Q}) \rightarrow \mathbb{Q}^{\times} /\left(\mathbb{Q}^{\times}\right)^{2}$ defined by

$$
\varphi(X)= \begin{cases}\left(x+\delta_{1}\right)\left(\mathbb{Q}^{\times}\right)^{2} & \text { if } X=(x, y) \neq O,\left(-\delta_{1}, 0\right) \\ \left(\delta_{2}-\delta_{1}\right)\left(\delta_{3}-\delta_{1}\right)\left(\mathbb{Q}^{\times}\right)^{2} & \text { if } X=\left(-\delta_{1}, 0\right) \\ \left(\mathbb{Q}^{\times}\right)^{2} & \text { if } X=O\end{cases}
$$

is a group homomorphism.
Proof of Theorem 1.2. Let $X=(x, y)$ be an integer point in Γ. Then we have $X \equiv X_{1}(\bmod 2 \Gamma)$, where

$$
X_{1} \in\left\{O, T_{1}, T_{2}, T_{3}, P, P+T_{1}, P+T_{2}, P+T_{3}\right\}
$$

Suppose that $X_{1}=O$. Then we see from Lemma 3.1 that there exist positive integers x_{0}, A, B such that

$$
x=x_{0}^{2}, \quad x+N=A^{2}, \quad x-N=B^{2}
$$

yielding $A^{2}+B^{2}=2 x_{0}^{2}$. The solutions of this Diophantine equation have the form

$$
x_{0}=k\left(\alpha^{2}+\beta^{2}\right), \quad A=k\left(\alpha^{2}-\beta^{2}+2 \alpha \beta\right), \quad B=k\left(\alpha^{2}-\beta^{2}-2 \alpha \beta\right)
$$

for some integers k, α, β. Hence,

$$
N=A^{2}-x_{0}^{2}=k^{2}\left(\alpha^{2}-\beta^{2}+2 \alpha \beta\right)^{2}-k^{2}\left(\alpha^{2}+\beta^{2}\right)^{2}=4 k^{2} \alpha \beta\left(\alpha^{2}-\beta^{2}\right)
$$

which contradicts the square-freeness of N. Therefore, we obtain $X_{1} \neq O$.
If $X_{1}=T_{1}$, then by Lemma 3.1 we have $x=-N x_{0}^{2}$ and $x+N=2 \square$ for some positive integer x_{0}, which together with the square-freeness of N implies $-x_{0}^{2}+1=2 N \square$. This shows that $x_{0}=1$ and $X=T_{1}$.

If $X_{1}=T_{2}$, then we have $x=-x_{0}^{2}$ and $x+N=N \square$ for some nonnegative integer x_{0}, which gives $-N x_{1}^{2}+1=\square$ for some non-negative integer x_{1}. Hence, $x_{1}=x_{0}=0$ and $X=T_{2}$.

Suppose that $X_{1}=T_{3}$. Then $x=N x_{0}^{2}, x-N=2 \square$ and $x+N=2 N \square$ for some positive integer x_{0}, which implies that there exist non-negative integers α and β such that

$$
\begin{equation*}
x_{0}^{2}-2 N \alpha^{2}=1, \quad \beta^{2}-N \alpha^{2}=1 \tag{3.1}
\end{equation*}
$$

By Lemma 2.1, there exists a positive integer m_{3} such that $X=T_{3}$ or $X= \pm m_{3} P+T_{3}$, where m_{3} must be even, since $X \equiv T_{3}(\bmod 2 \Gamma)$.

Suppose that $X_{1}=P+T_{i}(i \in\{1,2\})$. If $P+T_{i}$ is not integral, then neither is $m P+T_{i}$ for any odd integer m. Hence, $X_{1} \neq P+T_{i}$. If $P+T_{i}$ is integral, then Theorem 1.1 implies that there exists at most one integer $m_{i}>1$ such that $m_{i} P+T_{i}$ is integral. Hence, $X= \pm P+T_{i}$ or $X= \pm m_{i} P+T_{i}$, where m_{i} must be odd, since $X \equiv P+T_{i}(\bmod 2 \Gamma)$.

Finally, suppose that $X_{1}=P$ or $X_{1}=P+T_{3}$. Then since $X_{1} \notin E(\mathbb{R})^{0}$ and hence $X \notin E(\mathbb{R})^{0}$, by Lemma 4.2 in [2] we know that if $X=m P+T$ for $m \in \mathbb{Z}$ and $T \in E(\mathbb{Q})_{\text {tors }}$, then $|m| \leq 2$. Thus, we obtain $m= \pm 1$ and $X= \pm P$ or $X= \pm P+T_{3}$, respectively. This completes the proof of Theorem 1.2 .

REmARK 3.2. It is not difficult to give those examples where Z contains 13 points. Let a, b, c be a relatively prime Pythagorean triple with $a^{2}+b^{2}=c^{2}$ and put $N=a b / 2$. Then the elliptic curve $E: y^{2}=x^{3}-N^{2} x$ has the following integer points:

$$
T_{1}, T_{2}, T_{3}, \pm P, \pm P+T_{1}, \pm P+T_{2}, \pm P+T_{3}
$$

where $P=\left(-a(c-a) / 2, a^{2}(c-a) / 2\right)$. Since the denominator of $x\left(2 P+T_{3}\right)$ is $(a-b)^{2}$, we see that $2 P+T_{3} \in Z$ if and only if $|a-b|=1$. In this case, $a^{2}+(a \pm 1)^{2}=c^{2}$ shows that

$$
(2 a \pm 1)^{2}-2 c^{2}=-1
$$

Hence, one can assert the following:
Let u, v be positive integers satisfying $u^{2}-2 v^{2}=-1$. Put $N=\left(u^{2}-1\right) / 8$ and $P=\left(-a(c-a) / 2, a^{2}(c-a) / 2\right)$. Then

$$
Z \supset\left\{T_{1}, T_{2}, T_{3}, \pm P, \pm P+T_{1}, \pm P+T_{2}, \pm P+T_{3}, \pm 2 P+T_{3}\right\}
$$

For example, if $N=6$ and $P=(-3,9)$ with $u=7$ and $v=5$, then the rank of $E(\mathbb{Q})$ is one and Z is exactly the set of 13 points above.

On the other hand, we could not find any integer point of the form $m_{1} P+T_{1}$ or $m_{2} P+T_{2}$ with odd integers m_{1}, m_{2} greater than one. We checked by Magma [1] that if $N<10^{10}$ and $3 \leq m_{i} \leq 19(i \in\{1,2\})$, then $m_{i} P+T_{i}$ cannot be integral, which leads us to conjecture that Z has at most 13 points.
4. Proof of Theorem 1.3. We consider the elliptic curve $E: y^{2}=$ $x^{3}-n x$ for general n for the moment. Let \bar{E} be the elliptic curve defined by
$y^{2}=x^{3}+4 n x$ and $\psi: \bar{E} \rightarrow E$ the isogeny defined by

$$
(\bar{x}, \bar{y}) \mapsto\left(\frac{\bar{y}^{2}}{4 \bar{x}^{2}}, \frac{\left(\bar{x}^{2}-4 n\right) \bar{y}}{8 \bar{x}^{2}}\right)
$$

The following lemma is an immediate consequence of (iii) in [23, p. 83] and its proof.

Lemma 4.1. Let $Q \neq O$ be a point in $E(\mathbb{Q})$.
(1) $Q \in \psi(\bar{E}(\mathbb{Q}))$ if and only if $x(Q)$ is a square. In this case, putting $Q=(x, y)$ with $x=x_{0}^{2}$, one can express $\bar{Q} \in \bar{E}(\mathbb{Q})$ with $\psi(\bar{Q})=Q$ as

$$
\bar{Q}=\left(2\left(x_{0}^{2} \pm \frac{y}{x_{0}}\right), \pm 2 x_{0} x(\bar{Q})\right)
$$

where the signs are taken simultaneously.
(2) $Q \in 2 E(\mathbb{Q})$ if and only if both $x(Q)$ and $x(\bar{Q})$ are squares for some $\bar{Q} \in \bar{E}(\mathbb{Q})$ with $\psi(\bar{Q})=Q$.

We here quote the results of [11] on the computation of the non-Archimedean part $\hat{h}_{\text {fin }}$ of the canonical height \hat{h} and a uniform lower bound for \hat{h} of a non-torsion point.

Lemma 4.2 ([11, Lemma 3.1]). Assume that n is fourth-power-free. For any point $Q=\left(\alpha / \delta^{2}, \beta / \delta^{3}\right)$ in $E(\mathbb{Q})$ with $\alpha, \beta, \delta \in \mathbb{Z}, \operatorname{gcd}(\alpha, \delta)=\operatorname{gcd}(\beta, \delta)=$ 1 and $\delta>0$, we have

$$
\begin{equation*}
\hat{h}_{\mathrm{fin}}(Q)=2 \log \delta-\frac{1}{2} \log \left(\prod_{p_{i} \mid \alpha, \beta, n, p_{i} \neq 2} p_{i}^{e_{i}}\right)+\hat{h}_{2}(Q) \tag{4.1}
\end{equation*}
$$

where $p_{i}^{e_{i}} \| n$ with $e_{i} \in\{1,2,3\}$, and $\hat{h}_{2}(Q)$ is given by the following:

- If δ is even, then $\hat{h}_{2}(Q)=0$.
- If δ is odd, then for v_{2} denoting the valuation on \mathbb{Q} normalized by $v_{2}(2)=1$:

n	α	β	$\hat{h}_{2}(Q)$
even	odd	odd	0
odd	even	even	0
odd	odd	even	$-\frac{1}{2} \log 2$
$v_{2}(n)=1$	even	even	$-\frac{1}{2} \log 2$
$v_{2}(n)=2$ and $n / 4 \equiv 1(\bmod 4)$	$v_{2}(\alpha)=1$	$v_{2}(\beta) \geq 3$	$-\frac{3}{2} \log 2$
$v_{2}(n)=2$ and $n / 4 \equiv 3(\bmod 4)$	$v_{2}(\alpha)=1$	$v_{2}(\beta)=2$	$-\frac{7}{4} \log 2$
$v_{2}(n)=2$	$v_{2}(\alpha) \geq 2$	$v_{2}(\beta) \geq 2$	$-\log 2$
$v_{2}(n)=3$	$v_{2}(\alpha) \geq 3$	$v_{2}(\beta) \geq 3$	$-\frac{3}{2} \log 2$

Lemma 4.3 ([11, Proposition 3.3]). Assume that n is fourth-power-free. If $n \not \equiv 12(\bmod 16)$, then

$$
\hat{h}(Q)>0.125 \log n+0.3917
$$

for any non-torsion point Q in $E(\mathbb{Q})$.
Remark 4.4.
(1) If n is fourth-power-free, then the equation $y^{2}=x^{3}-n x$ is globally minimal and we may apply Silverman's algorithm [21, Theorem 5.2] to compute \hat{h}_{fin}. That is why we assume that n is fourth-power-free in Lemmas 4.2 and 4.3 .
(2) If n has the form $n=N^{2}$ or $n=s^{4}+t^{4}$ for some integers N, s, t, then $n \not \equiv 12(\bmod 16)$, and we have the inequality in Lemma 4.3.
We estimate the Archimedean part $\hat{\lambda}_{\infty}$ of the canonical height of a specific point using Tate's series (see [21):

$$
\begin{equation*}
\hat{\lambda}_{\infty}(Q)=\log |x(Q)|+\frac{1}{4} \sum_{k=0}^{\infty} \frac{c_{k}(Q)}{4^{k}}, \tag{4.2}
\end{equation*}
$$

where $c_{k}(Q)=\log \left(1+n / x\left(2^{k} Q\right)^{2}\right)^{2}$ for $Q \in E(\mathbb{Q}) \backslash E(\mathbb{Q})_{\text {tors }}$. Note that the series converges for any $Q \in E(\mathbb{Q}) \backslash E(\mathbb{Q})_{\text {tors }}$, since $2^{k} Q \in E(\mathbb{R})^{0}$ and $x\left(2^{k} Q\right) \geq \sqrt{n}$ for all positive integers k.

We now restrict ourselves to the case $n=N^{2}$ and let $N=s t\left(s^{2}+t^{2}\right) / 2$ ≥ 5 be square-free with positive integers s and t. Then the elliptic curve $E: y^{2}=x^{3}-N^{2} x$ has the rational point $P=\left(-s^{2} t^{2}, s^{2} t^{2}\left(s^{2}-t^{2}\right) / 2\right)$ of infinite order, and we have
$x\left(P+T_{1}\right)=\frac{N(s+t)^{2}}{(s-t)^{2}}, x\left(P+T_{2}\right)=\frac{\left(s^{2}+t^{2}\right)^{2}}{4}, x\left(P+T_{3}\right)=-\frac{N(s-t)^{2}}{(s+t)^{2}}$.
Lemma 4.5. $T_{1}, T_{2}, T_{3}, P, P+T_{1}, P+T_{2}, P+T_{3} \notin 2 E(\mathbb{Q})$.
Proof. Since $E(\mathbb{Q})_{\text {tors }}=\left\{O, T_{1}, T_{2}, T_{3}\right\}$, it is clear that $T_{1}, T_{2}, T_{3} \notin$ $2 E(\mathbb{Q})$. It is also clear that $P, P+T_{3} \notin 2 E(\mathbb{Q})$, since they are not in $E(\mathbb{R})^{0}$. From $x\left(P+T_{1}\right)=N \square$, the square-freeness of N and Lemma 3.1, we see that $P+T_{1} \notin 2 E(\mathbb{Q})$.

It remains to check the point $P+T_{2}$. Since $x\left(P+T_{2}\right)=\square$, Lemma 4.1 (1) implies that $P+T_{2}$ is in the image of $\bar{E}(\mathbb{Q})$ under ψ, and that any point $\bar{P} \in \bar{E}(\mathbb{Q})$ with $\psi(\bar{P})=P+T_{2}$ satisfies either $x(\bar{P})=s^{2}\left(s^{2}+t^{2}\right)$ or $x(\bar{P})=t^{2}\left(s^{2}+t^{2}\right)$. Since $N=s t\left(s^{2}+t^{2}\right) / 2$ is square-free, $x(\bar{P})$ cannot be a square. It follows from Lemma 4.1(2) that $P+T_{2} \notin 2 E(\mathbb{Q})$.

Lemma 4.6. $\hat{h}(P)<0.667 \log N+0.463$.
Proof. Since $\operatorname{gcd}\left(s t, s^{2}+t^{2}\right)=1$ and $s^{3} t^{3}>N$, Lemma 4.2 implies that

$$
\hat{h}_{\mathrm{fin}}(P)=-\log (s t)+\hat{h}_{2}(P)<-\frac{1}{3} \log N .
$$

Moreover, by 4.2),

$$
\begin{aligned}
\hat{\lambda}_{\infty} & \leq \frac{1}{2} \log \left(x(P)^{2}+N^{2}\right)+\frac{1}{4} \sum_{k=1}^{\infty} \frac{1}{4^{k}} \cdot 2 \log \left(1+\frac{N^{2}}{x\left(2^{k} P\right)^{2}}\right) \\
& \leq \frac{1}{2} \log \left(2 N^{2}\right)+\frac{1}{6} \log 2=\log N+\frac{2}{3} \log 2
\end{aligned}
$$

The assertion now follows immediately from the equality $\hat{h}(P)=\hat{h}_{\mathrm{fin}}(P)+$ $\hat{\lambda}_{\infty}(P)$.

Proof of Theorem 1.3. (1) Suppose that $P+T=m Q$ for some points $Q \in E(\mathbb{Q}), T \in E(\mathbb{Q})_{\text {tors }}$ and some integer $m \geq 2$. By the basic property of the canonical height and Lemma 4.3 ,

$$
\hat{h}(P)=\hat{h}(m Q)=m^{2} \hat{h}(Q)>0.25 m^{2} \log N+0.3917
$$

which together with Lemma 4.6 implies that

$$
\left(m^{2}-2.668\right) \log N<0.282
$$

Since $m \geq 3$ by Lemma 4.5, we obtain $N<e^{0.05}<1.1$, which contradicts $N \geq 5$. Therefore, $P+T$ does not have an m-division point in $E(\mathbb{Q})$ for any $T \in E(\mathbb{Q})_{\text {tors }}$ and $m \geq 2$, which means that P can be in a system of generators for $E(\mathbb{Q})$.
(2) Let $X=(x, y)$ be a point in Z. We see from (1) that $X \equiv X_{1}$ $(\bmod 2 \Gamma)$, where

$$
X_{1} \in\left\{O, T_{1}, T_{2}, T_{3}, P, P+T_{1}, P+T_{2}, P+T_{3}\right\}
$$

We have already seen in the proof of Theorem 1.2 that $X_{1} \neq O$, and that if $X_{1} \in\left\{T_{1}, T_{2}, P, P+T_{3}\right\}$, then $X= \pm X_{1}$. Suppose that $X_{1}=P+T_{2}$. If $P+T_{2} \notin Z$, then $m P+T_{2} \notin Z$ for any odd integer m. Hence, $X_{1} \neq P+T_{2}$. If $P+T_{2} \in Z$, then Theorem 1.1 implies that there exists at most one positive integer m_{1} such that $X= \pm P+T_{2}$ or $X= \pm m_{1} P+T_{2}$. Note that $P+T_{2} \in Z$ if and only if both s and t are odd.

Suppose that $X_{1}=T_{3}$ or $X_{1}=P+T_{1}$. By Lemma 3.1 we have $x=N x_{0}^{2}$ for some positive integer x_{0}. Since N is square-free, substituting this into $y^{2}=x^{3}-N^{2} x$, we obtain

$$
\begin{equation*}
x_{0}^{4}-N y_{0}^{2}=1 \tag{4.3}
\end{equation*}
$$

with some non-negative integer y_{0}. In the case where $N \neq 1785$, the Diophantine equation (4.3) has at most one positive solution by Lemma 2.2, If $P+T_{1} \notin Z$, then $m P+T_{1} \notin Z$ for any odd integer m. Hence, $X_{1} \neq P+T_{1}$ and thus there exists a positive even integer m_{2} such that $X=T_{3}$ or $X= \pm m_{2} P+T_{3}$. If $P+T_{1} \in Z$, then $x_{0}=|(s+t) /(s-t)|$ is the solution of (4.3) and hence $X=T_{3}$ or $X= \pm P+T_{1}$, respectively. Note that $P+T_{1} \in Z$ if and only if $|s-t| \in\{1,2\}$. In the case where $N=1785$, we
have $(s, t)=(6,7)$ or $(7,6)$, and $x_{0}=13$ or 239 . The value $x_{0}=13$ corresponds to the point $P+T_{1}$, but $x_{0}=239$ does not give a point in Z, since by Lemma 3.1, $x_{0}^{2}+1=2\left(s^{2}+t^{2}\right) \square=170 \square$, which does not hold for $x_{0}=239$. Therefore, if $N=1785$, then $X=T_{3}$ or $X= \pm P+T_{1}$, respectively.

In particular, in the case where $|s-t|=1$, we have $P+T_{2} \notin Z$ and $P+T_{1} \in Z$, and thus the set Z is completely determined as in the second assertion of (2).

REmark 4.7. The proof of Theorem 1.3(2) implies that both $P+T_{1}$ and $P+T_{2}$ are integral if and only if $|s-t|=2$ with s, t odd. In this case, we have

$$
Z \supset\left\{T_{1}, T_{2}, T_{3}, \pm P, \pm P+T_{1}, \pm P+T_{2}\right\}
$$

For example, if $N=15$ and $P=(-9,36)$ with $s=3$ and $t=1$, then the rank of $E(\mathbb{Q})$ is one and Z is exactly the set of nine points above. We checked by Magma [1] that if $N<10^{10}$ and $3 \leq m_{1} \leq 19$, then $m_{1} P+T_{2}$ cannot be integral, which leads us to conjecture that Z has at most nine points.

Proof of Corollary 1.4. (1) Substituting s and t in Theorem 1.3 for s^{2} and (i) t^{2} or (ii) $2 t^{2}$, respectively, we have the isomorphism from E in Theorem 1.3 to E in Corollary 1.4 defined by

$$
(x, y) \mapsto\left(\frac{x}{s^{2} t^{2}}, \frac{y}{s^{3} t^{3}}\right)
$$

by means of which P in Theorem 1.3 corresponds to P in Corollary 1.4. The assertion follows immediately from Theorem 1.3 .
(2) Let $X=(x, y) \in Z$. By (1) we have $X \equiv X_{1}(\bmod 2 \Gamma)$, where $X_{1} \in\left\{O, T_{1}, T_{2}, T_{3}, P, P+T_{1}, P+T_{2}, P+T_{3}\right\}$. All we have to do is to check the cases where $X_{1} \in\left\{T_{3}, P+T_{1}, P+T_{2}\right\}$. Since

$$
x\left(P+T_{2}\right)= \begin{cases}\frac{N^{2}}{s^{2} t^{2}} & \text { in (i) } \\ \frac{N^{2}}{4 s^{2} t^{2}} & \text { in (ii) }\end{cases}
$$

$P+T_{2}$ cannot be integral. Hence, $X_{1} \neq P+T_{2}$. Moreover, in the case of (i), since $x\left(P+T_{1}\right)=N\left(s^{2}+t^{2}\right)^{2} /\left(s^{2}-t^{2}\right)^{2}, P+T_{1}$ cannot be integral, whence $X_{1} \neq P+T_{1}$. In the case of (ii), since $x\left(P+T_{1}\right)=N\left(s^{2}+2 t^{2}\right)^{2} /\left(s^{2}-2 t^{2}\right)^{2}$, if $\left|s^{2}-2 t^{2}\right| \neq 1$, then $X_{1} \neq P+T_{1}$; if $\left|s^{2}-2 t^{2}\right|=1$, then we see from Theorem 1.3 that $X_{1}=P+T_{1}$ means $X=P+T_{1}$.

Suppose that $X_{1}=T_{3}$. As seen in the proof of Theorem 1.2 , we have the simultaneous Pell equations (3.1). By Lemma 2.1, if (3.1) has a positive solution, then N has a prime divisor p_{0} satisfying $p_{0} \equiv 3(\bmod 4)$. On the other hand, since $N=\left(s^{4}+t^{4}\right) / 2$ or $s^{4}+4 t^{4}$ and N is square-free, we see
that any odd prime divisor p of N satisfies $p \equiv 1(\bmod 4)$. This contradiction shows that $x_{0}=1$ and $X=T_{3}$.
5. Proof of Theorem 1.5. Throughout this section, let s, t be positive integers with $s>t$, and let $n=s^{4}+t^{4}$. We begin by proving the independence of the points $P_{1}=\left(-t^{2}, s^{2} t\right)$ and $P_{2}=\left(-s^{2}, s t^{2}\right)$.

LEMMA 5.1. $P_{1}, P_{2}, P_{1}+T, P_{2}+T, P_{1}+P_{2}, P_{1}+P_{2}+T \notin 2 E(\mathbb{Q})$. Thus P_{1} and P_{2} are independent modulo $E(\mathbb{Q})_{\text {tors }}$.

Proof. It is obvious that $T, P_{1}, P_{2}, P_{1}+P_{2}+T \notin 2 E(\mathbb{Q})$, since they are not in $E(\mathbb{R})^{0}$. Moreover, since

$$
P_{1}+T=\left(\frac{n}{t^{2}}, \frac{n s^{2}}{t^{3}}\right), \quad P_{2}+T=\left(\frac{n}{s^{2}}, \frac{n t^{2}}{s^{3}}\right)
$$

and $n=s^{4}+t^{4} \neq \square$, we also have $P_{1}+T, P_{2}+T \notin 2 E(\mathbb{Q})$.
It remains to check the point $P_{1}+P_{2}$. Since

$$
P_{1}+P_{2}=\left(\frac{\left(s^{2}+s t+t^{2}\right)^{2}}{(s+t)^{2}},-\frac{s t\left(s^{2}+s t+t^{2}\right)\left(2 s^{2}+3 s t+2 t^{2}\right)}{(s+t)^{3}}\right)
$$

Lemma 4.1 (1) implies that $P_{1}+P_{2}$ is in the image of $\bar{E}(\mathbb{Q})$ under ψ, and that any point $P \in \bar{E}(\mathbb{Q})$ with $\psi(\bar{P})=P+T_{2}$ satisfies either $x(\bar{P})=2 n /(s+t)^{2}$ or $x(\bar{P})=2(s+t)^{2}$. Since $n=s^{4}+t^{4} \neq 2 \square$, it follows from Lemma 4.1 (2) that $P_{1}+P_{2} \notin 2 E(\mathbb{Q})$.

The following theorem, due to Siksek, is a key to proving that the independent points P_{1} and P_{2} can be in a system of generators for $E(\mathbb{Q})$.

Theorem 5.2 (cf. [19, Theorem 3.1]). Let E be an elliptic curve over \mathbb{Q} of rank $r \geq 2$. Let P_{1} and P_{2} be independent points in $E(\mathbb{Q})$ modulo $E(\mathbb{Q})_{\text {tors }}$. Choose a basis $\left\{G_{1}, G_{2}, \ldots, G_{r}\right\}$ for $E(\mathbb{Q})$ modulo $E(\mathbb{Q})_{\text {tors }}$ such that P_{1}, P_{2} $\in \mathbb{Z} G_{1}+\mathbb{Z} G_{2}$. Suppose that $E(\mathbb{Q})$ contains no point Q of infinite order with $\hat{h}(Q) \leq \lambda$, where λ is some positive real number. Then the index ν of the span of P_{1} and P_{2} in $\mathbb{Z} G_{1}+\mathbb{Z} G_{2}$ satisfies

$$
\nu \leq \frac{2}{\sqrt{3}} \cdot \frac{\sqrt{R\left(P_{1}, P_{2}\right)}}{\lambda}
$$

where

$$
R\left(P_{1}, P_{2}\right)=\hat{h}\left(P_{1}\right) \hat{h}\left(P_{2}\right)-\frac{1}{4}\left(\hat{h}\left(P_{1}+P_{2}\right)-\hat{h}\left(P_{1}\right)-\hat{h}\left(P_{2}\right)\right)^{2}
$$

Lemma 5.3.

$$
0.5 \log n-0.347<\hat{h}\left(P_{i}\right)<0.5 \log n+0.463
$$

for $i \in\{1,2\}$, and

$$
\begin{aligned}
\log n & <\hat{h}\left(P_{1}+P_{2}\right)<\log n+1.864 \\
\log n-1.04 & <\hat{h}\left(P_{1}-P_{2}\right)<\log n+0.463
\end{aligned}
$$

Proof. It is easy to see from Lemma 4.2 that

$$
-\frac{1}{2} \log 2 \leq \hat{h}_{\mathrm{fin}}\left(P_{i}\right)=\hat{h}_{2}\left(P_{i}\right) \leq 0
$$

and from 4.2 that

$$
0 \leq \hat{\lambda}_{\infty}\left(P_{i}\right)-\frac{1}{2} \log \left(x\left(P_{i}\right)^{2}+n\right) \leq \frac{1}{6} \log 2
$$

Since $n<x\left(P_{i}\right)^{2}+n<2 n$, we have

$$
\frac{1}{2} \log n<\hat{\lambda}_{\infty}\left(P_{i}\right)<\frac{1}{2} \log n+\frac{2}{3} \log 2 .
$$

Hence, we obtain

$$
0.5 \log n-0.347<\hat{h}\left(P_{i}\right)<0.5 \log n+0.463
$$

Let us compute $\hat{h}\left(P_{1} \pm P_{2}\right)$. Since

$$
x\left(P_{1} \pm P_{2}\right)=\left(s^{2} \pm s t+t^{2}\right)^{2} /(s \pm t)^{2}
$$

is odd and

$$
\operatorname{gcd}\left(s \pm t, s^{2} \pm s t+t^{2}\right)=\operatorname{gcd}\left(s \pm t, t^{2}\right)=1
$$

we see from Lemma 4.2 that

$$
\hat{h}_{\mathrm{fin}}\left(P_{1} \pm P_{2}\right)=\log (s \pm t)^{2}+\hat{h}_{2}\left(P_{1} \pm P_{2}\right)
$$

and $-(\log 2) / 2 \leq \hat{h}_{2}\left(P_{1} \pm P_{2}\right) \leq 0$. Moreover, 4.2) implies that

$$
0 \leq \hat{\lambda}_{\infty}\left(P_{1} \pm P_{2}\right)-\frac{1}{2} \log \left(\frac{\left(s^{2} \pm s t+t^{2}\right)^{4}}{(s \pm t)^{4}}+n\right) \leq \frac{1}{6} \log 2
$$

Hence, we obtain

$$
\frac{1}{2} \log A_{ \pm}-\frac{1}{2} \log 2 \leq \hat{h}\left(P_{1} \pm P_{2}\right) \leq \frac{1}{2} \log A_{ \pm}+\frac{1}{6} \log 2
$$

where

$$
A_{ \pm}=\left(s^{2} \pm s t+t^{2}\right)^{4}+(s \pm t)^{4} n
$$

and the signs are taken simultaneously. Now, since

$$
\begin{array}{r}
5 n-\left(s^{2}+s t+t^{2}\right)^{2}=\left(s^{2}-s t+t^{2}\right)^{2}+3\left(s^{2}-t^{2}\right)^{2}>0 \\
8 n-(s+t)^{4}=(s-t)^{4}+6\left(s^{2}-t^{2}\right)^{2}>0
\end{array}
$$

we have $2 n^{2}<A_{+}<33 n^{2}$. Hence, we obtain

$$
\log n \leq \hat{h}\left(P_{1}+P_{2}\right)<\log n+1.864
$$

Moreover, since $n / 2<\left(s^{2}-s t+t^{2}\right)^{2}<n$ and $0<(s-t)^{4}<n$, we have $n^{2} / 4<A_{-}<2 n^{2}$, which shows that

$$
\log n-1.04<\hat{h}\left(P_{1}-P_{2}\right)<\log n+0.463
$$

Proof of Theorem 1.5 (1). By Lemmas 4.3 and 5.3. we have

$$
\nu<\frac{2}{\sqrt{3}} \cdot \frac{\sqrt{\hat{h}\left(P_{1}\right) \hat{h}\left(P_{2}\right)}}{c}<\frac{2}{\sqrt{3}} \cdot \frac{0.5 \log n+0.463}{0.125 \log n+0.3917}<\frac{2}{\sqrt{3}} \cdot \frac{0.5}{0.125}<4.7 .
$$

Since we already know by Lemma 5.1 that ν is odd, it suffices to show that $\nu \neq 3$, which is equivalent to

$$
P_{1}, P_{2}, P_{1}+P_{2}, P_{1}-P_{2} \notin 3 E(\mathbb{Q}) .
$$

Suppose that $P \in 3 E(\mathbb{Q})$ for some $P \in\left\{P_{1}, P_{2}, P_{1}+P_{2}, P_{1}-P_{2}\right\}$. Letting $P=3 Q$ for $Q \in E(\mathbb{Q})$, we see from Lemma 4.3 that

$$
\hat{h}(P)=\hat{h}(3 Q)=9 \hat{h}(Q)>1.125 \log n .
$$

On the other hand, Lemma 5.3 implies that $\hat{h}(P)<\log n+1.864$. Thus, we have $n<3.0 \cdot 10^{6}$. For n in this range, one can easily check by using Magma [1 that $P \notin 3 E(\mathbb{Q})$. Therefore, we obtain $\nu=1$, which completes the proof of Theorem 1.5(1).

In order to examine the integer points on E, we need the following lemma, analogous to Lemma 3.1.

Lemma 5.4 ([3, Lemma 2 in Chapter 14]). The $\operatorname{map} \varphi: E(\mathbb{Q}) \rightarrow$ $\mathbb{Q}^{\times} /\left(\mathbb{Q}^{\times}\right)^{2}$ defined by

$$
\varphi(X)= \begin{cases}x\left(\mathbb{Q}^{\times}\right)^{2} & \text { if } X=(x, y) \notin\{O, T\} \\ -n\left(\mathbb{Q}^{\times}\right)^{2} & \text { if } X=T \\ \left(\mathbb{Q}^{\times}\right)^{2} & \text { if } X=O\end{cases}
$$

is a group homomorphism.
Proof of Theorem 1.5(2). Let $X=(x, y)$ be a point in Z. By Lemma 5.1, $X \equiv X_{1}(\bmod 2 E(\mathbb{Q}))$, where

$$
X_{1} \in\left\{O, T, P_{1}, P_{2}, P_{1}+T, P_{2}+T, P_{1}+P_{2}, P_{1}+P_{2}+T\right\} .
$$

Suppose first that $X_{1} \in\left\{P_{1}+T, P_{2}+T\right\}$. Since $x\left(P_{i}+T\right)=n \square$ for $i \in\{1,2\}$, Lemma 5.4 implies that $x=n x_{0}^{2}$ for some positive integer x_{0}. By $y^{2}=x^{3}-n x$, there exists a positive integer y_{0} such that

$$
\begin{equation*}
y_{0}^{2}-n x_{0}^{4}=-1 . \tag{5.1}
\end{equation*}
$$

Since by Lemma 2.3 the Diophantine equation (5.1) has at most one positive solution, there exists at most one pair of integers m_{1}, m_{2} with $m_{1} \not \equiv m_{2}(\bmod 2)$ such that $X= \pm\left(m_{1} P_{1}+m_{2} P_{2}\right)+T$. In particular, if $n=s^{4}+1$, then 5.1) has the solution $\left(x_{0}, y_{0}\right)=\left(1, s^{2}\right)$, and hence $X=\left(n, \pm n s^{2}\right)= \pm P_{1}+T$. Note that m_{1} and m_{2} above are coprime, since otherwise the point $\left(m_{1} / d\right) P_{1}+\left(m_{2} / d\right) P_{2}+T\left(\right.$ with $\left.d=\operatorname{gcd}\left(m_{1}, m_{2}\right)\right)$ would also be integral and give another solution of (5.1).

Suppose secondly that $X_{1} \in\left\{O, T, P_{1}, P_{2}, P_{1}+P_{2}, P_{1}+P_{2}+T\right\}$. If $X_{1} \in$ $\left\{T, P_{1}, P_{2}, P_{1}+P_{2}+T\right\}$, then $X_{1} \notin E(\mathbb{R})^{0}$ and hence $X \notin E(\mathbb{R})^{0}$. It follows that $|x| \leq \sqrt{n}$. If $X_{1} \in\left\{O, P_{1}+P_{2}\right\}$, then Lemma 5.4 implies that $x=x_{0}^{2}$ for some positive integer x_{0}, since $x\left(P_{1}+P_{2}\right)=\square$. By $y^{2}=x^{3}-n x$, we have $x_{0}^{4}-n=y_{0}^{2}$ for some positive integer y_{0}. Thus

$$
n=\left(x_{0}^{2}+y_{0}\right)\left(x_{0}^{2}-y_{0}\right) \geq x_{0}^{2}+y_{0}>x_{0}^{2}=x
$$

In any case, it suffices to consider the case $|x|<n$.
Suppose that $n>3000$. By Lemma 5.3, the canonical height pairing

$$
\left\langle P_{1}, P_{2}\right\rangle=\frac{1}{2}\left(\hat{h}\left(P_{1}+P_{2}\right)-\hat{h}\left(P_{1}\right)-\hat{h}\left(P_{2}\right)\right)
$$

of P_{1} and P_{2} satisfies

$$
-0.926<2\left\langle P_{1}, P_{2}\right\rangle<2.558
$$

Thus, putting $X=l_{1} P_{1}+l_{2} P_{2}+\epsilon T$ with $l_{1}, l_{2} \in \mathbb{Z}$ and $\epsilon \in\{0,1\}$, we have

$$
\begin{align*}
\hat{h}(X) & =\hat{h}\left(l_{1} P_{1}\right)+\hat{h}\left(l_{2} P_{2}\right)+2\left\langle l_{1} P_{1}, l_{2} P_{2}\right\rangle \tag{5.2}\\
& =l_{1}^{2} \hat{h}\left(P_{1}\right)+l_{2}^{2} \hat{h}\left(P_{2}\right)+2 l_{1} l_{2}\left\langle P_{1}, P_{2}\right\rangle \\
& >\left\{0.456\left(l_{1}^{2}+l_{2}^{2}\right)-0.32\left|l_{1} l_{2}\right|\right\} \log n \\
& >0.456\left\{\left(\left|l_{1}\right|-0.351\left|l_{2}\right|\right)^{2}+0.876 l_{2}^{2}\right\} \log n
\end{align*}
$$

On the other hand, since we are considering the case where $|x|<n$, we can obtain an upper bound for $\hat{h}(X)$ using a result on the difference between h and \hat{h}; in fact, Theorem and Proposition 4 in [26] together yield

$$
\begin{equation*}
\hat{h}(X) \leq h(X)+\frac{1}{2} \log n+\frac{4}{3} \log 2<\frac{3}{2} \log n+\frac{4}{3} \log 2<1.616 \log n \tag{5.3}
\end{equation*}
$$

Combining the estimates (5.2) and (5.3), we get

$$
\left(\left|l_{1}\right|-0.351\left|l_{2}\right|\right)^{2}+0.876 l_{2}^{2}<3.544
$$

which implies

$$
\left(\left|l_{1}\right|,\left|l_{2}\right|\right) \in\{(0,0),(0,1),(1,0),(1,1)\}
$$

Since $X_{1} \in\left\{O, T, P_{1}, P_{2}, P_{1}+P_{2}, P_{1}+P_{2}+T\right\}$, we obtain
$X \in\left\{T, \pm P_{1}, \pm P_{2}, \pm\left(P_{1}+P_{2}\right), \pm\left(P_{1}-P_{2}\right), \pm\left(P_{1}+P_{2}\right)+T, \pm\left(P_{1}-P_{2}\right)+T\right\}$ 。
We always have $T, \pm P_{1}, \pm P_{2} \in Z$. Since

$$
x\left(P_{1} \pm P_{2}\right)=\frac{\left(s^{2} \pm s t+t^{2}\right)^{2}}{(s \pm t)^{2}}, \quad x\left(P_{1} \pm P_{2}+T\right)=-\frac{n(s \pm t)^{2}}{\left(s^{2} \pm s t+t^{2}\right)^{2}}
$$

and since $\operatorname{gcd}\left(s \pm t, s^{2} \pm s t+t^{2}\right)=1$, it is not difficult to see that $\pm\left(P_{1}+P_{2}\right)$, $\pm\left(P_{1} \pm P_{2}\right)+T \notin Z$, and that $\pm\left(P_{1}-P_{2}\right) \in Z$ if and only if $t=s-1$.

If $(17<) n \leq 3000$, then by Magma [1] one can easily check the following:

- if $t=1$, then $Z=\left\{T, \pm P_{1}, \pm P_{2}, \pm P_{1}+T\right\}$;
- if $t=s-1$, then $Z=\left\{T, \pm P_{1}, \pm P_{2}, \pm\left(P_{1}-P_{2}\right)\right\}$;
- in all other cases, $Z=\left\{T, \pm P_{1}, \pm P_{2}\right\}$.

This completes the proof of Theorem 1.5(2).
Remark 5.5. It is quite simple to find a further parameterization of $n=s^{4}+t^{4}$, other than $n=s^{4}+1$, such that the set Z can be completely determined. For example, let

$$
\begin{equation*}
s=\left|17 k^{2}-12 k l-13 l^{2}\right|, \quad t=\left|17 k^{2}+12 k l-13 l^{2}\right| \tag{5.4}
\end{equation*}
$$

with positive integers k, l. Then $s^{4}+t^{4}=u^{2}+v^{4}$, where

$$
u=\left|289 k^{4}+14 k^{2} l^{2}-239 l^{4}\right|, \quad v=\left|17 k^{2}-l^{2}\right|
$$

(cf. [17, Part 7]). If $v=1$, then the Diophantine equation (5.1) has the solution $\left(y_{0}, x_{0}\right)=(u, 1)$, which together with Lemma 2.3 implies that $Z=\left\{T, \pm P_{1}, \pm P_{2}, \pm P_{1}+T\right\}$. In this case, $17 k^{2}-l^{2}= \pm 1$ has the positive solutions

$$
l+k \sqrt{17}=(4+\sqrt{17})^{m}
$$

for positive integers m, whence k, l are parameterized as follows:

$$
\begin{aligned}
l & =\frac{1}{2}\left\{(4+\sqrt{17})^{m}+(4-\sqrt{17})^{m}\right\} \\
k & =\frac{1}{2 \sqrt{17}}\left\{(4+\sqrt{17})^{m}-(4-\sqrt{17})^{m}\right\}
\end{aligned}
$$

We have seen so far that the set Z of integer points can be completely determined for several parameterizations of n. We conclude this paper by noting the infinity of such square-free integers n. The family $n=N^{2}$ with $N=\left(s^{4}+t^{4}\right) / 2$ or $N=s^{4}+4 t^{4}$ in Corollary 1.4 certainly represents infinitely many square-free integers by a theorem of Greaves [13], since it is a binary form of degree four. Each of the families $n=s t\left(s^{2}+t^{2}\right) / 2$ with $|s-t|=1$ in Theorem 1.3 and $n=s^{4}+1$ in Theorem 1.5 represents infinitely many square-free integers if the $A B C$ conjecture is valid (cf. [12, Theorem 1]). We do not have a criterion for $n=s^{4}+t^{4}$ with (5.4) and $\left|17 k^{2}-l^{2}\right|=1$ to represent infinitely many square-free integers.

Acknowledgments. The authors thank the referee for pertinent suggestions.

References

[1] W. Bosma and J. Cannon, Handbook of Magma Functions, Dept. of Math., Univ. of Sydney; http://magma.maths.usyd.edu.au/magma/
[2] A. Bremner, J. H. Silverman and N. Tzanakis, Integral points in arithmetic progression on $y^{2}=x\left(x^{2}-n^{2}\right)$, J. Number Theory 80 (2000), 187-208.
[3] J. W. S. Cassels, Lectures on Elliptic Curves, Cambridge Univ. Press, 1991.
[4] J. H. Chen and P. Voutier, Complete solution of the Diophantine equation $X^{2}+1=$ $d Y^{4}$ and a related family of quartic Thue equations, J. Number Theory 62 (1997), 71-99.
[5] H. Cohen, A Course in Computational Algebraic Number Theory, Springer, 1993.
[6] J. H. E. Cohn, The Diophantine equation $x^{4}-D y^{2}=1$, II, Acta Arith. 78 (1997), 401-403.
[7] A. Dujella and A. Pethő, Integer points on a family of elliptic curves, Publ. Math. Debrecen 56 (2000), 321-335.
[8] S. Duquesne, Integral points on elliptic curves defined by simplest cubic fields, Experiment. Math. 10 (2001), 91-102.
[9] S. Duquesne, Elliptic curves associated with simplest quartic fields, J. Théor. Nombres Bordeaux 19 (2007), 81-100.
[10] Y. Fujita and N. Terai, Integer points and independent points on the elliptic curve $y^{2}=x^{3}-p^{k} x$, Tokyo J. Math. 34 (2011), 289-303.
[11] Y. Fujita and N. Terai, Generators for the elliptic curve $y^{2}=x^{3}-n x$, J. Théor. Nombres Bordeaux 23 (2011), 403-416.
[12] A. Granville, ABC allows us to count squarefrees, Int. Math. Res. Notices 1998, no. 19, 991-1009.
[13] G. Greaves, Power-free values of binary forms, Quart. J. Math. Oxford Ser. (2) 43 (1992), 45-65.
[14] P. Ingram, Multiples of integral points on elliptic curves, J. Number Theory 129 (2009), 182-208.
[15] A. W. Knapp, Elliptic Curves, Princeton Univ. Press, 1992.
[16] W. Ljunggren, Über die Gleichung $x^{4}-D y^{2}=1$, Arch. Math. Naturvid. 45 (1942), no. 5, 61-70.
[17] T. Piezas, A collection of algebraic identities, http://sites.google.com/site/tpiezas/ Home.
[18] P. Serf, Congruent numbers and elliptic curves, in: Computational Number Theory, A. Pethő et al. (eds.), de Gruyter, 1991, 227-238.
[19] S. Siksek, Infinite descent on elliptic curves, Rocky Mountain J. Math. 25 (1995), 1501-1538.
[20] J. H. Silverman, The Arithmetic of Elliptic Curves, Springer, 1986.
[21] J. H. Silverman, Computing heights on elliptic curves, Math. Comp. 51 (1988), 339-358.
[22] J. H. Silverman, Advanced Topics in the Arithmetic of Elliptic Curves, Springer, 1994.
[23] J. H. Silverman and J. Tate, Rational Points on Elliptic Curves, Springer, 1992.
[24] B. K. Spearman, Elliptic curves $y^{2}=x^{3}-p x$ of rank two, Math. J. Okayama Univ. 49 (2007), 183-184.
[25] P. G. Walsh, On integer solutions to $x^{2}-d y^{2}=1, z^{2}-2 d y^{2}=1$, Acta Arith. 82 (1997), 69-76.
[26] H. G. Zimmer and S. Schmitt, Height estimates for elliptic curves in short Weierstraß form over global fields and a comparison, Arch. Math. (Basel) 77 (2001), 22-31.

Yasutsugu Fujita
College of Industrial Technology
Nihon University
2-11-1 Shin-ei
Narashino, Chiba 275-8576, Japan
E-mail: fujita.yasutsugu@nihon-u.ac.jp

Nobuhiro Terai
Division of Information System Design
Ashikaga Institute of Technology
268-1 Omae
Ashikaga, Tochigi 326-8558, Japan
E-mail: terai@ashitech.ac.jp

[^0]: 2010 Mathematics Subject Classification: Primary 11D25, 11G05, 14G05; Secondary 11G50.
 Key words and phrases: elliptic curves, generators, integer points, canonical heights.

