The image of the natural homomorphism of Witt rings of orders in a global field

by

BEATA ROTHKEGEL (Katowice)

1. Introduction. Every homomorphism $\varphi \colon R \to P$ of commutative rings (with identity elements) induces a homomorphism $\varphi \colon WR \to WP$ between their Witt rings in the following way. If $\langle (M, \alpha) \rangle \in WR$ is the similarity class of an inner product space (M, α) , i.e.

- *M* is a finitely generated projective *R*-module,
- $\alpha: M \times M \to R$ is a nonsingular bilinear form,

then

$$\varphi\langle (M,\alpha)\rangle = \langle (M',\alpha')\rangle,$$

where $M' = P \otimes_R M$ and $\alpha' \colon M' \times M' \to P$ is the nonsingular bilinear form defined by

$$(1.1) \quad \alpha'(x\otimes m, x'\otimes m') = xx'\varphi(\alpha(m,m')) \quad \text{for all } x,x'\in P,\,m,m'\in M.$$

The homomorphism $\varphi \colon WR \to WP$ is said to be *natural* if it is induced by an embedding $R \hookrightarrow P$. If R is a Dedekind domain and P = K is its field of fractions, then the natural homomorphism $\phi \colon WR \to WK$ is injective (cf. [K, Satz 11.1.1]). This allows us to treat WR as a subring of WK.

Let K be a global field, R be a Dedekind domain and K be its field of fractions. Let $\mathcal{O} < R$ be an *order*, i.e.:

- \mathcal{O} is a one-dimensional noetherian domain,
- R is the integral closure of \mathcal{O} in the field K,
- R is a finitely generated \mathcal{O} -module.

We will examine the image of the natural homomorphism $\varphi \colon W\mathcal{O} \to WR$.

Since the homomorphism $\phi: WR \to WK$ is injective, it is easy to observe that it is enough to examine the image of the composition $\phi \circ \varphi: W\mathcal{O} \to WK$. In [C1, C2] that image is examined in the case of orders in the rings R_K

²⁰¹⁰ Mathematics Subject Classification: Primary 11E81; Secondary 19G12. Key words and phrases: order, natural homomorphism.

of algebraic integers of some quadratic number fields $K = \mathbb{Q}(\sqrt{D})$. Ciemała has proved that there are infinitely many orders $\mathcal{O} < R_K$ such that the natural homomorphism $\varphi \colon W\mathcal{O} \to WR_K$ is surjective. In Sections 3, 4, 7 we will formulate necessary and sufficient conditions for the surjectivity of the natural homomorphisms in the case of all nonreal quadratic number fields, all real quadratic number fields $K = \mathbb{Q}(\sqrt{D})$ such that -1 is a norm in the extension K/\mathbb{Q} , and all quadratic function fields.

If R is a commutative ring, then we write U(R) for the group of invertible elements of R. If $a_1, \ldots, a_l \in U(R)$, then $\langle a_1, \ldots, a_l \rangle$ will denote both a diagonal quadratic form and its class in the Witt ring WR. We write $\langle \langle a_1, a_2 \rangle \rangle$ for the 2-fold Pfister form $\langle 1, a_1 \rangle \otimes \langle 1, a_2 \rangle = \langle 1, a_1, a_2, a_1 a_2 \rangle$.

Let R be a Dedekind domain and K be its field of fractions. We define the group E(R) of singular elements of R to be

 $E(R) = \{ g \in \dot{K} : \operatorname{ord}_{\mathfrak{P}} g \equiv 0 \pmod{2} \text{ for every maximal ideal } \mathfrak{P} \triangleleft R \}.$

Every maximal ideal \mathfrak{P} of R determines a \mathfrak{P} -adic valuation on the field K with residue class field $\overline{K}_{\mathfrak{P}}$. According to [MH, (3.3) Corollary] we have the Knebusch–Milnor exact sequence

$$0 \to WR \xrightarrow{\phi} WK \xrightarrow{\partial} \bigoplus_{\mathfrak{P}} W\overline{K}_{\mathfrak{P}},$$

where the direct sum extends over all maximal ideals \mathfrak{P} of R. The additive group homomorphism ∂ is the direct sum of the second residue homomorphisms $\partial_{\mathfrak{P}} \colon WK \to W\overline{K}_{\mathfrak{P}}$. Directly from the sequence and the definition of $\partial_{\mathfrak{P}}$ we obtain

PROPOSITION 1.1. If $g \in \dot{K}$, then

$$\langle g \rangle \in \phi(WR) \iff g \in E(R).$$

Let K be a global field of characteristic different from 2. Let S be a Hasse set on K (i.e. a finite nonempty set of primes of K containing the set of all infinite primes). Let $R = R_K(S)$ be the ring of S-integers of the field K (the Hasse domain),

$$R_K(\mathcal{S}) = \{ g \in K : \operatorname{ord}_{\mathfrak{P}} g \ge 0 \text{ for all primes } \mathfrak{P} \notin \mathcal{S} \}.$$

From [Cz3, Theorem 4.2] it follows that if K is a nonreal field, then the group $\phi(WR_K(S))$ is additively generated by some rank one forms $\langle g \rangle$, $g \in E(R_K(S))$, and some 2-fold Pfister forms $\langle \langle f, d \rangle \rangle$. If K is formally real, then $\phi(WR_K(S))$ is generated by forms $\langle g \rangle$, $g \in E(R_K(S))$, 2-fold Pfister forms $\langle \langle f, d \rangle \rangle$ and some forms $\langle z, -ez \rangle$, $e \in E(R_K(S))$ (cf. [Cz3, Theorem 4.7]). In Sections 2 and 6 we formulate necessary and sufficient conditions for

$$\langle g \rangle, \langle \langle f, d \rangle \rangle, \langle z, -ez \rangle \in \operatorname{im}(\phi \circ \varphi)$$

to hold in the case of any Dedekind domain R and its field of fractions K (a global field of characteristic not necessarily different from 2).

If $\langle a_1, \ldots, a_l \rangle \in WK$ (i.e. $a_1, \ldots, a_l \in \dot{K}$), then we often assume that $a_1, \ldots, a_l \in \mathcal{O}$, thanks to the following observation. For every $i \in \{1, \ldots, l\}$ there exist $x_i, y_i \in \mathcal{O} \setminus \{0\}$ such that $a_i = x_i/y_i$. Then $x_iy_i \in \mathcal{O}$. Moreover, $a_i\dot{K}^2 = x_iy_i\dot{K}^2$, so

$$\langle a_1, \ldots, a_l \rangle = \langle x_1 y_1, \ldots, x_l y_l \rangle$$
 in WK.

Throughout the paper, ϕ and φ will denote the natural homomorphisms $\phi: WR \to WK$ and $\varphi: W\mathcal{O} \to WR$ for a suitable Dedekind domain R, respectively. Whenever we write "R < K", we mean "R is a Dedekind domain and K is its field of fractions".

2. Forms of rank 1. Assume K is a global field, R < K is a Dedekind domain and $\mathcal{O} < R$ is an order.

LEMMA 2.1. Let $\langle (N,\beta) \rangle \in \phi(WR)$ and let $\det \beta$ be the determinant of the form β in a fixed basis of the space N over K. If $\langle (N,\beta) \rangle \in \operatorname{im}(\phi \circ \varphi)$, then there exists an ideal I of the order \mathcal{O} and an element $k \in K$ such that

$$I^2 = (\det \beta \cdot k^2)\mathcal{O}.$$

Proof. Assume

$$\phi \circ \varphi \langle (M, \alpha) \rangle = \langle (N, \beta) \rangle,$$

where $M = I \oplus \mathcal{O}^{n-1}$, $n \ge 1$, and I is an ideal of \mathcal{O} such that $I^2 = p\mathcal{O}$ for some $0 \ne p \in \mathcal{O}$ (cf. [W, Chapter I, Propositions 3.4, 3.5], [CS, Theorem 2.6]). Moreover, $\alpha \colon M \times M \to \mathcal{O}$ is a nonsingular \mathcal{O} -bilinear form defined by

$$\alpha((x, y_1, \dots, y_{n-1}), (x', y'_1, \dots, y'_{n-1})) = \frac{a}{p}xx' + \sum_{i=1}^{n-1}\frac{b_i}{p}(y_ix' + xy'_i) + \sum_{i,j=1}^{n-1}\frac{c_{ij}}{p}y_iy'_j$$

for all $(x, y_1, \ldots, y_{n-1}), (x', y'_1, \ldots, y'_{n-1}) \in M$, where $a \in R, b_i \in I, c_{ij} = c_{ji} \in I^2$ are uniquely determined (cf. [Ro, Proposition 2.8]). The determinant of

$$A = \begin{bmatrix} a & b_1 & b_2 & \cdots & b_{n-1} \\ b_1 & c_{11} & c_{12} & \cdots & c_{1n-1} \\ b_2 & c_{21} & c_{22} & \cdots & c_{2n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ b_{n-1} & c_{n-11} & c_{n-12} & \cdots & c_{n-1n-1} \end{bmatrix}$$

is equal to $p^{n-1} \cdot u$ for some invertible $u \in \mathcal{O}$ (cf. [Ro, Theorem 2.9]).

Consider the basis

 $\mathcal{B} = (1 \otimes (p, 0, \dots, 0), \dots, 1 \otimes (0, \dots, p, \dots, 0), \dots, 1 \otimes (0, \dots, 0, p))$

of the linear space $M' = K \otimes_{\mathcal{O}} M$ over K. Then the form $\alpha' \colon M' \times M' \to K$ (defined as in (1.1)) has matrix pA in the basis \mathcal{B} . Moreover,

$$\langle (M', \alpha') \rangle = \phi \circ \varphi \langle (M, \alpha) \rangle = \langle (N, \beta) \rangle,$$

so there exist metabolic spaces (M_1, α_1) and (N_1, β_1) over K such that

$$(M', \alpha') \perp (M_1, \alpha_1) \cong (N, \beta) \perp (N_1, \beta_1)$$

Therefore

$$\det(pA)\dot{K}^2 = \pm \det\beta \cdot \dot{K}^2, \quad \text{i.e.} \quad p^{2n-1} \cdot u\dot{K}^2 = \pm \det\beta \cdot \dot{K}^2.$$

There exists $k \in K$ such that

$$pu = \pm \det \beta \cdot k^2,$$

so $I^2 = p\mathcal{O} = pu\mathcal{O} = (\det \beta \cdot k^2)\mathcal{O}$.

We give a necessary and sufficient condition for $\langle g \rangle \in \operatorname{im}(\phi \circ \varphi)$ for any $g \in E(R)$.

PROPOSITION 2.2. Let R < K be a Dedekind domain, $g \in E(R)$ and $\mathcal{O} < R$ be an order. Then $\langle g \rangle \in \operatorname{im}(\phi \circ \varphi)$ if and only if there exists a fractional ideal I in the field K such that

$$I^2 = g\mathcal{O}.$$

Proof. (\Rightarrow) From Lemma 2.1 it follows that there exists an ideal J of \mathcal{O} and an element $k \in K$ such that

$$J^2 = gk^2\mathcal{O}.$$

For the fractional ideal $I = J \cdot k^{-1}$ we have

$$I^2 = g\mathcal{O}.$$

 (\Leftarrow) The map $\alpha \colon I \times I \to \mathcal{O}$ defined by

$$\alpha(x,y) = \frac{1}{g}xy$$
 for all $x, y \in I$

is a nonsingular bilinear form (cf. [CS, Theorem 3.1]). Hence $\langle (I, \alpha) \rangle \in W\mathcal{O}$. Consider the basis $\mathcal{B} = (1 \otimes g)$ of the space $M' = K \otimes_{\mathcal{O}} I$ over K. Then the form $\alpha' \colon M' \times M' \to K$ (defined as in (1.1)) has matrix [g] in the basis \mathcal{B} , so

$$\phi \circ \varphi \langle (I, \alpha) \rangle = \langle g \rangle,$$

i.e. $\langle g \rangle \in \operatorname{im}(\phi \circ \varphi)$.

Now let \mathfrak{f} be the *conductor* of the order \mathcal{O} , i.e.

$$\mathfrak{f} = \{ x \in R : xR \subseteq \mathcal{O} \}$$

(f is the greatest ideal of R lying in \mathcal{O}). Denote by $\mathcal{J}_{\mathfrak{f}}(R)$ and $\mathcal{J}_{\mathfrak{f}}(\mathcal{O})$ the multiplicative monoids of all invertible ideals of R and \mathcal{O} , respectively, relatively prime to the conductor \mathfrak{f} , i.e.

$$\mathcal{J}_{\mathfrak{f}}(R) = \{ I \lhd R : I \text{ is invertible, } I + \mathfrak{f} = R \}, \\ \mathcal{J}_{\mathfrak{f}}(\mathcal{O}) = \{ I \lhd \mathcal{O} : I \text{ is invertible, } I + \mathfrak{f} = \mathcal{O} \}.$$

We will use the following fact.

PROPOSITION 2.3 ([GHK, Lemma 3(i)]). Let I be an invertible ideal of the order \mathcal{O} . Then I has a unique decomposition

$$I = I_1 \cdot I_2,$$

where $I_1 \in \mathcal{J}_{\mathfrak{f}}(\mathcal{O})$ has a unique representation as a product of powers of pairwise distinct maximal ideals $\mathfrak{p} \triangleleft \mathcal{O}$ such that $\mathfrak{p} + \mathfrak{f} = \mathcal{O}$, while I_2 is a product of primary ideals $\mathfrak{q} \triangleleft \mathcal{O}$ such that $\mathfrak{q} + \mathfrak{f} \neq \mathcal{O}$.

From [GHK, proof of Proposition 4(ii)] it follows that an ideal \mathfrak{p} of \mathcal{O} is maximal if and only if there exists a maximal ideal \mathfrak{P} of R such that

$$\mathfrak{p} = \mathfrak{P} \cap \mathcal{O}.$$

Let

$$\mathfrak{f} = \mathfrak{Q}_1^{r_1} \cdots \mathfrak{Q}_n^{r_n}, \qquad r_1, \dots, r_n \in \mathbb{N},$$

where $\mathfrak{Q}_1, \ldots, \mathfrak{Q}_n$ are pairwise distinct maximal ideals of R. By [GHK, p. 93] an ideal $0 \neq I \triangleleft R$ is relatively prime to the conductor \mathfrak{f} if and only if it has a unique representation as a product of powers of pairwise distinct maximal ideals $\mathfrak{P} \triangleleft R, \mathfrak{P} \notin {\mathfrak{Q}_1, \ldots, \mathfrak{Q}_n}$.

Also, by [GHK, proof of Proposition 4(ii)] an ideal \mathfrak{p} of \mathcal{O} is a maximal ideal relatively prime to \mathfrak{f} if and only if there exists a unique maximal ideal $\mathfrak{P} \triangleleft R$ relatively prime to \mathfrak{f} (i.e. $\mathfrak{P} \notin {\mathfrak{Q}_1, \ldots, \mathfrak{Q}_n}$) such that

$$\mathfrak{p} = \mathfrak{P} \cap \mathcal{O}.$$

Moreover, the map $F: \mathcal{J}_{\mathfrak{f}}(R) \to \mathcal{J}_{\mathfrak{f}}(\mathcal{O})$ defined by

$$F(I) = I \cap \mathcal{O}$$
 for all $I \in \mathcal{J}_{\mathfrak{f}}(R)$

is an isomorphism of monoids.

THEOREM 2.4. Let K be a global field and R < K be a Dedekind domain. Moreover, let $\mathcal{O} < R$ be an order, \mathfrak{f} be the conductor of \mathcal{O} and $g \in E(R) \cap \mathcal{O}$. If $g\mathcal{O} + \mathfrak{f} = \mathcal{O}$, then $\langle g \rangle \in \operatorname{im}(\phi \circ \varphi)$.

Proof. First we show that

$$gR \cap \mathcal{O} = g\mathcal{O}.$$

Since $g\mathcal{O} + \mathfrak{f} = \mathcal{O}$, we have

(2.1)
$$g\mathcal{O} = \mathfrak{p}_1^{s_1} \cdots \mathfrak{p}_m^{s_m}, \quad s_1, \dots, s_m \in \mathbb{N},$$

for some pairwise distinct maximal ideals $\mathfrak{p}_1, \ldots, \mathfrak{p}_m \triangleleft \mathcal{O}$ relatively prime to \mathfrak{f} . There exist maximal ideals $\mathfrak{P}_1, \ldots, \mathfrak{P}_m$ of R relatively prime to \mathfrak{f} such that

$$\mathfrak{p}_1=\mathfrak{P}_1\cap\mathcal{O},\quad\ldots,\quad\mathfrak{p}_m=\mathfrak{P}_m\cap\mathcal{O}.$$

Fix $i \in \{1, \ldots, m\}$ and observe that $\mathfrak{p}_i R = \mathfrak{P}_i$. Indeed, $\mathfrak{p}_i R \subseteq \mathfrak{P}_i$, so

$$\mathfrak{p}_i \subseteq \mathfrak{p}_i R \cap \mathcal{O} \subseteq \mathfrak{P}_i \cap \mathcal{O} = \mathfrak{p}_i, \quad ext{i.e.} \quad \mathfrak{p}_i R \cap \mathcal{O} = \mathfrak{P}_i \cap \mathcal{O}.$$

Since $\mathfrak{p}_i R, \mathfrak{P}_i \in \mathcal{J}_{\mathfrak{f}}(R)$ and

$$F\colon \mathcal{J}_{\mathfrak{f}}(R)\to \mathcal{J}_{\mathfrak{f}}(\mathcal{O}), \qquad F(I)=I\cap \mathcal{O},$$

is an isomorphism, $\mathfrak{p}_i R = \mathfrak{P}_i$. Therefore by (2.1),

$$gR = \mathfrak{P}_1^{s_1} \cdots \mathfrak{P}_m^{s_m}$$

Using the map F we get

$$gR \cap \mathcal{O} = (\mathfrak{P}_1 \cap \mathcal{O})^{s_1} \cdots (\mathfrak{P}_m \cap \mathcal{O})^{s_m} = \mathfrak{p}_1^{s_1} \cdots \mathfrak{p}_m^{s_m} = g\mathcal{O}.$$

From the assumption it follows that $g \in E(R) \cap R$, so $gR = J^2$ for some $J \triangleleft R$. It is easy to observe that J is relatively prime to \mathfrak{f} . Using again the isomorphism F we get

$$g\mathcal{O} = gR \cap \mathcal{O} = J^2 \cap \mathcal{O} = (J \cap \mathcal{O})^2$$

so $\langle g \rangle \in \operatorname{im}(\phi \circ \varphi)$ by Proposition 2.2.

We will prove that the existence of $h \in \mathcal{O}$ such that

$$h\dot{K}^2 = g\dot{K}^2$$
 and $h\mathcal{O} + \mathfrak{f} = \mathcal{O}$

is a necessary and sufficient condition for $\langle g \rangle \in \operatorname{im}(\phi \circ \varphi)$.

LEMMA 2.5. Let \mathfrak{q} be a primary ideal of the order \mathcal{O} such that $\mathfrak{q} + \mathfrak{f} \neq \mathcal{O}$. Then the radical rad \mathfrak{q} of the ideal \mathfrak{q} is a maximal ideal in \mathcal{O} such that

$$\operatorname{rad} \mathfrak{q} + \mathfrak{f} \neq \mathcal{O}.$$

Proof. Since \mathfrak{q} is a primary ideal, rad \mathfrak{q} is a prime ideal. But \mathcal{O} is a one-dimensional domain, so rad \mathfrak{q} is a maximal ideal.

Suppose $\operatorname{rad} \mathfrak{q} + \mathfrak{f} = \mathcal{O}$. We know that $\mathfrak{f} \subseteq \operatorname{rad} \mathfrak{f}$, so $\operatorname{rad} \mathfrak{q} + \operatorname{rad} \mathfrak{f} = \mathcal{O}$. Hence $\mathfrak{q} + \mathfrak{f} = \mathcal{O}$, a contradiction.

LEMMA 2.6. Let $\mathfrak{f} = \mathfrak{Q}_1^{r_1} \cdots \mathfrak{Q}_n^{r_n}$, $r_1, \ldots, r_n \in \mathbb{N}$, be the representation of the conductor \mathfrak{f} of the order \mathcal{O} as a product of powers of pairwise distinct maximal ideals of the Dedekind domain R. Moreover, let \mathfrak{q} be a primary ideal in \mathcal{O} such that $\mathfrak{q} + \mathfrak{f} \neq \mathcal{O}$. Then

$$\mathfrak{q}R = \mathfrak{Q}_{i_1}^{s_1} \cdots \mathfrak{Q}_{i_m}^{s_m}$$

for some $s_1, \ldots, s_m \in \mathbb{N}$ and pairwise distinct $i_1, \ldots, i_m \in \{1, \ldots, n\}$.

Proof. First observe that $\mathfrak{q}R \neq R$. Indeed, since $\mathfrak{q} \neq \mathcal{O}$, there exists a maximal ideal $\mathfrak{P} \cap \mathcal{O}$ of \mathcal{O} such that

$$\mathfrak{q} \subseteq \mathfrak{P} \cap \mathcal{O}$$

(\mathfrak{P} is a maximal ideal of R). If $\mathfrak{q}R = R$, then

$$R = \mathfrak{q}R \subseteq (\mathfrak{P} \cap \mathcal{O})R \subseteq \mathfrak{P},$$

which is impossible.

Suppose that in the decomposition of the ideal $\mathfrak{q}R$ there is a maximal ideal $\mathfrak{P} \triangleleft R$ such that $\mathfrak{P} \notin {\mathfrak{Q}_1, \ldots, \mathfrak{Q}_n}$ (i.e. $\mathfrak{P} + \mathfrak{f} = R$). Then $\mathfrak{q}R \subseteq \mathfrak{P}$, so

$$\mathfrak{q} \subseteq \mathfrak{q} R \cap \mathcal{O} \subseteq \mathfrak{P} \cap \mathcal{O}.$$

The ideal $\mathfrak{P} \cap \mathcal{O}$ is a maximal ideal of \mathcal{O} relatively prime to \mathfrak{f} . Moreover,

(2.2)
$$\operatorname{rad} \mathfrak{q} \subseteq \operatorname{rad}(\mathfrak{P} \cap \mathcal{O}) = \mathfrak{P} \cap \mathcal{O}.$$

From Lemma 2.5 it follows that $\operatorname{rad} \mathfrak{q}$ is a maximal ideal such that $\operatorname{rad} \mathfrak{q} + \mathfrak{f} \neq \mathcal{O}$. However, by (2.2), $\operatorname{rad} \mathfrak{q} = \mathfrak{P} \cap \mathcal{O}$, which leads to a contradiction.

COROLLARY 2.7. Let I be an invertible ideal of the order \mathcal{O} . Then

 $I + \mathfrak{f} = \mathcal{O} \iff IR + \mathfrak{f} = R.$

Proof. The implication " \Rightarrow " is obvious.

Assume $IR + \mathfrak{f} = R$. Suppose $I + \mathfrak{f} \neq \mathcal{O}$. From Proposition 2.3 it follows that in a representation of the ideal I there is a primary ideal \mathfrak{q} of \mathcal{O} such that $\mathfrak{q} + \mathfrak{f} \neq \mathcal{O}$. However, Lemma 2.6 shows that $\mathfrak{q}R \subseteq \mathfrak{Q}$ for some ideal $\mathfrak{Q} \lhd R$ in the decomposition of \mathfrak{f} . Hence $IR \subseteq \mathfrak{Q}$, i.e. $IR + \mathfrak{f} \neq R$, which is impossible.

Now we prove a lemma which is true for any integral domain, not necessarily an order.

LEMMA 2.8. Let P be an integral domain, I be an invertible ideal of P and $\mathfrak{p}_1, \ldots, \mathfrak{p}_m \triangleleft P$ be pairwise distinct maximal ideals. Then

$$I \neq I\mathfrak{p}_1 \cup \cdots \cup I\mathfrak{p}_m.$$

Proof. Of course $I\mathfrak{p}_1 \cup \cdots \cup I\mathfrak{p}_m \subseteq I$. We show by induction on m that $I \not\subseteq I\mathfrak{p}_1 \cup \cdots \cup I\mathfrak{p}_m$.

For m = 1, if $I \subseteq I\mathfrak{p}_1$, then

$$I^{-1} \cdot I \subseteq I^{-1} \cdot I\mathfrak{p}_1,$$

i.e. $P \subseteq \mathfrak{p}_1$, a contradiction.

Suppose

$$I \subseteq I\mathfrak{p}_1 \cup \cdots \cup I\mathfrak{p}_{m-1} \cup I\mathfrak{p}_m.$$

By the induction assumption

$$I \nsubseteq I\mathfrak{p}_1 \cup \cdots \cup I\mathfrak{p}_{m-1}.$$

Choose an element

(2.3)
$$x \in I\mathfrak{p}_m \setminus (I\mathfrak{p}_1 \cup \cdots \cup I\mathfrak{p}_{m-1}).$$

We prove that

$$I\mathfrak{p}_1\cap\cdots\cap I\mathfrak{p}_{m-1}\nsubseteq I\mathfrak{p}_m.$$

Indeed, if $I\mathfrak{p}_1 \cap \cdots \cap I\mathfrak{p}_{m-1} \subseteq I\mathfrak{p}_m$, then

$$I \cdot (\mathfrak{p}_1 \cap \cdots \cap \mathfrak{p}_{m-1}) \subseteq I\mathfrak{p}_1 \cap \cdots \cap I\mathfrak{p}_{m-1} \subseteq I\mathfrak{p}_m$$

i.e. $\mathfrak{p}_1 \cap \cdots \cap \mathfrak{p}_{m-1} \subseteq \mathfrak{p}_m$. Since $\mathfrak{p}_1, \ldots, \mathfrak{p}_{m-1}$ are pairwise distinct (so relatively prime) maximal ideals,

$$\mathfrak{p}_1 \cdots \mathfrak{p}_{m-1} = \mathfrak{p}_1 \cap \cdots \cap \mathfrak{p}_{m-1} \subseteq \mathfrak{p}_m.$$

Hence $\mathbf{p}_i = \mathbf{p}_m$ for some $i \in \{1, \ldots, m-1\}$, which is impossible.

Choose an element

$$y \in (I\mathfrak{p}_1 \cap \cdots \cap I\mathfrak{p}_{m-1}) \setminus I\mathfrak{p}_m.$$

Because I is an ideal, $x + y \in I$. There exists $i \in \{1, \ldots, m\}$ such that $x + y \in I\mathfrak{p}_i$.

If $i \in \{1, \ldots, m-1\}$, then $x \in I\mathfrak{p}_i$. This contradicts (2.3). If i = m, then $y \in I\mathfrak{p}_m$. This is also impossible.

THEOREM 2.9. Let K be a global field and R < K be a Dedekind domain. Moreover, let $\mathcal{O} < R$ be an order, \mathfrak{f} be the conductor of \mathcal{O} and $g \in E(R) \cap \mathcal{O}$. Then $\langle g \rangle \in \operatorname{im}(\phi \circ \varphi)$ if and only if there exists $h \in \mathcal{O}$ such that

$$h\dot{K}^2 = g\dot{K}^2$$
 and $hR + \mathfrak{f} = R$.

Proof. (\Rightarrow) From Lemma 2.1 it follows that there exists an ideal J of \mathcal{O} and an element $k \in K$ such that

$$J^2 = gk^2\mathcal{O}.$$

Since $k = k_1/k_2$ for some $k_1, k_2 \in \mathcal{O} \setminus \{0\}$, (2.4) $I^2 = gk_1^2\mathcal{O}$,

where $I = Jk_2$ is an invertible ideal of \mathcal{O} .

From [GHK, proof of Proposition 4(ii)] it follows that there are only finitely many maximal ideals in \mathcal{O} which are not relatively prime to \mathfrak{f} . Let $\mathfrak{p}_1, \ldots, \mathfrak{p}_m$ be all the pairwise distinct maximal ideals of \mathcal{O} such that

$$\mathfrak{p}_i + \mathfrak{f} \neq \mathcal{O}$$
 for each $i \in \{1, \dots, m\}$.

There exists an element

(2.5)
$$x \in I \setminus (I\mathfrak{p}_1 \cup \cdots \cup I\mathfrak{p}_m).$$

Obviously $x \neq 0$ and $x\mathcal{O} \subseteq I$. Moreover, $xI^{-1} \subseteq \mathcal{O}$ is an invertible ideal of \mathcal{O} .

Notice that $xI^{-1} + \mathfrak{f} = \mathcal{O}$. Indeed, otherwise by Proposition 2.3 there exists a primary ideal $\mathfrak{q} \triangleleft \mathcal{O}$ such that

$$\mathfrak{q} + \mathfrak{f} \neq \mathcal{O} \quad \text{and} \quad xI^{-1} \subseteq \mathfrak{q}.$$

But $\mathfrak{q} \subseteq \operatorname{rad} \mathfrak{q}$ and Lemma 2.5 shows that $\operatorname{rad} \mathfrak{q}$ is a maximal ideal in \mathcal{O} such that $\operatorname{rad} \mathfrak{q} + \mathfrak{f} \neq \mathcal{O}$. Therefore

$$xI^{-1} \subseteq \mathfrak{q} \subseteq \operatorname{rad} \mathfrak{q} = \mathfrak{p}_i$$

for some $i \in \{1, \ldots, m\}$. Hence $x\mathcal{O} \subseteq I\mathfrak{p}_i$, i.e. $x \in I\mathfrak{p}_i$. This contradicts (2.5).

Proposition 2.3 implies that the ideal xI^{-1} has a unique representation as a product of powers of maximal ideals of \mathcal{O} relatively prime to \mathfrak{f} .

Since $x^2 \in I^{\overline{2}}$, by (2.4) there exists a nonzero $h \in \mathcal{O}$ such that

(2.6)
$$x^2 = gk_1^2h.$$

Of course $h\dot{K}^2 = g\dot{K}^2$. We show that $h\mathcal{O} + \mathfrak{f} = \mathcal{O}$. Indeed, otherwise by Proposition 2.3 there exists a primary ideal $\mathfrak{q}_1 \triangleleft \mathcal{O}$ such that

$$\mathfrak{q}_1 + \mathfrak{f} \neq \mathcal{O} \quad \text{and} \quad h\mathcal{O} \subseteq \mathfrak{q}_1$$

Therefore by (2.6),

$$x^2 \mathcal{O} = gk_1^2 \mathcal{O} \cdot h\mathcal{O} \subseteq I^2 \mathfrak{q}_1,$$

i.e. $(xI^{-1})^2 \subseteq \mathfrak{q}_1$. But the ideal $(xI^{-1})^2$ is a product of powers of maximal ideals of \mathcal{O} relatively prime to \mathfrak{f} , so

$$(xI^{-1})^2 + \mathfrak{f} = \mathcal{O}.$$

Hence $q_1 + f = O$, a contradiction.

Thus, $h\mathcal{O} + \mathfrak{f} = \mathcal{O}$, so $hR + \mathfrak{f} = R$.

(⇐) By assumption, $h\dot{K}^2 = g\dot{K}^2$, so $h \in E(R) \cap \mathcal{O}$ and $\langle g \rangle = \langle h \rangle$ in the Witt ring *WK*. Corollary 2.7 yields $h\mathcal{O} + \mathfrak{f} = \mathcal{O}$, so $\langle g \rangle = \langle h \rangle \in \operatorname{im}(\phi \circ \varphi)$, by Theorem 2.4. •

COROLLARY 2.10. Let $\mathfrak{f} = \mathfrak{Q}_1^{r_1} \cdots \mathfrak{Q}_n^{r_n}, r_1, \ldots, r_n \in \mathbb{N}$, be the representation of the conductor \mathfrak{f} of the order \mathcal{O} as a product of powers of pairwise distinct maximal ideals of the Dedekind domain R. Moreover, let $g \in E(R) \cap \mathcal{O}$. Then $\langle g \rangle \in \operatorname{im}(\phi \circ \varphi)$ if and only if there exists $h \in \mathcal{O}$ such that $h\dot{K}^2 = g\dot{K}^2$ and the ideal hR has a unique representation as a product of powers of pairwise distinct maximal ideals $\mathfrak{P} \notin \{\mathfrak{Q}_1, \ldots, \mathfrak{Q}_n\}$.

3. Quadratic number fields. As an example we examine the surjectivity of the natural homomorphism $\varphi \colon W\mathcal{O} \to WR$ in the case when K is some quadratic number field and $R = R_K$ is the ring of algebraic integers of K.

Let $K = \mathbb{Q}(\sqrt{D})$, where D is a square-free integer. Assume p_1, \ldots, p_s are all the pairwise distinct prime divisors of the discriminant of the field K (if

B. Rothkegel

 $D \equiv 3 \pmod{4}$, then we assume $p_1 = 2$). From [Cz1, pp. 110, 116–117] it follows that in the case when K is a nonreal field (D < 0) the set

$$\{ \langle 1 \rangle, \langle p_1 \rangle, \dots, \langle p_{s-1} \rangle \} \quad \text{when } D \neq -1, \\ \{ \langle 1 \rangle, \langle 2 \rangle \} \quad \text{when } D = -1,$$

generates the group $\phi(WR_K)$.

Assume K is a real field (D > 0). Then K has two real infinite primes ∞_1, ∞_2 . From [Cz1, pp. 114, 117–119] it follows that the set

 $\{\langle 1 \rangle, \langle p_1 \rangle, \dots, \langle p_{s-1} \rangle\}$

is contained in the set of generators of the group $\phi(WR_K)$.

Let $N_{K/\mathbb{Q}}(\dot{K})$ denote the norm group of the extension K/\mathbb{Q} . If $-1 \in N_{K/\mathbb{Q}}(\dot{K})$, then there exists $b \in E(R_K)$ that is positive at ∞_1 and negative at ∞_2 (cf. [Cz2, proof of Proposition 3.2]). Moreover, the class $\langle b \rangle$ belongs to the set of generators of the group $\phi(WR_K)$. In particular, if $D \not\equiv 1 \pmod{8}$, then the set

$$\{\langle 1 \rangle, \langle p_1 \rangle, \dots, \langle p_{s-1} \rangle, \langle b \rangle\}$$

generates $\phi(WR_K)$ (cf. [Cz1, pp. 114, 117]).

Let $K = \mathbb{Q}(\sqrt{D})$ be any quadratic number field. It is known that

$$R_K = \begin{cases} \mathbb{Z}[\sqrt{D}] & \text{when } D \not\equiv 1 \pmod{4}, \\ \mathbb{Z}[(1+\sqrt{D})/2] & \text{when } D \equiv 1 \pmod{4}. \end{cases}$$

Moreover, $\mathcal{O} < R_K$ is an order if and only if there exists $m \in \mathbb{N}$ such that

$$\mathcal{O} = \begin{cases} \mathbb{Z}[m\sqrt{D}] & \text{when } D \not\equiv 1 \pmod{4} \\ \mathbb{Z}[m(1+\sqrt{D})/2] & \text{when } D \equiv 1 \pmod{4} \end{cases}$$

(cf. [BC, p. 151]). The conductor \mathfrak{f} of \mathcal{O} is then the principal ideal generated by $m, \mathfrak{f} = mR_K$.

PROPOSITION 3.1. Let $K = \mathbb{Q}(\sqrt{D})$ be a quadratic number field, $\mathcal{O} < R_K$ be an order and $\mathfrak{f} = mR_K$ be its conductor. Let $p \in E(R_K)$ be a prime number satisfying one of the following two conditions:

(i) $p \nmid m$,

(ii) $p \mid m \text{ and } p \mid D$.

Then $\langle p \rangle \in \operatorname{im}(\phi \circ \varphi)$.

Proof. (i) Since gcd(p,m) = 1, there exist $x, y \in \mathbb{Z}$ such that

$$px + my = 1.$$

In particular $pR_K + \mathfrak{f} = R_K$, so $\langle p \rangle \in \operatorname{im}(\phi \circ \varphi)$.

(ii) Assume $m = p^r \cdot m'$ for some $r, m' \in \mathbb{N}$ and $p \nmid m'$. Consider the element

$$z := p^{r+1} \cdot m + m' \cdot m\sqrt{D} \in \mathcal{O}.$$

Then

$$z^{2} = pm^{2} \cdot \left[\left(p^{2r+1} + m^{\prime 2} \cdot \frac{D}{p} \right) + 2m\sqrt{D} \right] = pm^{2} \cdot h.$$

Moreover, $h \in \mathcal{O}$ and $h\dot{K}^2 = p\dot{K}^2$. Since $p \nmid m'$ and D is a square-free integer, it is easy to observe that

$$\operatorname{gcd}\left(p^{2r+1}, m'^2 \cdot \frac{D}{p}\right) = 1.$$

Hence

$$p^{2r+1}R_K + m'^2 \cdot \frac{D}{p}R_K = R_K.$$

We show that $hR_K + \mathfrak{f} = R_K$. Indeed, otherwise there exists a maximal ideal \mathfrak{Q} in the representation of the conductor $\mathfrak{f} = mR_K$ which is also in the representation of the ideal hR_K . Then $hR_K \subseteq \mathfrak{Q}$, i.e. $h \in \mathfrak{Q}$. But $2m\sqrt{D} \in \mathfrak{f} \subseteq \mathfrak{Q}$, so

(3.1)
$$p^{2r+1} + m^{\prime 2} \cdot \frac{D}{p} \in \mathfrak{Q}.$$

Because $p^r \cdot m' = m \in \mathfrak{Q}$, either $p \in \mathfrak{Q}$ or $m' \in \mathfrak{Q}$. In both cases, by (3.1),

$$p^{2r+1} \in \mathfrak{Q}$$
 and $m'^2 \cdot \frac{D}{p} \in \mathfrak{Q}$.

Therefore

$$R_K = p^{2r+1}R_K + m'^2 \cdot \frac{D}{p}R_K \subseteq \mathfrak{Q}_{\mathfrak{f}}$$

which is impossible.

Finally, from Theorem 2.9 it follows that $\langle p \rangle \in \operatorname{im}(\phi \circ \varphi)$.

Observe that every prime divisor p_i , $i \in \{1, \ldots, s\}$, of the discriminant of the field $K = \mathbb{Q}(\sqrt{D})$ is a divisor of the integer D (except for $p_1 = 2$ in the case when $D \equiv 3 \pmod{4}$).

COROLLARY 3.2. Let $K = \mathbb{Q}(\sqrt{D})$ be a nonreal quadratic number field with $D \not\equiv 3 \pmod{4}$. Moreover, let \mathcal{O} be an order. Then the natural homomorphism $\varphi \colon W\mathcal{O} \to WR_K$ is surjective.

COROLLARY 3.3. Let $K = \mathbb{Q}(\sqrt{D})$ be a nonreal quadratic number field with $D \equiv 3 \pmod{4}$. Moreover, let $\mathcal{O} = \mathbb{Z}[m\sqrt{D}]$ be an order such that $2 \nmid m$. Then the natural homomorphism $\varphi \colon W\mathcal{O} \to WR_K$ is surjective.

PROPOSITION 3.4. Let $K = \mathbb{Q}(\sqrt{D})$ be any quadratic number field with $D \equiv 3 \pmod{4}$. If $\mathcal{O} = \mathbb{Z}[m\sqrt{D}]$ is an order such that $2 \mid m$, then

$$\langle p_1 \rangle = \langle 2 \rangle \notin \operatorname{im}(\phi \circ \varphi).$$

Proof. First assume m = 2. Denote $\mathcal{O}_1 := \mathbb{Z}[2\sqrt{D}]$ and suppose that $\langle 2 \rangle \in \operatorname{im}(\phi \circ \varphi_1)$, where $\varphi_1 \colon W\mathcal{O}_1 \to WR_K$ is the natural homomorphism.

In the same way as in (2.4), from Lemma 2.1 it follows that there exists an ideal I of \mathcal{O}_1 and an element $k_1 \in \mathcal{O}_1 \setminus \{0\}$ such that

$$I^2 = 2k_1^2 \mathcal{O}_1.$$

Multiplying the above equality by the principal ideal of \mathcal{O}_1 generated by the element conjugate to k_1^2 , we obtain

$$T^2 = 2n^2 \mathcal{O}_1$$

for some ideal T of \mathcal{O}_1 and $n \in \mathbb{N}$. We will show that this is impossible.

Assume $2 \nmid n$. Then for every $x + 2y\sqrt{D} \in T$, where $x, y \in \mathbb{Z}$, we have

$$2 | (x + 2y\sqrt{D})^2$$

Hence $2 \mid x$, so in particular the rational part of every element of the ideal T^2 is divisible by 4. But $2n^2 \in T^2 \cap \mathbb{N}$ and $2 \nmid n$, a contradiction.

Assume $n = 2^r \cdot n'$ for some $r, n' \in \mathbb{N}$ and $2 \nmid n'$. Then

(3.2)
$$T^2 = 2^{2r+1} \cdot n^2 \mathcal{O}_1.$$

Since $2r + 1 \ge 3$, for every $x + 2y\sqrt{D} \in T$ we have

$$2^3 | (x + 2y\sqrt{D})^2 \quad \text{in } \mathcal{O}_1 = \mathbb{Z}[2\sqrt{D}].$$

Hence

$$2^3 | (x^2 + 4y^2D)$$
 and $2^2 | xy$.

By assumption, $D \equiv 3 \pmod{4}$, so $2 \mid x$ and $2 \mid y$. Therefore

$$2 | (x + 2y\sqrt{D}) \quad \text{in } \mathcal{O}_1.$$

There exists an ideal T_1 of \mathcal{O}_1 such that

 $T = 2\mathcal{O}_1 \cdot T_1,$

i.e. by (3.2),

$$T_1^2 = 2^{2r-1} \cdot n'^2 \mathcal{O}_1,$$

where $2r - 1 \ge 1$.

Repeating this procedure until 2r - 1 = 1, we prove that there exists an ideal T' of \mathcal{O}_1 such that

$$\Gamma'^2 = 2n'^2 \mathcal{O}_1.$$

But $2 \nmid n'$, so this is impossible.

To sum up, we have shown that if $\mathcal{O}_1 = \mathbb{Z}[2\sqrt{D}]$, then $\langle 2 \rangle \notin \operatorname{im}(\phi \circ \varphi_1)$. Assume that $\mathcal{O} = \mathbb{Z}[m\sqrt{D}]$ is any order such that $2 \mid m$. Suppose that

 $\langle 2 \rangle \in \operatorname{im}(\phi \circ \varphi)$. By Theorem 2.9 there exists $h \in \mathcal{O}$ such that

$$hK^2 = 2K^2$$
 and $hR_K + mR_K = R_K$.

But

$$\mathbb{Z}[m\sqrt{D}] \subseteq \mathbb{Z}[2\sqrt{D}] = \mathcal{O}_1,$$

so $h \in \mathcal{O}_1$. Moreover,

 $R_K = hR_K + mR_K \subseteq hR_K + 2R_K, \quad \text{i.e.} \quad hR_K + 2R_K = R_K.$

Using again Theorem 2.9 we get $\langle 2 \rangle \in \operatorname{im}(\phi \circ \varphi_1)$, a contradiction. Thus, $\langle 2 \rangle \notin \operatorname{im}(\phi \circ \varphi)$.

COROLLARY 3.5. Let $K = \mathbb{Q}(\sqrt{D})$ with $D \equiv 3 \pmod{4}$. Moreover, let $\mathcal{O} = \mathbb{Z}[m\sqrt{D}]$ be an order such that $2 \mid m$. Then $\varphi \colon W\mathcal{O} \to WR_K$ is not surjective.

Now assume $K = \mathbb{Q}(\sqrt{D})$ is a real field with $-1 \in N_{K/\mathbb{Q}}(K)$. If p_1, \ldots, p_s are all the pairwise distinct prime divisors of the discriminant of K, then the condition $-1 \in N_{K/\mathbb{Q}}(K)$ can be replaced by $p_i \equiv 1, 2 \pmod{4}$ for $i = 1, \ldots, s$.

We give a necessary and sufficient condition for $\langle b \rangle \in \operatorname{im}(\phi \circ \varphi)$, where $b \in E(R_K) \cap \mathcal{O}$ is positive at ∞_1 and negative at ∞_2 .

In elementary number theory the following fact is known.

PROPOSITION 3.6. Let $c = 2^r q_1 \cdots q_l$, where $r \in \mathbb{N} \cup \{0\}$ and q_1, \ldots, q_l are odd prime numbers. Then the equation $X^2 + Y^2 = c$ has a solution $(x, y) \in \mathbb{Z} \times \mathbb{Z}$ with gcd(x, y, c) = 1 if and only if $r \in \{0, 1\}$ and $q_i \equiv 1$ (mod 4) for every $i \in \{1, \ldots, l\}$.

PROPOSITION 3.7. Let $K = \mathbb{Q}(\sqrt{D})$ be a real quadratic number field with $D \equiv 1 \pmod{4}$ and $-1 \in N_{K/\mathbb{Q}}(\dot{K})$. Let $\mathcal{O} = \mathbb{Z}[m(1+\sqrt{D})/2]$ be an order with $m = 2^r q_1 \cdots q_l$, where $r \in \mathbb{N} \cup \{0\}$ and q_1, \ldots, q_l are odd prime numbers. Moreover, let $b \in E(R_K) \cap \mathcal{O}$ be positive at ∞_1 and negative at ∞_2 . Then $\langle b \rangle \in \operatorname{im}(\phi \circ \varphi)$ if and only if $r \in \{0, 1\}$ and $q_i \equiv 1 \pmod{4}$ for every $i \in \{1, \ldots, l\}$.

Proof. (\Rightarrow) By Theorem 2.9 there exists $h = x + ym(1 + \sqrt{D})/2 \in \mathcal{O}$ such that

$$h\dot{K}^2 = b\dot{K}^2$$
 and $hR_K + \mathfrak{f} = R_K$.

Because $N_{K/\mathbb{Q}}(h) < 0$ and $h \in E(R_K) \cap \mathcal{O}$, we have

$$N_{K/\mathbb{O}}(h) = -t^2$$
 for some $t \in \mathbb{N}$.

Observe that

$$-t^2 = N_{K/\mathbb{Q}}(h) = h\overline{h} = x^2 + m \cdot \left[xy + \frac{y^2}{4}m(1-D)\right],$$

where \overline{h} denotes the element conjugate to h. Since $D \equiv 1 \pmod{4}$,

$$a := xy + \frac{y^2}{4}m(1-D) \in \mathbb{Z}.$$

Hence

(3.3)
$$x^2 + t^2 = -ma$$
, where $-ma \in \mathbb{N}$.

We assume $gcd(x^2, t^2, a)$ is a square-free integer (if $n^2 | gcd(x^2, t^2, a)$ for some $n \in \mathbb{N}$, then we divide (3.3) by n^2).

Suppose either r > 1, or $q_i \equiv 3 \pmod{4}$ for some $i \in \{1, \ldots, l\}$. By Proposition 3.6 there exists a prime number p such that $p \mid x, p \mid t$ and $p^2 \mid ma$. Since $gcd(x^2, t^2, a)$ is a square-free integer, $p \mid m$. Hence $p \mid (x + ym(1 + \sqrt{D})/2)$ in the ring R_K , i.e.

$$hR_K + \mathfrak{f} = hR_K + mR_K \neq R_K$$

a contradiction.

 (\Leftarrow) Let

$$m_1 := \begin{cases} m & \text{when } 2 \nmid m, \\ m/2 & \text{when } 2 \mid m. \end{cases}$$

Obviously $m_1 \equiv 1 \pmod{2}$.

Since $D \equiv 1 \pmod{4}$ and $-1 \in N_{K/\mathbb{Q}}(\dot{K})$, every prime divisor of D is congruent to 1 modulo 4. By Proposition 3.6 there exist $x, y \in \mathbb{Z}$ such that

$$x^{2} + y^{2} = m_{1}^{2}D$$
 and $gcd(x, y, m_{1}^{2}D) = 1.$

We assume $y \equiv 1 \pmod{2}$.

Consider

$$g := x + m_1 \sqrt{D} = \begin{cases} (x - m) + 2m(1 + \sqrt{D})/2 & \text{when } 2 \nmid m, \\ (x - m_1) + m(1 + \sqrt{D})/2 & \text{when } 2 \mid m. \end{cases}$$

Observe that $g \in \mathcal{O}$ and

$$N_{K/\mathbb{Q}}(g) = g\overline{g} = x^2 - m_1^2 D = -y^2.$$

Moreover, $gcd(N_{K/\mathbb{Q}}(g), m) = 1$, so

$$gR_K + \mathfrak{f} = gR_K + mR_K = R_K$$

We show that $g \in E(R_K)$.

If $g \in U(R_K)$, then $g \in E(R_K)$. Assume $g \notin U(R_K)$. Let \mathfrak{P} be a maximal ideal in the decomposition of the ideal gR_K . The ideal \mathfrak{P} lies over some prime number p.

(a) If p ramifies in K $(pR_K = \mathfrak{P}^2)$, then $p \mid D$. Moreover, $p \mid N_{K/\mathbb{Q}}(g)$, so $gcd(x, y, m_1^2D) > 1$, a contradiction.

(b) If p remains prime in K $(pR_K = \mathfrak{P})$, then p | g in R_K . It is easy to observe that p | 2m and $p | N_{K/\mathbb{Q}}(g)$. If $p | m_1$, then $gcd(x, y, m_1^2D) > 1$, which is not the case. If p = 2, then 2 | y, which is not the case either.

(c) Hence p splits in K, $pR_K = \mathfrak{P}\overline{\mathfrak{P}}$. Observe that the ideal $\overline{\mathfrak{P}}$ does not belong to the decomposition of the ideal gR_K . Otherwise, $p \mid g$ in R_K , which is a contradiction. The ideal $\overline{\mathfrak{P}}$ belongs only to the decomposition of the ideal $\overline{\mathfrak{P}}R_K$. Because

$$gR_K \cdot \overline{g}R_K = (yR_K)^2,$$

we have $\operatorname{ord}_{\mathfrak{P}} g = \operatorname{ord}_{\overline{\mathfrak{P}}} \overline{g} \equiv 0 \pmod{2}$. Finally, $g \in E(R_K) \cap \mathcal{O}$.

Theorem 2.9 implies that

(3.4)
$$\langle g \rangle \in \operatorname{im}(\phi \circ \varphi).$$

Since $N_{K/\mathbb{Q}}(g) = -y^2$, from [Cz2, Proposition 3.2, p. 36] it follows that

$$b\dot{K}^2 = \pm gp_1^{r_1} \cdots p_{s-1}^{r_{s-1}} \dot{K}^2,$$

where $p_1 \ldots, p_{s-1}$ are pairwise distinct prime divisors of the discriminant of the field K and $r_i \in \{0, 1\}, i = 1, \ldots, s - 1$. Hence

$$\langle b \rangle = \pm \langle g \rangle \langle p_1^{r_1} \rangle \cdots \langle p_{s-1}^{r_{s-1}} \rangle$$

in the Witt ring WK. By (3.4) and Proposition 3.1, $\langle b \rangle \in \operatorname{im}(\phi \circ \varphi)$.

COROLLARY 3.8. Let $K = \mathbb{Q}(\sqrt{D})$ be a real quadratic number field with $D \equiv 5 \pmod{8}$ and $-1 \in N_{K/\mathbb{Q}}(\dot{K})$. Moreover, let $\mathcal{O} = \mathbb{Z}[m(1+\sqrt{D})/2]$ be an order with $m = 2^r q_1 \cdots q_l$, where $r \in \{0,1\}$ and q_1, \ldots, q_l are odd prime numbers such that $q_i \equiv 1 \pmod{4}$ for every $i \in \{1, \ldots, l\}$. Then $\varphi \colon W\mathcal{O} \to WR_K$ is surjective.

Proof. This follows from statements on page 358 and Propositions 3.1 and 3.7. \blacksquare

COROLLARY 3.9. Let $K = \mathbb{Q}(\sqrt{D})$ be a real quadratic number field with $D \equiv 1 \pmod{4}$ and $-1 \in N_{K/\mathbb{Q}}(\dot{K})$. Moreover, let $\mathcal{O} = \mathbb{Z}[m(1+\sqrt{D})/2]$ be an order with $m = 2^r q_1 \cdots q_l$, where $r \in \mathbb{N} \cup \{0\}$ and q_1, \ldots, q_l are odd prime numbers. If either r > 1, or $q_i \equiv 3 \pmod{4}$ for some $i \in \{1, \ldots, l\}$, then $\varphi \colon W\mathcal{O} \to WR_K$ is not surjective.

PROPOSITION 3.10. Let $K = \mathbb{Q}(\sqrt{D})$ be a real quadratic number field with $2 \mid D$ and $-1 \in N_{K/\mathbb{Q}}(\dot{K})$. Let $\mathcal{O} = \mathbb{Z}[m\sqrt{D}]$ be an order with $m = 2^r q_1 \cdots q_l$, where $r \in \mathbb{N} \cup \{0\}$ and q_1, \ldots, q_l are odd prime numbers. Moreover, let $b \in E(R_K) \cap \mathcal{O}$ be positive at ∞_1 and negative at ∞_2 . Then $\langle b \rangle \in \operatorname{im}(\phi \circ \varphi)$ if and only if r = 0 and $q_i \equiv 1 \pmod{4}$ for every $i \in \{1, \ldots, l\}$.

Proof. (\Rightarrow) Theorem 2.9 yields $h = x + ym\sqrt{D} \in \mathcal{O}$ such that

$$h\dot{K}^2 = b\dot{K}^2$$
 and $hR_K + \mathfrak{f} = R_K$

As in the proof of the implication " \Rightarrow " of Proposition 3.7 we notice that $N_{K/\mathbb{Q}}(h) = -t^2$ for some $t \in \mathbb{N}$. Hence

$$x^2 + t^2 = m^2 y^2 D.$$

We assume gcd(x, t, y) = 1.

If either r > 0, or $q_i \equiv 3 \pmod{4}$ for some $i \in \{1, \ldots, l\}$, then by Proposition 3.6 there exists a prime number p such that $p \mid x, p \mid t$ and $p^2 \mid m^2 D$. Since D is a square-free integer, $p \mid m$. Then $p \mid h$ in R_K , so

$$hR_K + \mathfrak{f} = hR_K + mR_K \neq R_K,$$

a contradiction.

(\Leftarrow) Since $-1 \in N_{K/\mathbb{Q}}(\dot{K})$, every odd prime divisor of D is congruent to 1 modulo 4. Proposition 3.6 gives $x, y \in \mathbb{Z}$ such that

 $x^2+y^2=m^2D \quad \text{and} \quad \gcd(x,y,m^2D)=1.$

Consider $g := x + m\sqrt{D} \in \mathcal{O}$. Obviously,

$$N_{K/\mathbb{Q}}(g) = x^2 - m^2 D = -y^2.$$

Moreover, $gcd(N_{K/\mathbb{Q}}(g), m) = 1$, so

$$gR_K + \mathfrak{f} = gR_K + mR_K = R_K.$$

As in the proof of the implication " \Leftarrow " of Proposition 3.7, we show that $g \in E(R_K)$. Hence $\langle g \rangle \in \operatorname{im}(\phi \circ \varphi)$ and finally,

$$\langle b\rangle=\pm\langle g\rangle\langle p_1^{r_1}\rangle\cdots\langle p_{s-1}^{r_{s-1}}\rangle\in \operatorname{im}(\phi\circ\varphi). \ \bullet$$

COROLLARY 3.11. Let $K = \mathbb{Q}(\sqrt{D})$ be a real quadratic number field with $2 \mid D$ and $-1 \in N_{K/\mathbb{Q}}(\dot{K})$. Moreover, let $\mathcal{O} = \mathbb{Z}[m\sqrt{D}]$ be an order with $m = 2^r q_1 \cdots q_l$, where $r \in \mathbb{N} \cup \{0\}$ and q_1, \ldots, q_l are odd prime numbers. Then $\varphi \colon W\mathcal{O} \to WR_K$ is surjective if and only if r = 0 and $q_i \equiv 1 \pmod{4}$ for every $i \in \{1, \ldots, l\}$.

Proof. This follows from page 358 and Propositions 3.1 and 3.10.

4. Quadratic function fields. Assume \mathbb{F} is a finite field of characteristic $\neq 2$. Assume ϵ is a generator of the group $\dot{\mathbb{F}}$. Let $F = \mathbb{F}(X)$ be the rational function field over \mathbb{F} and ∞_F be the prime of F with uniformizing parameter 1/X.

Let $D \in \mathbb{F}[X]$ be a square-free polynomial of degree ≥ 1 and a_d be the leading coefficient of D. We assume a_d is either 1 or ϵ . Let $K = F(\sqrt{D})$.

THEOREM 4.1 ([R, Proposition 14.6]).

- (i) If deg $D \equiv 1 \pmod{2}$, then ∞_F ramifies in K.
- (ii) If deg $D \equiv 0 \pmod{2}$ and $a_d = 1$, then ∞_F splits in K.
- (iii) If deg $D \equiv 0 \pmod{2}$ and $a_d = \epsilon$, then ∞_F is prime in K.

The field K is said to be *real* if ∞_F splits in K, and *nonreal* otherwise.

Throughout this section we assume that S is the set of primes of K which lie over ∞_F . Let

$$D_K(\mathcal{S}) = \{ g \in E(R_K(\mathcal{S})) : (-1, g)_{\mathfrak{P}} = 1 \text{ for every } \mathfrak{P} \in \mathcal{S} \},\$$

where $(\cdot, \cdot)_{\mathfrak{P}}$ denotes the \mathfrak{P} -adic Hilbert symbol. Let $u_K(\mathcal{S})$ denote the 2-rank of the group $E(R_K(\mathcal{S}))/D_K(\mathcal{S})$ (cf. [Cz3, p. 607], [RC, p. 196]).

Assume $p_1, \ldots, p_s \in \mathbb{F}[X]$ are all the pairwise distinct monic irreducible polynomials which divide D. From [RC, Proposition 6.2] it follows that $\epsilon \in N_{K/F}(\dot{K})$ if and only if each p_i has even degree. If $\epsilon \in N_{K/F}(\dot{K})$, then

there exists $b \in E(R_K(\mathcal{S}))$ such that $N_{K/F}(b) \in \epsilon \dot{F}^2$ (cf. [RC, Lemma 1.12]). By [RC, p. 208] and [Cz3, Theorem 4.2] the set of classes

(4.1)
$$\{ \langle 1 \rangle, \langle \epsilon \rangle, \langle p_1 \rangle, \dots, \langle p_{s-1} \rangle, \langle b \rangle \} \quad \text{when } \epsilon \in N_{K/F}(\dot{K}), \\ \{ \langle 1 \rangle, \langle \epsilon \rangle, \langle p_1 \rangle, \dots, \langle p_{s-1} \rangle \} \quad \text{when } \epsilon \notin N_{K/F}(\dot{K}),$$

is contained in the set of generators of the group $\phi(WR_K(\mathcal{S}))$. In particular, if K is either a nonreal field, or a real field and $u_K(\mathcal{S}) \neq 0$, then the set (4.1) generates $\phi(WR_K(\mathcal{S}))$.

It is known that

$$R_K(\mathcal{S}) = \mathbb{F}[X][\sqrt{D}].$$

Moreover, $\mathcal{O} < R_K(\mathcal{S})$ is an order if and only if there exists $0 \neq m \in \mathbb{F}[X]$ such that

$$\mathcal{O} = \mathbb{F}[X][m\sqrt{D}]$$

(cf. [R, p. 248, Proposition 17.6]). The conductor \mathfrak{f} of \mathcal{O} is the principal ideal generated by $m, \mathfrak{f} = mR_K(\mathcal{S})$.

PROPOSITION 4.2. Let $K = F(\sqrt{D})$ be a quadratic function field, let $\mathcal{O} < R_K(\mathcal{S})$ be an order and let $\mathfrak{f} = mR_K(\mathcal{S})$ be its conductor. Suppose that $p \in E(R_K(\mathcal{S})) \cap \mathbb{F}[X]$ is an irreducible polynomial satisfying one of the following two conditions:

(i)
$$p \nmid m$$
,
(ii) $p \mid m \text{ and } p \mid D$

Then $\langle p \rangle \in \operatorname{im}(\phi \circ \varphi).$

Proof. This is proved similarly to Proposition 3.1.

The element ϵ is invertible in \mathcal{O} . Hence

(4.2)
$$\langle \epsilon \rangle \in \operatorname{im}(\phi \circ \varphi).$$

COROLLARY 4.3. Let $K = F(\sqrt{D})$ be a nonreal quadratic function field with $\epsilon \notin N_{K/F}(\dot{K})$. Moreover, let $\mathcal{O} < R_K(\mathcal{S})$ be an order. Then the natural homomorphism $\varphi: W\mathcal{O} \to WR_K(\mathcal{S})$ is surjective.

COROLLARY 4.4. Let $K = F(\sqrt{D})$ be a real quadratic function field with $\epsilon \notin N_{K/F}(\dot{K})$ and $u_K(S) \neq 0$. Moreover, let $\mathcal{O} < R_K(S)$ be an order. Then $\varphi \colon W\mathcal{O} \to WR_K(S)$ is surjective.

Assume $\epsilon \in N_{K/F}(\dot{K})$. We give a necessary and sufficient condition for $\langle b \rangle \in \operatorname{im}(\phi \circ \varphi)$.

LEMMA 4.5. Let $c = q_1 \cdots q_l$, where $q_1, \ldots, q_l \in \mathbb{F}[X]$ are irreducible. Then the equation $X^2 - \epsilon Y^2 = c$ has a solution $(x, y) \in \mathbb{F}[X] \times \mathbb{F}[X]$ with $gcd(x, y, c) \sim 1$ if and only if $\deg q_i \equiv 0 \pmod{2}$ for every $i \in \{1, \ldots, l\}$. *Proof.* (\Rightarrow) Suppose deg $q_i \equiv 1 \pmod{2}$ for some $i \in \{1, \ldots, l\}$. Obviously, $x^2 - \epsilon y^2 \equiv 0 \pmod{q_i}$. Because $gcd(x, y, c) \sim 1$, we have $y \not\equiv 0 \pmod{q_i}$. Then $(x/y)^2 \equiv \epsilon \pmod{q_i}$, i.e. ϵ is a square modulo q_i . This is impossible (cf. [R, Propositions 3.1 3), 3.2]).

(\Leftarrow) We use induction on *l*. Fix $i \in \{1, \ldots, l\}$. Because deg $q_i \equiv 0 \pmod{2}$, we have

$$(\epsilon, q_i)_{q_i} = 1$$
 and $(\epsilon, q_i)_{\infty_F} = 1$.

For every prime $\mathfrak{p} \notin \{q_i, \infty_F\}$ of the field F the elements ϵ , q_i are \mathfrak{p} -adic units, so $(\epsilon, q_i)_{\mathfrak{p}} = 1$. From the local-global principle it follows that the form $\langle \epsilon, q_i \rangle$ represents 1 over the field F. It is easy to observe that the form $\langle 1, -\epsilon \rangle$ represents q_i over F. By [P, 2.2 Theorem, Chapter 1] the form $\langle 1, -\epsilon \rangle$ represents q_i over the ring $\mathbb{F}[X]$. Hence there exist $z_i, t_i \in \mathbb{F}[X]$ such that $z_i^2 - \epsilon t_i^2 = q_i$. Obviously, $\gcd(z_i, t_i, q_i) \sim 1$.

Consider the equation $X^2 - \epsilon Y^2 = q_1 \cdots q_l q_{l+1}$. By the induction assumption there exist $x, y \in \mathbb{F}[X]$ such that

 $x^2 - \epsilon y^2 = q_1 \cdots q_l$ and $gcd(x, y, q_1 \cdots q_l) \sim 1$.

Observe that

$$(z_{l+1}x + \epsilon t_{l+1}y)^2 - \epsilon(z_{l+1}y + t_{l+1}x)^2 = q_1 \cdots q_l q_{l+1},$$

$$(z_{l+1}x - \epsilon t_{l+1}y)^2 - \epsilon(z_{l+1}y - t_{l+1}x)^2 = q_1 \cdots q_l q_{l+1}.$$

Using elementary arguments we prove that either

$$\gcd(z_{l+1}x + \epsilon t_{l+1}y, z_{l+1}y + t_{l+1}x, q_1 \cdots q_l q_{l+1}) \sim 1, \quad \text{or} \\ \gcd(z_{l+1}x - \epsilon t_{l+1}y, z_{l+1}y - t_{l+1}x, q_1 \cdots q_l q_{l+1}) \sim 1.$$

PROPOSITION 4.6. Let $K = F(\sqrt{D})$ be a quadratic function field with $\epsilon \in N_{K/F}(\dot{K})$. Let $\mathcal{O} = \mathbb{F}[X][m\sqrt{D}]$ be an order with $m = q_1 \cdots q_l$, where $q_1, \ldots, q_l \in \mathbb{F}[X]$ are irreducible polynomials. Moreover, let $b \in E(R_K(\mathcal{S})) \cap \mathcal{O}$ with $N_{K/F}(b) \in \epsilon \dot{F}^2$. Then $\langle b \rangle \in \operatorname{im}(\phi \circ \varphi)$ if and only if deg $q_i \equiv 0 \pmod{2}$ for every $i \in \{1, \ldots, l\}$.

Proof. Using Lemma 4.5 we prove the implication " \Rightarrow " similarly to " \Rightarrow " of Proposition 3.10.

(\Leftarrow) Since $\epsilon \in N_{K/F}(K)$, every monic irreducible polynomial which divides D has even degree. Lemma 4.5 yields $x, y \in \mathbb{F}[X]$ such that

 $x^2 - \epsilon y^2 = m^2 D$ and $gcd(x, y, m^2 D) \sim 1$.

Consider $g := x + m\sqrt{D} \in \mathcal{O}$. Similarly to the proofs of " \Leftarrow " of Propositions 3.7 and 3.10 we show that

(4.3)
$$\langle g \rangle \in \operatorname{im}(\phi \circ \varphi).$$

Since $N_{K/F}(g) = \epsilon y^2$, from [RC, p. 208] it follows that

$$b\dot{K}^2 = g\epsilon^r p_1^{r_1} \cdots p_{s-1}^{r_{s-1}} \dot{K}^2,$$

where $p_1, \ldots, p_{s-1} \in \mathbb{F}[X]$ are pairwise distinct monic irreducible polynomials which divide D, and $r, r_i \in \{0, 1\}, i = 1, \ldots, s - 1$. Hence

$$\langle b \rangle = \langle g \rangle \langle \epsilon^r \rangle \langle p_1^{r_1} \rangle \cdots \langle p_{s-1}^{r_{s-1}} \rangle$$

in WK. By (4.2), (4.3) and Proposition 4.2, $\langle b \rangle \in \operatorname{im}(\phi \circ \varphi)$.

COROLLARY 4.7. Let $K = F(\sqrt{D})$ be a nonreal quadratic function field with $\epsilon \in N_{K/F}(\dot{K})$. Moreover, let $\mathcal{O} = \mathbb{F}[X][m\sqrt{D}]$ be an order with $m = q_1 \cdots q_l$, where $q_1, \ldots, q_l \in \mathbb{F}[X]$ are irreducible polynomials such that deg $q_i \equiv 0 \pmod{2}$ for every $i \in \{1, \ldots, l\}$. Then the natural homomorphism $\varphi \colon W\mathcal{O} \to WR_K(\mathcal{S})$ is surjective.

COROLLARY 4.8. Let $K = F(\sqrt{D})$ be a real quadratic function field with $\epsilon \in N_{K/F}(\dot{K})$ and $u_K(S) \neq 0$. Moreover, let $\mathcal{O} = \mathbb{F}[X][m\sqrt{D}]$ be an order with $m = q_1 \cdots q_l$, where $q_1, \ldots, q_l \in \mathbb{F}[X]$ are irreducible polynomials such that deg $q_i \equiv 0 \pmod{2}$ for every $i \in \{1, \ldots, l\}$. Then $\varphi \colon W\mathcal{O} \to WR_K(S)$ is surjective.

Corollaries 4.7 and 4.8 follow from statements on page 365, (4.2) and Propositions 4.2 and 4.6.

COROLLARY 4.9. Let $K = F(\sqrt{D})$ with $\epsilon \in N_{K/F}(K)$. Moreover, let $\mathcal{O} = \mathbb{F}[X][m\sqrt{D}]$ be an order with $m = q_1 \cdots q_l$, where $q_1, \ldots, q_l \in \mathbb{F}[X]$ are irreducible polynomials. If deg $q_i \equiv 1 \pmod{2}$ for some $i \in \{1, \ldots, l\}$, then $\varphi \colon W\mathcal{O} \to WR_K(\mathcal{S})$ is not surjective.

5. Forms of rank \geq 1. Let K be a global field and R < K be a Dedekind domain. Now we generalize Theorem 2.4.

LEMMA 5.1. Let $\mathcal{O} < R$ be an order, \mathfrak{f} be its conductor and \mathfrak{P} be a maximal ideal of R such that $\mathfrak{P} + \mathfrak{f} = R$. Then the localisation of the ring R at the ideal \mathfrak{P} is equal to the localisation of \mathcal{O} at the maximal ideal $\mathfrak{P} \cap \mathcal{O}$,

$$R_{\mathfrak{P}} = \mathcal{O}_{\mathfrak{P} \cap \mathcal{O}}.$$

Proof. " \supseteq " This inclusion is obvious.

" \subseteq " Let $x/y \in R_{\mathfrak{P}}$. Then $x, y \in R$ and $y \notin \mathfrak{P}$. Because $\mathfrak{P} + \mathfrak{f} = R$, we have $\mathfrak{f} \not\subseteq \mathfrak{P}$. Choose an element $z \in \mathfrak{f} \setminus \mathfrak{P}$. Then $zx, zy \in \mathcal{O}$ and

$$\frac{x}{y} = \frac{zx}{zy} \in \mathcal{O}_{\mathfrak{P}\cap\mathcal{O}}.$$

Indeed, if $zy \in \mathfrak{P} \cap \mathcal{O}$, then $zy \in \mathfrak{P}$, i.e. either $z \in \mathfrak{P}$ or $y \in \mathfrak{P}$, which is not the case.

COROLLARY 5.2. Let M be an R-module and \mathfrak{P} be a maximal ideal of R such that $\mathfrak{P} + \mathfrak{f} = R$. Then the localisation of the module M at the ideal \mathfrak{P} is equal to the localisation of M over the order \mathcal{O} at the maximal ideal

 $\mathfrak{P}\cap\mathcal{O}\triangleleft\mathcal{O}:$

$$M_{\mathfrak{P}} = M_{\mathfrak{P} \cap \mathcal{O}}.$$

LEMMA 5.3. Let $\mathcal{O} < R$ be an order and $M_1, \ldots, M_s \subseteq K^l$ be \mathcal{O} -modules, $l \in \mathbb{N}$. Moreover, let \mathfrak{p} be a maximal ideal of \mathcal{O} . Then

$$(M_1)_{\mathfrak{p}} \cap \cdots \cap (M_s)_{\mathfrak{p}} = (M_1 \cap \cdots \cap M_s)_{\mathfrak{p}}$$

Proof. The inclusion \supseteq is obvious.

$$\subseteq$$
 "Let $x \in (M_1)_{\mathfrak{p}} \cap \cdots \cap (M_s)_{\mathfrak{p}}$. Then

$$x = \frac{m_1}{y_1} = \dots = \frac{m_s}{y_s}$$

for some $m_1 \in M_1, \ldots, m_s \in M_s$ and $y_1, \ldots, y_s \in \mathcal{O} \setminus \mathfrak{p}$. Multiplying the above equalities of vectors by $y_1 \cdots y_s$ we get the existence of elements $z_1, \ldots, z_s \in \mathcal{O} \setminus \mathfrak{p}$ such that

$$z_1m_1=\cdots=z_sm_s\in M_1\cap\cdots\cap M_s.$$

Hence

$$x = \frac{m_1}{y_1} = \frac{z_1 m_1}{z_1 y_1} \in (M_1 \cap \dots \cap M_s)_{\mathfrak{p}}.$$

Let $\alpha \colon K^l \times K^l \to K$ be a bilinear form. Assume that α has a nonsingular diagonal matrix

$$A = \begin{bmatrix} a_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & a_l \end{bmatrix}$$

in the canonical basis of K^l , i.e. $\langle a_1, \ldots, a_l \rangle \in WK$. Moreover, assume that $\langle a_1, \ldots, a_l \rangle \in \phi(WR)$, $a_i \in \mathcal{O}$ and $a_iR + \mathfrak{f} = R$ for every $i \in \{1, \ldots, l\}$. We will generalize Theorem 2.4 to the form $\langle a_1, \ldots, a_l \rangle$.

Observe that

$$\operatorname{ord}_{\mathfrak{P}} a_i = 0$$
 for every $i \in \{1, \ldots, l\}$

for all but a finite number of maximal ideals $\mathfrak{P} \lhd R$.

(I) Fix such an $\mathfrak{P} \triangleleft R$. Consider the free module $\bigoplus_{i=1}^{l} w_i^{\mathfrak{P}} R_{\mathfrak{P}} \subseteq K^l$ over the ring $R_{\mathfrak{P}}$, where

$$w_1^{\mathfrak{P}} = (1, 0, \dots, 0), \quad \dots, \quad w_l^{\mathfrak{P}} = (0, \dots, 0, 1).$$

Consider the restriction of α to $\bigoplus_{i=1}^{l} w_i^{\mathfrak{P}} R_{\mathfrak{P}} \times \bigoplus_{i=1}^{l} w_i^{\mathfrak{P}} R_{\mathfrak{P}}$. Then the form $\alpha : \bigoplus_{i=1}^{l} w_i^{\mathfrak{P}} R_{\mathfrak{P}} \times \bigoplus_{i=1}^{l} w_i^{\mathfrak{P}} R_{\mathfrak{P}} \to R_{\mathfrak{P}}$ has matrix A in the basis $(w_1^{\mathfrak{P}}, \ldots, w_l^{\mathfrak{P}})$. Since $\operatorname{ord}_{\mathfrak{P}} a_i = 0$ for every $i \in \{1, \ldots, l\}$,

$$\det A = a_1 \cdots a_l \in U(R_{\mathfrak{P}}).$$

Thus α is nonsingular over the ring $R_{\mathfrak{P}}$.

(II) Let $\mathfrak{P} \triangleleft R$ be a maximal ideal R such that

$$\operatorname{ord}_{\mathfrak{P}} a_i > 0 \quad \text{for some } i \in \{1, \ldots, l\}.$$

The localisation $R_{\mathfrak{P}}$ is a \mathfrak{P} -adic valuation ring. If $\overline{K}_{\mathfrak{P}}$ denotes the residue class field, then from [MH, (3.3) Corollary] it follows that $\langle a_1, \ldots, a_l \rangle$ belongs to the kernel of the second residue homomorphism of Witt groups $\partial_{\mathfrak{P}} \colon WK \to W\overline{K}_{\mathfrak{P}}$. By [MH, proof of (3.1) Theorem] there exists a free module ($R_{\mathfrak{P}}$ -lattice) $\bigoplus_{i=1}^{l} w_i^{\mathfrak{P}} R_{\mathfrak{P}} \subseteq K^l$ over $R_{\mathfrak{P}}$ such that the form $\alpha \colon \bigoplus_{i=1}^{l} w_i^{\mathfrak{P}} R_{\mathfrak{P}} \times \bigoplus_{i=1}^{l} w_i^{\mathfrak{P}} R_{\mathfrak{P}} \to R_{\mathfrak{P}}$ is nonsingular.

Denote by $\mathcal{P}_{\mathfrak{f}}$ the set of all maximal ideals \mathfrak{P} of R such that $\mathfrak{P} + \mathfrak{f} = R$. Let $\mathfrak{p}_1, \ldots, \mathfrak{p}_m$ be all the pairwise distinct maximal ideals of \mathcal{O} such that

$$\mathfrak{p}_j + \mathfrak{f} \neq \mathcal{O}$$
 for every $j \in \{1, \dots, m\}$.

Let

$$M := \bigcap_{\mathfrak{P}\in\mathcal{P}_{\mathfrak{f}}} \left(\bigoplus_{i=1}^{l} w_{i}^{\mathfrak{P}} R_{\mathfrak{P}} \right) \cap \bigcap_{j=1}^{m} \mathcal{O}_{\mathfrak{p}_{j}}^{l},$$

where for every $\mathfrak{P} \in \mathcal{P}_{\mathfrak{f}}$ the vectors $w_1^{\mathfrak{P}}, \ldots, w_l^{\mathfrak{P}}$ are as in (I) and (II). It is easy to observe that M is an \mathcal{O} -module.

PROPOSITION 5.4. Let $a_1, \ldots, a_l \in \mathcal{O}$ and suppose $a_i R + \mathfrak{f} = R$ for every $i \in \{1, \ldots, l\}$. Under the assumptions and notation of pages 368 and 369,

(i)
$$M_{\mathfrak{P}\cap\mathcal{O}} = \bigoplus_{i=1}^{l} w_i^{\mathfrak{P}} R_{\mathfrak{P}} \text{ for every } \mathfrak{P} \in \mathcal{P}_{\mathfrak{f}},$$

(ii) $M_{\mathfrak{p}_j} = \mathcal{O}_{\mathfrak{p}_j}^l \text{ for every } j \in \{1, \ldots, m\}.$

Proof. (i) Fix $\mathfrak{P}_0 \in \mathcal{P}_f$. It is easy to observe that

$$M \subseteq \bigoplus_{i=1}^{l} w_i^{\mathfrak{P}_0} R_{\mathfrak{P}_0}.$$

From Lemma 5.1 it follows that $R_{\mathfrak{P}_0} = \mathcal{O}_{\mathfrak{P}_0 \cap \mathcal{O}}$. Therefore

(5.1)
$$M_{\mathfrak{P}_0\cap\mathcal{O}}\subseteq \bigoplus_{i=1}^l w_i^{\mathfrak{P}_0}R_{\mathfrak{P}_0}.$$

To show the opposite inclusion, let $\mathfrak{Q}_1, \ldots, \mathfrak{Q}_n$ be all the pairwise distinct maximal ideals of R such that

$$\mathfrak{Q}_i + \mathfrak{f} \neq R$$
 for every $i \in \{1, \dots, n\}$

(these are all the maximal ideals in the decomposition of \mathfrak{f}). Consider the module

$$N := \bigcap_{\mathfrak{P} \in \mathcal{P}_{\mathfrak{f}}} \left(\bigoplus_{i=1}^{l} w_{i}^{\mathfrak{P}} R_{\mathfrak{P}} \right) \cap \bigcap_{i=1}^{n} R_{\mathfrak{Q}_{i}}^{l}$$

over the ring R. Since

$$w_1^{\mathfrak{P}} = (1, 0, \dots, 0), \ \dots, \ w_l^{\mathfrak{P}} = (0, \dots, 0, 1)$$

for all but a finite number of $\mathfrak{P} \in \mathcal{P}_{\mathfrak{f}}$, from [O, 81:14], [MH, (3.2) Lemma] it follows that

$$N_{\mathfrak{P}_0} = \bigoplus_{i=1}^l w_i^{\mathfrak{P}_0} R_{\mathfrak{P}_0}.$$

Hence in particular

$$\bigoplus_{i=1}^{l} w_{i}^{\mathfrak{P}_{0}} R_{\mathfrak{P}_{0}} \subseteq \Big[\bigcap_{\mathfrak{P} \in \mathcal{P}_{\mathfrak{f}}} \Big(\bigoplus_{i=1}^{l} w_{i}^{\mathfrak{P}} R_{\mathfrak{P}} \Big) \Big]_{\mathfrak{P}_{0}}.$$

Because by assumption $\mathfrak{P}_0 + \mathfrak{f} = R$, Corollary 5.2 yields

$$\Big[\bigcap_{\mathfrak{P}\in\mathcal{P}_{\mathfrak{f}}}\Big(\bigoplus_{i=1}^{l}w_{i}^{\mathfrak{P}}R_{\mathfrak{P}}\Big)\Big]_{\mathfrak{P}_{0}}=\Big[\bigcap_{\mathfrak{P}\in\mathcal{P}_{\mathfrak{f}}}\Big(\bigoplus_{i=1}^{l}w_{i}^{\mathfrak{P}}R_{\mathfrak{P}}\Big)\Big]_{\mathfrak{P}_{0}\cap\mathcal{O}},$$

i.e.

(5.2)
$$\bigoplus_{i=1}^{l} w_i^{\mathfrak{P}_0} R_{\mathfrak{P}_0} \subseteq \left[\bigcap_{\mathfrak{P} \in \mathcal{P}_{\mathfrak{f}}} \left(\bigoplus_{i=1}^{l} w_i^{\mathfrak{P}} R_{\mathfrak{P}} \right) \right]_{\mathfrak{P}_0 \cap \mathcal{O}}$$

We will show that also

$$\bigoplus_{i=1}^{l} w_i^{\mathfrak{P}_0} R_{\mathfrak{P}_0} \subseteq \bigcap_{j=1}^{m} (\mathcal{O}_{\mathfrak{p}_j}^l)_{\mathfrak{P}_0 \cap \mathcal{O}}.$$

Fix an ideal \mathfrak{p}_j .

(I) Assume that \mathfrak{P}_0 is an ideal such that

$$\operatorname{ord}_{\mathfrak{P}_0} a_i = 0 \quad \text{for every } i \in \{1, \dots, l\}.$$

Then

$$w_1^{\mathfrak{P}_0} = (1, 0, \dots, 0), \ \dots, \ w_l^{\mathfrak{P}_0} = (0, \dots, 0, 1),$$

so $w_1^{\mathfrak{P}_0}, \ldots, w_l^{\mathfrak{P}_0} \in \mathcal{O}_{\mathfrak{p}_j}^l$. Hence

$$\bigoplus_{i=1}^{l} w_i^{\mathfrak{P}_0} R_{\mathfrak{P}_0} = \bigoplus_{i=1}^{l} w_i^{\mathfrak{P}_0} \mathcal{O}_{\mathfrak{P}_0 \cap \mathcal{O}} \subseteq (\mathcal{O}_{\mathfrak{p}_j}^l)_{\mathfrak{P}_0 \cap \mathcal{O}},$$

and finally

$$\bigoplus_{i=1}^{l} w_i^{\mathfrak{P}_0} R_{\mathfrak{P}_0} \subseteq \bigcap_{j=1}^{m} (\mathcal{O}_{\mathfrak{p}_j}^l)_{\mathfrak{P}_0 \cap \mathcal{O}}.$$

(II) Assume that

 $\operatorname{ord}_{\mathfrak{P}_0} a_i > 0 \quad \text{for some } i \in \{1, \ldots, l\}.$

Fix such an element $a_{i_0}, i_0 \in \{1, \ldots, l\}$.

Since by assumption $a_{i_0}R + \mathfrak{f} = R$, observe that $a_{i_0} \in U(\mathcal{O}_{\mathfrak{p}_j})$. Indeed, it is enough to prove that $a_{i_0} \notin \mathfrak{p}_j$. From Corollary 2.7 it follows that $a_{i_0}\mathcal{O} + \mathfrak{f} = \mathcal{O}$. Therefore if $a_{i_0} \in \mathfrak{p}_j$, then

$$\mathcal{O} = a_{i_0}\mathcal{O} + \mathfrak{f} \subseteq \mathfrak{p}_j + \mathfrak{f} \neq \mathcal{O},$$

which is impossible.

Let $\pi \in R_{\mathfrak{P}_0}$ with $\operatorname{ord}_{\mathfrak{P}_0} \pi = 1$. Then $a_{i_0} = \pi^k \cdot u$ for some $k \in \mathbb{N}$ and $u \in U(R_{\mathfrak{P}_0})$.

Observe that

(5.3)
$$\bigoplus_{i=1}^{l} w_i^{\mathfrak{P}_0} K = K^l = (1, 0, \dots, 0) K \oplus \dots \oplus (0, \dots, 0, 1) K.$$

For every vector $w_i^{\mathfrak{P}_0}$ there exist $x_1, \ldots, x_l \in K$ such that

$$w_i^{\mathfrak{P}_0} = (1, 0, \dots, 0)x_1 + \dots + (0, \dots, 0, 1)x_l$$

Fix $x_s, s \in \{1, \ldots, l\}$. Assume $x_s \neq 0$. Then $x_s = \pi^r \cdot v$ for some $r \in \mathbb{Z}$ and $v \in U(R_{\mathfrak{P}_0})$.

If $r \geq 0$, then $x_s \in R_{\mathfrak{P}_0} = \mathcal{O}_{\mathfrak{P}_0 \cap \mathcal{O}}$, so

$$(0,\ldots,\underset{s}{1},\ldots,0)x_{s}\in(\mathcal{O}_{\mathfrak{p}_{j}}^{l})_{\mathfrak{P}_{0}\cap\mathcal{O}}.$$

If r < 0, then choose $c \in \mathbb{N}$ such that $r \geq -ck$. Then

$$x_s = \pi^r \cdot v = a_{i_0}^{-c} \cdot \pi^{r+ck} \cdot u^c \cdot v,$$

where $a_{i_0}^{-c} \in \mathcal{O}_{\mathfrak{p}_j}, \pi^{r+ck} \cdot u^c \cdot v \in R_{\mathfrak{P}_0} = \mathcal{O}_{\mathfrak{P}_0 \cap \mathcal{O}}$, so again

$$(0,\ldots,\underbrace{1}{s},\ldots,0)x_s\in(\mathcal{O}^l_{\mathfrak{p}_j})_{\mathfrak{P}_0\cap\mathcal{O}}.$$

We get

(5.4)
$$w_i^{\mathfrak{P}_0} \in (\mathcal{O}^l_{\mathfrak{p}_j})_{\mathfrak{P}_0 \cap \mathcal{O}}.$$

Hence

$$\bigoplus_{i=1}^{l} w_i^{\mathfrak{P}_0} R_{\mathfrak{P}_0} \subseteq (\mathcal{O}_{\mathfrak{p}_j}^l)_{\mathfrak{P}_0 \cap \mathcal{O}},$$

and finally

$$\bigoplus_{i=1}^{l} w_i^{\mathfrak{P}_0} R_{\mathfrak{P}_0} \subseteq \bigcap_{j=1}^{m} (\mathcal{O}_{\mathfrak{p}_j}^l)_{\mathfrak{P}_0 \cap \mathcal{O}}.$$

From (I), (II) and (5.2) it follows that

$$\bigoplus_{i=1}^{l} w_i^{\mathfrak{P}_0} R_{\mathfrak{P}_0} \subseteq \left[\bigcap_{\mathfrak{P} \in \mathcal{P}_{\mathfrak{f}}} \left(\bigoplus_{i=1}^{l} w_i^{\mathfrak{P}} R_{\mathfrak{P}} \right) \right]_{\mathfrak{P}_0 \cap \mathcal{O}} \cap \bigcap_{j=1}^{m} (\mathcal{O}_{\mathfrak{p}_j}^l)_{\mathfrak{P}_0 \cap \mathcal{O}}.$$

By Lemma 5.3,

$$\bigoplus_{i=1}^{l} w_i^{\mathfrak{P}_0} R_{\mathfrak{P}_0} \subseteq M_{\mathfrak{P}_0 \cap \mathcal{O}}.$$

(ii) Fix $j_0 \in \{1, \ldots, m\}$. The inclusion $M_{\mathfrak{p}_{j_0}} \subseteq \mathcal{O}_{\mathfrak{p}_{j_0}}^l$ is obvious. Observe that

$$(1,0,\ldots,0),\ldots,(0,\ldots,0,1)\in\bigcap_{j=1}^m\mathcal{O}^l_{\mathfrak{p}_j}.$$

Hence

(5.5)
$$\mathcal{O}_{\mathfrak{p}_{j_0}}^l \subseteq \Big(\bigcap_{j=1}^m \mathcal{O}_{\mathfrak{p}_j}^l\Big)_{\mathfrak{p}_{j_0}}.$$

Denote by $\mathcal{P}_{\mathfrak{f}_1}$ and $\mathcal{P}_{\mathfrak{f}_2}$ the sets of maximal ideals $\mathfrak{P} \in \mathcal{P}_{\mathfrak{f}}$ such that

 $\operatorname{ord}_{\mathfrak{P}} a_i = 0 \quad \text{for every } i \in \{1, \ldots, l\}$

and of maximal ideals $\mathfrak{P}\in\mathcal{P}_{\mathfrak{f}}$ such that

 $\operatorname{ord}_{\mathfrak{P}} a_i > 0 \quad \text{for some } i \in \{1, \ldots, l\},\$

respectively. Obviously $\mathcal{P}_{\mathfrak{f}_2}$ is a finite set.

Because for every $\mathfrak{P} \in \mathcal{P}_{\mathfrak{f}_1}$ we have

$$w_1^{\mathfrak{P}} = (1, 0, \dots, 0), \ \dots, \ w_l^{\mathfrak{P}} = (0, \dots, 0, 1),$$

as in (5.5) we obtain

(5.6)
$$\mathcal{O}_{\mathfrak{p}_{j_0}}^l \subseteq \left(\bigcap_{\mathfrak{P}\in\mathcal{P}_{\mathfrak{f}_1}}\bigoplus_{i=1}^l w_i^{\mathfrak{P}}R_{\mathfrak{P}}\right)_{\mathfrak{p}_{j_0}}.$$

However, using (5.3) for $\mathfrak{P}_0 = \mathfrak{P}$ and applying similar arguments to those for (5.4) we prove that

$$(1,0,\ldots,0),\ldots,(0,\ldots,0,1)\in \left(\bigoplus_{i=1}^{l}w_{i}^{\mathfrak{P}}R_{\mathfrak{P}}\right)_{\mathfrak{p}_{j_{0}}}$$

for every $\mathfrak{P} \in \mathcal{P}_{\mathfrak{f}_2}$, i.e.

(5.7)
$$\mathcal{O}_{\mathfrak{p}_{j_0}}^l \subseteq \bigcap_{\mathfrak{P}_{\mathfrak{f}_2}} \left(\bigoplus_{i=1}^l w_i^{\mathfrak{P}} R_{\mathfrak{P}} \right)_{\mathfrak{p}_{j_0}}.$$

From (5.5)–(5.7) and Lemma 5.3 it follows that $\mathcal{O}^l_{\mathfrak{p}_{j_0}} \subseteq M_{\mathfrak{p}_{j_0}}$.

PROPOSITION 5.5. Let $a_1, \ldots, a_l \in \mathcal{O}$ and suppose that $a_iR + \mathfrak{f} = R$ for every $i \in \{1, \ldots, l\}$. Moreover, let

$$M = \bigcap_{\mathfrak{P} \in \mathcal{P}_{\mathfrak{f}}} \left(\bigoplus_{i=1}^{l} w_{i}^{\mathfrak{P}} R_{\mathfrak{P}} \right) \cap \bigcap_{j=1}^{m} \mathcal{O}_{\mathfrak{p}_{j}}^{l}$$

under the assumptions and notation of pages 368 and 369. Then the \mathcal{O} -module M is finitely generated and projective of rank l.

Proof. Fix a maximal ideal \mathfrak{p} of \mathcal{O} . Assume $\mathfrak{p} + \mathfrak{f} = \mathcal{O}$. There exists a unique maximal ideal $\mathfrak{P} \in \mathcal{P}_{\mathfrak{f}}$ such that $\mathfrak{p} = \mathfrak{P} \cap \mathcal{O}$. Therefore from Proposition 5.4 it follows that

$$M_{\mathfrak{p}} = M_{\mathfrak{P} \cap \mathcal{O}} = \bigoplus_{i=1}^{l} w_i^{\mathfrak{P}} R_{\mathfrak{P}}.$$

Hence $M_{\mathfrak{p}}$ is a free $\mathcal{O}_{\mathfrak{p}}$ (= $R_{\mathfrak{P}}$)-module of rank l.

Let $\mathfrak{p} + \mathfrak{f} \neq \mathcal{O}$ (i.e. $\mathfrak{p} \in {\mathfrak{p}_1, \ldots, \mathfrak{p}_m}$). Again Proposition 5.4 yields $M_{\mathfrak{p}} = \mathcal{O}_{\mathfrak{p}}^l$, so $M_{\mathfrak{p}}$ is a free $\mathcal{O}_{\mathfrak{p}}$ -module of rank l.

To sum up, the localisation of the module M at every maximal ideal of the order \mathcal{O} is a free module of rank l. Therefore it suffices to prove that Mis finitely generated over \mathcal{O} .

Observe that we have at most finitely many vectors $w_i^{\mathfrak{P}}$ such that $w_i^{\mathfrak{P}} \notin \mathcal{O}^l$. Every coordinate of a vector $w_i^{\mathfrak{P}}$ has the form

$$x_i^{\mathfrak{P}}/y_i^{\mathfrak{P}}$$
 for some $x_i^{\mathfrak{P}} \in \mathcal{O}, \ y_i^{\mathfrak{P}} \in \mathcal{O} \setminus \{0\}$.

Consider the following element z of the order \mathcal{O} . If there does not exist a vector $w_i^{\mathfrak{P}}$ such that $w_i^{\mathfrak{P}} \notin \mathcal{O}^l$, then we take z = 1. Otherwise, let z be the product of the denominators $y_i^{\mathfrak{P}}$ of all vectors $w_i^{\mathfrak{P}}$ such that $w_i^{\mathfrak{P}} \notin \mathcal{O}^l$. Then $zw_i^{\mathfrak{P}} \in \mathcal{O}^l$ for every $\mathfrak{P} \in \mathcal{P}_{\mathfrak{f}}$. Moreover,

$$zM = \bigcap_{\mathfrak{P}\in\mathcal{P}_{\mathfrak{f}}} \left(\bigoplus_{i=1}^{l} zw_{i}^{\mathfrak{P}}R_{\mathfrak{P}}\right) \cap \bigcap_{j=1}^{m} z\mathcal{O}_{\mathfrak{p}_{j}}^{l} \subseteq \bigcap_{\mathfrak{P}\in\mathcal{P}_{\mathfrak{f}}} R_{\mathfrak{P}}^{l} \cap \bigcap_{j=1}^{m} \mathcal{O}_{\mathfrak{p}_{j}}^{l}.$$

But $R_{\mathfrak{P}} = \mathcal{O}_{\mathfrak{P} \cap \mathcal{O}}$ for every $\mathfrak{P} \in \mathcal{P}_{\mathfrak{f}}$, so

$$zM \subseteq \bigcap_{\mathfrak{P}\in\mathcal{P}_{\mathfrak{f}}} \mathcal{O}_{\mathfrak{P}\cap\mathcal{O}}^{l} \cap \bigcap_{j=1}^{m} \mathcal{O}_{\mathfrak{p}_{j}}^{l}.$$

m

Since $\{\mathfrak{P} \cap \mathcal{O} : \mathfrak{P} \in \mathcal{P}_{\mathfrak{f}}\}$, $\mathfrak{p}_1, \ldots, \mathfrak{p}_m$ are all the pairwise distinct maximal ideals of \mathcal{O} (cf. [GHK, proof of Proposition 4(ii)]), it is easy to observe that

$$igcap_{\mathfrak{P}\in\mathcal{P}_{\mathfrak{f}}}\mathcal{O}_{\mathfrak{P}\cap\mathcal{O}}^{l}\capigcap_{j=1}^{m}\mathcal{O}_{\mathfrak{p}_{j}}^{l}=\mathcal{O}^{l}.$$

Hence $zM \subseteq \mathcal{O}^l$ is a submodule of the finitely generated \mathcal{O} -module \mathcal{O}^l . But \mathcal{O} is a noetherian domain, so zM is a finitely generated \mathcal{O} -module. It suffices to notice that $M \cong zM$, i.e. M is finitely generated over \mathcal{O} .

THEOREM 5.6. Let K be a global field and R < K be a Dedekind domain. Moreover, let $\mathcal{O} < R$ be an order, \mathfrak{f} be the conductor of \mathcal{O} and suppose that $\langle a_1, \ldots, a_l \rangle \in \phi(WR)$ with $a_1, \ldots, a_l \in \mathcal{O}$. If

$$a_i R + \mathfrak{f} = R \quad for \ every \ i \in \{1, \dots, l\},$$

then $\langle a_1, \ldots, a_l \rangle \in \operatorname{im}(\phi \circ \varphi).$

Proof. Let $\alpha \colon K^l \times K^l \to K$ be a nonsingular bilinear form with matrix

$$A = \begin{bmatrix} a_1 & \cdots & 0\\ \vdots & \ddots & \vdots\\ 0 & \cdots & a_l \end{bmatrix}$$

in the basis

$$\mathcal{B}=((1,0,\ldots,0),\ldots,(0,\ldots,0,1))$$

of K^l . Consider the finitely generated projective \mathcal{O} -module M from Proposition 5.5 and the restriction of α to $M \times M$, and fix a maximal ideal \mathfrak{p} of \mathcal{O} .

Assume $\mathfrak{p} + \mathfrak{f} = \mathcal{O}$. Then there exists a unique maximal ideal $\mathfrak{P} \in \mathcal{P}_{\mathfrak{f}}$ of R such that $\mathfrak{p} = \mathfrak{P} \cap \mathcal{O}$. We have

$$M_{\mathfrak{p}} = M_{\mathfrak{P} \cap \mathcal{O}} = \bigoplus_{i=1}^{l} w_i^{\mathfrak{P}} R_{\mathfrak{P}}.$$

Moreover, $R_{\mathfrak{P}} = \mathcal{O}_{\mathfrak{p}}$. From (I) and (II) on pages 368 and 369 it follows that the localisation $\alpha_{\mathfrak{p}} \colon M_{\mathfrak{p}} \times M_{\mathfrak{p}} \to \mathcal{O}_{\mathfrak{p}}$ is nonsingular over $\mathcal{O}_{\mathfrak{p}}$.

Let $\mathfrak{p} + \mathfrak{f} \neq \mathcal{O}$. Then $M_{\mathfrak{p}} = \mathcal{O}_{\mathfrak{p}}^{l}$. Since $a_{i}R + \mathfrak{f} = R$, we have $a_{i} \in U(\mathcal{O}_{\mathfrak{p}})$ for every $i \in \{1, \ldots, l\}$ (see proof of Proposition 5.4(i)). The localisation $\alpha_{\mathfrak{p}} \colon M_{\mathfrak{p}} \times M_{\mathfrak{p}} \to \mathcal{O}_{\mathfrak{p}}$ has matrix A in the basis \mathcal{B} of the free module $M_{\mathfrak{p}}$. Hence $\alpha_{\mathfrak{p}}$ is nonsingular over $\mathcal{O}_{\mathfrak{p}}$.

To sum up, the localisation of the form α at every maximal ideal \mathfrak{p} of \mathcal{O} is nonsingular. Hence by [B, (1.4) Proposition] the form $\alpha \colon M \times M \to \mathcal{O}$ is nonsingular over \mathcal{O} , so in particular $\langle (M, \alpha) \rangle \in W\mathcal{O}$.

It is easy to observe that

$$\phi \circ \varphi \langle (M, \alpha) \rangle = \langle a_1, \dots, a_l \rangle,$$

i.e. $\langle a_1, \ldots, a_l \rangle \in \operatorname{im}(\phi \circ \varphi)$.

6. Forms $\langle\!\langle f, d \rangle\!\rangle$, $\langle z, -ez \rangle$. Now we formulate some facts for integral semilocal domains.

PROPOSITION 6.1. If P is an integral semilocal domain, then every element of the Witt ring WP can be written in the form $\langle a_1, \ldots, a_l \rangle$ for some $a_1, \ldots, a_l \in U(P)$.

Proof. Since P is an integral domain, every finitely generated projective P-module is free (cf. [M, p. 26]). It suffices to use [M, 2.7 Corollary, p. 32].

Let P be an integral semilocal domain and K be its field of fractions. Denote by I(K) the fundamental ideal of WK consisting of the Witt classes of even dimensional forms over K. Denote by $I^2(P)$ the subgroup of the second power $I^2(K)$ of the ideal I(K) additively generated by the set

$$\{\langle\!\langle a, b \rangle\!\rangle \in WK : a, b \in U(P)\}.$$

We will write

$$\langle a_1, \ldots, a_l \rangle \equiv \langle b_1, \ldots, b_k \rangle \mod I^2(P)$$

if $\langle a_1, \ldots, a_l \rangle - \langle b_1, \ldots, b_k \rangle \in I^2(P)$.

PROPOSITION 6.2. Let $\langle a_1, \ldots, a_l \rangle \in WP$ with $a_1, \ldots, a_l \in U(P)$ and l odd. Moreover, let

$$a_1 \cdots a_l \dot{K}^2 = \begin{cases} \dot{K}^2 & \text{when } l \equiv 3 \pmod{4}, \\ -\dot{K}^2 & \text{when } l \equiv 1 \pmod{4}. \end{cases}$$

Then $\langle 1, a_1, \ldots, a_l \rangle \in I^2(P)$.

Proof. We use induction on l. If l = 1, then $a_1 \dot{K}^2 = -\dot{K}^2$, so $\langle a_1 \rangle = \langle -1 \rangle$ in WK. Therefore

$$\langle 1, a_1 \rangle = \langle 1, -1 \rangle = \langle 1, -1, 1, -1 \rangle \in I^2(P).$$

Assume l = 3. Then $a_1 a_2 a_3 \dot{K}^2 = \dot{K}^2$, i.e. $a_3 \dot{K}^2 = a_1 a_2 \dot{K}^2$. Hence

(6.1) $\langle 1, a_1, a_2, a_3 \rangle = \langle 1, a_1, a_2, a_1 a_2 \rangle \in I^2(P).$

Let l = 5. Observe that

(6.2)
$$\langle a_1, a_2, a_3, a_4 \rangle = \langle 1, a_1, a_2, a_1 a_2 \rangle + \langle 1, a_3, a_4, a_3 a_4 \rangle - \langle 1, 1, a_1 a_2, a_1 a_2 \rangle + \langle a_1 a_2, -a_3 a_4 \rangle$$

in WK, so

$$\langle 1, a_1, a_2, a_3, a_4, a_5 \rangle \equiv \langle 1, a_1 a_2, -a_3 a_4, a_5 \rangle \mod I^2(P)$$

Since $\langle a_1a_2, -a_3a_4, a_5 \rangle \in WP$ and $-a_1a_2a_3a_4a_5\dot{K}^2 = \dot{K}^2$, analogously to (6.1) we get

$$\langle 1, a_1 a_2, -a_3 a_4, a_5 \rangle \in I^2(P).$$

Hence $(1, a_1, a_2, a_3, a_4, a_5) \in I^2(P)$.

Assume l = 4k + 3 for some $k \in \mathbb{N}$. Using (6.2) we obtain

$$\langle a_1, \ldots, a_{4k} \rangle \equiv \langle b_1, \ldots, b_{2k} \rangle \mod I^2(P)$$

for some $b_1, \ldots, b_{2k} \in U(P)$. Therefore

$$\langle 1, a_1, \dots, a_l \rangle = \langle 1, a_1, \dots, a_{4k}, a_{4k+1}, a_{4k+2}, a_{4k+3} \rangle \\ \equiv \langle 1, b_1, \dots, b_{2k}, a_{4k+1}, a_{4k+2}, a_{4k+3} \rangle \mod I^2(P) .$$

Observe that

$$b_1 \cdots b_{2k} \dot{K}^2 = \begin{cases} a_1 \cdots a_{4k} \dot{K}^2 & \text{when } k \equiv 0 \pmod{2}, \\ -a_1 \cdots a_{4k} \dot{K}^2 & \text{when } k \equiv 1 \pmod{2}. \end{cases}$$

Assume k = 2s for some $s \in \mathbb{N}$. The form

$$\langle b_1, \dots, b_{2k}, a_{4k+1}, a_{4k+2}, a_{4k+3} \rangle \in WP$$

has rank 4s + 3 < l. Its determinant over K is equal to $a_1 \cdots a_l \dot{K}^2 = \dot{K}^2$. By the induction assumption,

$$\langle 1, b_1, \dots, b_{2k}, a_{4k+1}, a_{4k+2}, a_{4k+3} \rangle \in I^2(P),$$

i.e. $\langle 1, a_1, ..., a_l \rangle \in I^2(P)$.

Assume k = 2s + 1 for some $s \in \mathbb{N} \cup \{0\}$. The form

$$\langle b_1, \dots, b_{2k}, a_{4k+1}, a_{4k+2}, a_{4k+3} \rangle \in WP$$

has rank 4(s+1) + 1 < l. Its determinant over K is $-a_1 \cdots a_l \dot{K}^2 = -\dot{K}^2$. By the induction assumption,

$$\langle 1, b_1, \dots, b_{2k}, a_{4k+1}, a_{4k+2}, a_{4k+3} \rangle \in I^2(P),$$

i.e. $(1, a_1, ..., a_l) \in I^2(P)$.

Analogously to the case l = 4k + 3 we prove that $\langle 1, a_1, \ldots, a_l \rangle \in I^2(P)$ for $l = 4k + 1, k \in \mathbb{N}$.

Let K be a global field and R < K be a Dedekind domain. Moreover, let $\mathcal{O} < R$ be an order and \mathfrak{f} be its conductor. Let $\mathcal{P} = \bigcup_{i=1}^{m} \mathfrak{p}_i$, where $\mathfrak{p}_1, \ldots, \mathfrak{p}_m$ are all the pairwise distinct maximal ideals of \mathcal{O} such that

 $\mathfrak{p}_i + \mathfrak{f} \neq \mathcal{O}$ for every $i \in \{1, \ldots, m\}$.

Denote by $\mathcal{O}_{\mathcal{P}}$ the localisation of the order \mathcal{O} at the set $\mathcal{O} \setminus \mathcal{P}$. The ring $\mathcal{O}_{\mathcal{P}}$ is an integral semilocal domain.

LEMMA 6.3. If $a \in \mathcal{O}$ is nonzero, then

$$a \in U(\mathcal{O}_{\mathcal{P}}) \iff aR + \mathfrak{f} = R.$$

Proof. (\Leftarrow) It suffices to observe that $a \notin \mathfrak{p}_i$ for every $i \in \{1, \ldots, m\}$ (see proof of Proposition 5.4(i)).

(⇒) Suppose $aR + \mathfrak{f} \neq R$. Then there exists a maximal ideal \mathfrak{Q} in the decomposition of \mathfrak{f} such that $aR \subseteq \mathfrak{Q}$ (cf. [GHK, p. 93]). Hence

 $a \in \mathfrak{Q} \cap \mathcal{O} = \mathfrak{p}_i$ for some $i \in \{1, \ldots, m\}$

(cf. [GHK, proof of Proposition 4(ii)]). This is impossible.

COROLLARY 6.4. The group $I^2(\mathcal{O}_{\mathcal{P}})$ is additively generated by the Pfister forms $\langle\!\langle a, b \rangle\!\rangle \in WK$ such that $a, b \in \mathcal{O}$ and $aR + \mathfrak{f} = R$, $bR + \mathfrak{f} = R$.

Proof. Let $\langle\!\langle c, d \rangle\!\rangle \in WK$ and $c, d \in U(\mathcal{O}_{\mathcal{P}})$. Then $c = x_1/y_1, d = x_2/y_2$ for some $x_1, x_2, y_1, y_2 \in \mathcal{O} \setminus \mathcal{P}$. Moreover, we have $a := x_1y_1 \in \mathcal{O} \cap U(\mathcal{O}_{\mathcal{P}})$, $b := x_2y_2 \in \mathcal{O} \cap U(\mathcal{O}_{\mathcal{P}})$ and $\langle\!\langle c, d \rangle\!\rangle = \langle\!\langle a, b \rangle\!\rangle$ in WK.

THEOREM 6.5. Let K be a global field, R < K be a Dedekind domain and $\mathcal{O} < R$ be an order. Moreover, let $\langle a_1, \ldots, a_l \rangle \in \phi(WR)$ with l odd and

$$a_1 \cdots a_l \dot{K}^2 = \begin{cases} \dot{K}^2 & \text{when } l \equiv 3 \pmod{4}, \\ -\dot{K}^2 & \text{when } l \equiv 1 \pmod{4}. \end{cases}$$

Then

$$\langle a_1, \ldots, a_l \rangle \in \operatorname{im}(\phi \circ \varphi) \iff \langle 1, a_1, \ldots, a_l \rangle \in I^2(\mathcal{O}_{\mathcal{P}}).$$

Proof. (\Leftarrow) From Corollary 6.4 it follows that

$$\langle 1, a_1, \dots, a_l \rangle = \langle 1, b_1, c_1, b_1 c_1 \rangle + \dots + \langle 1, b_k, c_k, b_k c_k \rangle \in \phi(WR)$$

for some $b_1, c_1, \ldots, b_k, c_k \in \mathcal{O}$ such that

$$b_i R + \mathfrak{f} = R, \quad c_i R + \mathfrak{f} = R \quad \text{for every } i \in \{1, \dots, k\}.$$

Since none of the maximal ideals in the decomposition of \mathfrak{f} belongs to the decompositions of the ideals $b_i R$, $c_i R$, none of them belongs to the decomposition of $b_i c_i R$. Therefore

$$b_i c_i R + \mathfrak{f} = R$$
 for every $i \in \{1, \dots, k\}$.

By Theorem 5.6,

$$\langle 1, a_1, \dots, a_l \rangle = \langle 1, b_1, c_1, b_1 c_1 \rangle + \dots + \langle 1, b_k, c_k, b_k c_k \rangle \in \operatorname{im}(\phi \circ \varphi), \text{ i.e.} \langle a_1, \dots, a_l \rangle = -\langle 1 \rangle + \langle 1, a_1, \dots, a_l \rangle \in \operatorname{im}(\phi \circ \varphi).$$

 (\Rightarrow) Let $\varphi_1 \colon W\mathcal{O}_{\mathcal{P}} \to WK$ be the natural homomorphism. Because $\langle a_1, \ldots, a_l \rangle \in \operatorname{im}(\phi \circ \varphi)$, also $\langle a_1, \ldots, a_l \rangle \in \operatorname{im} \varphi_1$. By Proposition 6.1 there exist $b_1, \ldots, b_k \in U(\mathcal{O}_{\mathcal{P}})$ such that

$$\varphi_1(\langle b_1,\ldots,b_k\rangle) = \langle a_1,\ldots,a_l\rangle.$$

Then $\langle b_1, \ldots, b_k \rangle = \langle a_1, \ldots, a_l \rangle$ in WK. Moreover, $k \equiv l \pmod{2}$, i.e. k is odd. Comparing the discriminants of these forms we get

$$(-1)^{\frac{1}{2}k(k-1)}b_1\cdots b_k\dot{K}^2 = (-1)^{\frac{1}{2}l(l-1)}a_1\cdots a_l\dot{K}^2.$$

Therefore

$$b_1 \cdots b_k \dot{K}^2 = \begin{cases} \dot{K}^2 & \text{when } k \equiv 3 \pmod{4}, \\ -\dot{K}^2 & \text{when } k \equiv 1 \pmod{4}. \end{cases}$$

By Proposition 6.2,

$$\langle 1, a_1, \ldots, a_l \rangle = \langle 1, b_1, \ldots, b_k \rangle \in I^2(\mathcal{O}_{\mathcal{P}}).$$

COROLLARY 6.6. Let $\langle\!\langle f, d \rangle\!\rangle \in \phi(WR)$. Then

$$\langle\!\langle f,d \rangle\!\rangle \in \operatorname{im}(\phi \circ \varphi) \iff \langle\!\langle f,d \rangle\!\rangle \in I^2(\mathcal{O}_{\mathcal{P}}).$$

Proof. Notice that $\langle\!\langle f, d \rangle\!\rangle \in \operatorname{im}(\phi \circ \varphi) \Leftrightarrow \langle f, d, fd \rangle \in \operatorname{im}(\phi \circ \varphi)$.

Let \mathcal{P}_2 denote the set of all dyadic primes of the field K.

COROLLARY 6.7. Let K be a global field with char $K \neq 2$, S be a Hasse set on K and $\mathcal{O} < R_K(\mathcal{S})$ be an order. Moreover, let \mathfrak{f} be the conductor of \mathcal{O} and $\langle\!\langle f, d \rangle\!\rangle \in \phi(WR_K(\mathcal{S}))$. If there exist $f', d' \in \mathcal{O}$ with the properties that $f'R_K(\mathcal{S}) + \mathfrak{f} = R_K(\mathcal{S}), d'R_K(\mathcal{S}) + \mathfrak{f} = R_K(\mathcal{S})$ and

(i) $(-f', -d')_{\mathfrak{P}} = (-f, -d)_{\mathfrak{P}}$ for every $\mathfrak{P} \in \mathcal{P}_2 \cup \mathcal{S}$, (ii) $(-f', -d')_{\mathfrak{P}} = 1$ for every $\mathfrak{P} \notin \mathcal{P}_2 \cup \mathcal{S}$,

then $\langle\!\langle f, d \rangle\!\rangle \in \operatorname{im}(\phi \circ \varphi)$.

Proof. Let $\mathfrak{P} \in \mathcal{S}$ be a real prime of K. Denote by $\operatorname{sign}_{\mathfrak{P}}$ the signature determined by \mathfrak{P} . From (i) it follows that

$$\operatorname{sign}_{\mathfrak{P}}\langle\!\langle f', d'
angle\!\rangle = \operatorname{sign}_{\mathfrak{P}}\langle\!\langle f, d
angle\!\rangle$$

Assume $\mathfrak{P} \in \mathcal{P}_2 \cup \mathcal{S}$ is a finite prime. Denote by $h_{\mathfrak{P}}$ the \mathfrak{P} -adic Hasse-Witt invariant. Also from (i) it follows that

$$h_{\mathfrak{P}}\langle\!\langle f',d'\rangle\!\rangle = (-f',-d')_{\mathfrak{P}} = (-f,-d)_{\mathfrak{P}} = h_{\mathfrak{P}}\langle\!\langle f,d\rangle\!\rangle.$$

If $\mathfrak{P} \notin \mathcal{P}_2 \cup \mathcal{S}$, then $(-f, -d)_{\mathfrak{P}} = 1$ (cf. [Cz3, Lemma 3.4]), so by (ii),

$$h_{\mathfrak{P}}\langle\!\langle f', d' \rangle\!\rangle = h_{\mathfrak{P}}\langle\!\langle f, d \rangle\!\rangle.$$

Finally, $\langle\!\langle f', d' \rangle\!\rangle \cong \langle\!\langle f, d \rangle\!\rangle$ over the \mathfrak{P} -adic completion $K_{\mathfrak{P}}$ of the field K for every prime \mathfrak{P} of K. By the local-global principle, $\langle\!\langle f', d' \rangle\!\rangle \cong \langle\!\langle f, d \rangle\!\rangle$ over K. Hence $\langle\!\langle f', d' \rangle\!\rangle = \langle\!\langle f, d \rangle\!\rangle$ in WK.

From Corollary 6.4 it follows that $\langle\!\langle f', d' \rangle\!\rangle \in I^2(\mathcal{O}_{\mathcal{P}})$. By Corollary 6.6,

$$\langle\!\langle f,d \rangle\!\rangle = \langle\!\langle f',d' \rangle\!\rangle \in \operatorname{im}(\phi \circ \varphi).$$

Theorem 6.5 also has the following corollaries for the form $\langle z, -ez \rangle$, $e \in E(R) \cap \mathcal{O}$.

COROLLARY 6.8. Let K be any global field, R < K be a Dedekind domain and $\mathcal{O} < R$ be an order. Moreover, let \mathfrak{f} be the conductor of \mathcal{O} and $\langle z, -ez \rangle \in \phi(WR)$ with $e \in E(R) \cap \mathcal{O}$. Then $\langle z, -ez \rangle \in \operatorname{im}(\phi \circ \varphi)$ if and only if $\langle \langle -e, z \rangle \rangle \in I^2(\mathcal{O}_{\mathcal{P}})$ and there exists $e' \in \mathcal{O}$ such that

$$e'K^2 = eK^2$$
 and $e'R + \mathfrak{f} = R$.

Proof. By assumption, $e \in E(R)$, so $\langle e \rangle \in \phi(WR)$. Hence

$$\langle -e, z, -ez \rangle = -\langle e \rangle + \langle z, -ez \rangle \in \phi(WR).$$

(
$$\Leftarrow$$
) Since $\langle 1, -e, z, -ez \rangle \in I^2(\mathcal{O}_{\mathcal{P}})$, from Theorem 6.5 it follows that $\langle -e, z, -ez \rangle \in \operatorname{im}(\phi \circ \varphi)$. But $\langle e \rangle \in \operatorname{im}(\phi \circ \varphi)$ (see Theorem 2.9), so $\langle z, -ez \rangle = \langle e \rangle + \langle -e, z, -ez \rangle \in \operatorname{im}(\phi \circ \varphi)$.

 (\Rightarrow) Since $\langle z, -ez \rangle \in \operatorname{im}(\phi \circ \varphi)$, by Lemma 2.1 there exists an ideal J of \mathcal{O} and an element $k \in K$ such that

$$J^2 = ek^2 \mathcal{O}.$$

For the fractional ideal $I = Jk^{-1}$ we have

$$I^2 = e\mathcal{O}.$$

By Proposition 2.2,

$$(6.3) \qquad \langle e \rangle \in \operatorname{im}(\phi \circ \varphi)$$

Hence

$$\langle -e,z,-ez\rangle = -\langle e\rangle + \langle z,-ez\rangle \in \operatorname{im}(\phi\circ\varphi).$$

By Theorem 6.5,

$$\langle\!\langle -e, z \rangle\!\rangle \in I^2(\mathcal{O}_{\mathcal{P}}).$$

The second part of the conclusion follows from (6.3) and Theorem 2.9.

COROLLARY 6.9. Let K be a global field with char $K \neq 2$, S be a Hasse set on K and $\mathcal{O} < R_K(\mathcal{S})$ be an order. Moreover, let \mathfrak{f} be the conductor of \mathcal{O} and $\langle z, -ez \rangle \in \phi(WR_K(\mathcal{S}))$ with $e \in E(R_K(\mathcal{S})) \cap \mathcal{O}$. If there exist $e', z' \in \mathcal{O}$ such that $e'\dot{K}^2 = e\dot{K}^2$, $e'R_K(\mathcal{S}) + \mathfrak{f} = R_K(\mathcal{S})$, $z'R_K(\mathcal{S}) + \mathfrak{f} = R_K(\mathcal{S})$ and

- (i) $(e, -z')_{\mathfrak{P}} = (e, -z)_{\mathfrak{P}}$ for every $\mathfrak{P} \in \mathcal{P}_2 \cup \mathcal{S}$,
- (ii) $(e, -z')_{\mathfrak{P}} = 1$ for every $\mathfrak{P} \notin \mathcal{P}_2 \cup \mathcal{S}$,

then $\langle z, -ez \rangle \in \operatorname{im}(\phi \circ \varphi).$

Proof. Analogously to the proof of Corollary 6.7 we show that

$$\langle\!\langle -e, z \rangle\!\rangle = \langle\!\langle -e, z' \rangle\!\rangle$$

in WK. Because $e'\dot{K}^2 = e\dot{K}^2$,

$$\langle\!\langle -e, z \rangle\!\rangle = \langle\!\langle -e, z' \rangle\!\rangle = \langle\!\langle -e', z' \rangle\!\rangle.$$

From Corollary 6.4 it follows that

$$\langle\!\langle -e, z \rangle\!\rangle = \langle\!\langle -e', z' \rangle\!\rangle \in I^2(\mathcal{O}_{\mathcal{P}}).$$

By Corollary 6.8, $\langle z, -ez\rangle \in \operatorname{im}(\phi \circ \varphi).$ \blacksquare

EXAMPLE 6.10. Let $K = \mathbb{Q}(\sqrt{3})$. There is one dyadic prime \mathfrak{P}_0 in K, so $\mathcal{P}_2 = {\mathfrak{P}_0}$. The ring R_K of algebraic integers of K is the ring $R_K(\mathcal{S})$ of \mathcal{S} -integers of K, where \mathcal{S} consists of the two infinite primes ∞_1, ∞_2 of K. Assume $\sqrt{3}$ is positive at ∞_1 and negative at ∞_2 . Since $-1 \notin N_{K/\mathbb{Q}}(\dot{K})$, from [Cz1, p. 114, 118] it follows that the set

$$\{\langle 1 \rangle, \langle 2 \rangle, \langle z, -ez \rangle\}$$

generates the group $\phi(WR_K)$, where e = -1 and $z \in K$ is such that

$$(-1, z)_{\mathfrak{P}_0} = -1, \ (-1, z)_{\infty_1} = -1, \ (-1, z)_{\infty_2} = 1$$

(cf. [Cz1, p. 113]). Observe that

$$(-1, -z)_{\mathfrak{P}_0} = (-1, -1)_{\mathfrak{P}_0}(-1, z)_{\mathfrak{P}_0} = -1,$$

$$(-1, -z)_{\infty_1} = (-1, -1)_{\infty_1}(-1, z)_{\infty_1} = 1,$$

$$(-1, -z)_{\infty_2} = (-1, -1)_{\infty_2}(-1, z)_{\infty_2} = -1.$$

Consider the element $a := 1 - \sqrt{3} \in R_K = \mathbb{Z}[\sqrt{3}]$. For $n \in \mathbb{N}$ let

$$a^n = x_n + y_n \sqrt{3}, \quad x_n, y_n \in \mathbb{Z}.$$

Analogously to [C2, Lemma 2] one can prove that there are infinitely many prime numbers dividing the sequence $(y_{2n+1})_{n=1}^{\infty}$. Hence there are infinitely many natural odd numbers m such that m divides (y_{2n+1}) . Choose such an m and a number 2n + 1 such that $m | y_{2n+1}$.

Consider the order $\mathcal{O} = \mathbb{Z}[m\sqrt{3}]$. Obviously,

$$a^{2n+1} = x_{2n+1} + y_{2n+1}\sqrt{3} \in \mathcal{O}.$$

Because

$$N_{K/\mathbb{Q}}(a^{2n+1}) = N_{K/\mathbb{Q}}(1-\sqrt{3})^{2n+1} = -2^{2n+1},$$

we have $gcd(N_{K/\mathbb{Q}}(a^{2n+1}), m) = 1$. Hence

$$a^{2n+1}R_K + \mathfrak{f} = a^{2n+1}R_K + mR_K = R_K.$$

Moreover,

$$(-1, -a^{2n+1})\mathfrak{P}_0 = (-1, N_{K/\mathbb{Q}}(1-\sqrt{3}))_2 = (-1, -2)_2 = -1,$$

$$(-1, -a^{2n+1})_{\infty_1} = (-1, -1 + \sqrt{3})_{\infty_1} = 1,$$

$$(-1, -a^{2n+1})_{\infty_2} = (-1, -1 + \sqrt{3})_{\infty_2} = -1.$$

For every $\mathfrak{P} \notin \mathcal{P}_2 \cup \mathcal{S}$ the elements $-1, -a^{2n+1}$ are \mathfrak{P} -adic units, so $(-1, -a^{2n+1})_{\mathfrak{P}} = 1$. By Corollary 6.9, $\langle z, -ez \rangle \in \operatorname{im}(\phi \circ \varphi)$. Hence and from Proposition 3.1 it follows that $\varphi \colon W\mathcal{O} \to WR_K$ is surjective.

We have obtained the following observation.

There are infinitely many natural odd numbers m such that the natural homomorphism $\varphi: W\mathbb{Z}[m\sqrt{3}] \to WR_K$ is surjective.

7. Real quadratic global fields. Let $K = \mathbb{Q}(\sqrt{D})$ be a quadratic number field, where $D \equiv 1 \pmod{8}$ is a square-free positive integer. There are two dyadic primes \mathfrak{P}_1 , \mathfrak{P}_2 in K, so $\mathcal{P}_2 = {\mathfrak{P}_1, \mathfrak{P}_2}$. Analogously to Example 6.10 the ring R_K of algebraic integers of K is the ring $R_K(\mathcal{S})$ of \mathcal{S} -integers of K, where \mathcal{S} consists of the two infinite primes ∞_1, ∞_2 of K.

Assume $-1 \in N_{K/\mathbb{Q}}(\dot{K})$ and choose $b \in E(R_K)$ positive at ∞_1 and negative at ∞_2 . Let p_1, \ldots, p_s be all the pairwise distinct prime divisors

of D. From [Cz1, pp. 114, 118] it follows that the set

 $\{\langle 1 \rangle, \langle p_1 \rangle, \dots, \langle p_{s-1} \rangle, \langle b \rangle, \langle \langle f, d \rangle \rangle\}$

generates the group $\phi(WR_K)$, where $f, d \in K$ are such that -f is totally positive and

$$(-f,-d)\mathfrak{P}_1 = (-f,-d)\mathfrak{P}_2 = -1$$

(cf. [Cz1, p. 109]).

PROPOSITION 7.1. Let $\mathcal{O} = \mathbb{Z}[m(1+\sqrt{D})/2]$ be an order such that every odd prime divisor of $m \in \mathbb{N}$ is congruent to 1 modulo 4. Then

$$\langle\!\langle f, d \rangle\!\rangle \in \operatorname{im}(\phi \circ \varphi).$$

Proof. For an odd prime number p denote by $\left(\frac{\cdot}{p}\right)$ the Legendre symbol. By [O, 65:17] there are infinitely many prime numbers p such that

$$\left(\frac{D}{p}\right) = -1$$
 and $\left(\frac{-1}{p}\right) = -1$.

Fix such a p. From $\left(\frac{D}{p}\right) = -1$ it follows that p does not split in K. From $\left(\frac{-1}{p}\right) = -1$ it follows that $p \equiv 3 \pmod{4}$. Hence $p \nmid m$, so

$$pR_K + \mathfrak{f} = pR_K + mR_K = R_K.$$

Let \mathfrak{P} be the prime of K which lies over p. Then $(-1, p)_{\mathfrak{P}} = 1$. Because $p \equiv 3 \pmod{4}$, we have $(-1, p)_2 = -1$, i.e.

$$(-1, p)\mathfrak{P}_1 = (-1, p)\mathfrak{P}_2 = (-1, p)_2 = -1.$$

Moreover,

$$(-1,p)_{\infty_1} = (-f,-d)_{\infty_1} = 1$$
 and $(-1,p)_{\infty_2} = (-f,-d)_{\infty_2} = 1.$

For every prime $\mathfrak{r} \notin {\mathfrak{P}} \cup \mathcal{P}_2 \cup \mathcal{S}$ of K the elements -1, p are \mathfrak{r} -adic units, so $(-1, p)_{\mathfrak{r}} = 1$. By Corollary 6.7, $\langle\!\langle f, d \rangle\!\rangle \in \operatorname{im}(\phi \circ \varphi)$.

COROLLARY 7.2. Let $K = \mathbb{Q}(\sqrt{D})$ be a real quadratic number field with $D \equiv 1 \pmod{4}$ and $-1 \in N_{K/\mathbb{Q}}(K)$. Moreover, let $\mathcal{O} = \mathbb{Z}[m(1+\sqrt{D})/2]$ be an order with $m = 2^r q_1 \cdots q_l$, where $r \in \mathbb{N} \cup \{0\}$ and q_1, \ldots, q_l are odd prime numbers. Then the natural homomorphism $\varphi \colon W\mathcal{O} \to WR_K$ is surjective if and only if $r \in \{0,1\}$ and $q_i \equiv 1 \pmod{4}$ for every $i \in \{1,\ldots,l\}$.

Proof. This follows from Propositions 3.1, 3.7 and 7.1 and Corollaries 3.8 and 3.9. \blacksquare

Now assume $K = F(\sqrt{D})$ is a real quadratic function field as in Section 4. The set S consists of two primes ∞_1, ∞_2 of K which lie over the prime ∞_F of $F = \mathbb{F}(X)$ with uniformizing parameter 1/X. Assume $u_K(S) = 0$.

Let ϵ be a generator of the group $\dot{\mathbb{F}}$. If $\epsilon \in N_{K/F}(\dot{K})$, then choose $b \in E(R_K(\mathcal{S}))$ such that $N_{K/F}(b) \in \epsilon \dot{F}^2$. Let $p_1, \ldots, p_s \in \mathbb{F}[X]$ be all the

pairwise distinct monic irreducible polynomials which divide D. By [RC, p. 208] and [Cz3, Theorem 4.2] the set

$$\begin{split} \{ \langle 1 \rangle, \langle \epsilon \rangle, \langle p_1 \rangle, \dots, \langle p_{s-1} \rangle, \langle b \rangle, \langle \langle f, d \rangle \rangle \} & \text{ when } \epsilon \in N_{K/F}(\dot{K}), \\ \{ \langle 1 \rangle, \langle \epsilon \rangle, \langle p_1 \rangle, \dots, \langle p_{s-1} \rangle, \langle \langle f, d \rangle \rangle \} & \text{ when } \epsilon \notin N_{K/F}(\dot{K}), \end{split}$$

generates the group $\phi(WR_K(\mathcal{S}))$, where $f, d \in K$ are such that

$$(-f, -d)_{\infty_1} = (-f, -d)_{\infty_2} = -1$$

(cf. [Cz3, p. 611]).

PROPOSITION 7.3. Assume $\epsilon \in N_{K/F}(\dot{K})$. Let $\mathcal{O} = \mathbb{F}[X][m\sqrt{D}]$ be an order with $m = q_1 \cdots q_l$, where $q_1, \ldots, q_l \in \mathbb{F}[X]$ are irreducible polynomials with deg $q_i \equiv 0 \pmod{2}$ for every $i \in \{1, \ldots, l\}$. Then $\langle\!\langle f, d \rangle\!\rangle \in \operatorname{im}(\phi \circ \varphi)$.

Proof. For an irreducible polynomial $p \in \mathbb{F}[X]$ denote by $\left(\frac{\cdot}{p}\right)$ the quadratic residue symbol (cf. [R, p. 24]).

By [O, 65:17] there are infinitely many irreducible polynomials $p \in \mathbb{F}[X]$ such that

$$\left(\frac{D}{p}\right) \neq 1$$
 and $\left(\frac{\epsilon}{p}\right) \neq 1$.

Fix such a p. From $\left(\frac{D}{p}\right) \neq 1$ it follows that p does not split in K (cf. [R, Proposition 10.5]. From $\left(\frac{\epsilon}{p}\right) \neq 1$ it follows that deg $p \equiv 1 \pmod{2}$ (cf. [R, Proposition 3.2]). Hence $p \nmid m$, so

$$pR_K(\mathcal{S}) + \mathfrak{f} = pR_K(\mathcal{S}) + mR_K(\mathcal{S}) = R_K(\mathcal{S}).$$

Let \mathfrak{P} be the prime of K which lies over p. Then $(\epsilon, p)_{\mathfrak{P}} = 1$. Because deg $p \equiv 1 \pmod{2}$, we have $(\epsilon, p)_{\infty_F} = -1$, i.e.

$$(\epsilon, p)_{\infty_1} = (\epsilon, p)_{\infty_2} = (\epsilon, p)_{\infty_F} = -1.$$

For every prime $\mathfrak{r} \notin {\mathfrak{P}} \cup S$ of K the elements ϵ , p are \mathfrak{r} -adic units, so $(\epsilon, p)_{\mathfrak{r}} = 1$. By Corollary 6.7, $\langle\!\langle f, d \rangle\!\rangle \in \operatorname{im}(\phi \circ \varphi)$.

COROLLARY 7.4. Let $K = F(\sqrt{D})$ be a real quadratic function field with $\epsilon \in N_{K/F}(\dot{K})$. Moreover, let $\mathcal{O} = \mathbb{F}[X][m\sqrt{D}]$ be an order such that $m = q_1 \cdots q_l$, where $q_1, \ldots, q_l \in \mathbb{F}[X]$ are irreducible polynomials. Then the homomorphism $\varphi \colon W\mathcal{O} \to WR_K(\mathcal{S})$ is surjective if and only if $\deg q_i \equiv 0 \pmod{2}$ for every $i \in \{1, \ldots, l\}$.

Proof. This follows from (4.2), Propositions 4.2, 4.6 and 7.3, and Corollaries 4.8 and 4.9. \blacksquare

PROPOSITION 7.5. Let $K = F(\sqrt{D})$ be a real quadratic function field with $\epsilon \notin N_{K/F}(\dot{K})$ and $u_K(S) = 0$. Moreover, let $\mathcal{O} < R_K(S)$ be an order. Then $\langle\!\langle f, d \rangle\!\rangle \in \operatorname{im}(\phi \circ \varphi)$. *Proof.* From [RC, Proposition 6.2] it follows that there is an irreducible divisor p_i of the polynomial D such that deg $p_i \equiv 1 \pmod{2}$. It is easy to observe that p_i ramifies in K.

Analogously to the proof of Proposition 7.3 we show that

$$(\epsilon, p_i)_{\infty_1} = (\epsilon, p_i)_{\infty_2} = -1$$

and $(\epsilon, p_i)_{\mathfrak{r}} = 1$ for every prime $\mathfrak{r} \notin S$ of K.

Proposition 4.2 implies that $\langle p_i \rangle \in \operatorname{im}(\phi \circ \varphi)$. By Theorem 2.9 there exists $h \in \mathcal{O}$ such that

$$h\dot{K}^2 = p_i\dot{K}^2$$
 and $hR_K(\mathcal{S}) + \mathfrak{f} = R_K(\mathcal{S}).$

Obviously,

$$(\epsilon, h)_{\infty_1} = (\epsilon, h)_{\infty_2} = -1$$

and $(\epsilon, h)_{\mathfrak{r}} = 1$ for every prime $\mathfrak{r} \notin S$ of K. Now Corollary 6.7 implies that $\langle\!\langle f, d \rangle\!\rangle \in \operatorname{im}(\phi \circ \varphi)$.

COROLLARY 7.6. Let $K = F(\sqrt{D})$ be a real quadratic function field with $\epsilon \notin N_{K/F}(\dot{K})$. Moreover, let $\mathcal{O} < R_K(\mathcal{S})$ be an order. Then the homomorphism $\varphi \colon W\mathcal{O} \to WR_K(\mathcal{S})$ is surjective.

Proof. This follows from (4.2), Propositions 4.2 and 7.5, and Corollary 4.4. \blacksquare

References

- [B] R. Baeza, Quadratic Forms over Semilocal Rings, Lecture Notes in Math. 655, Springer, Berlin, 1978.
- [BC] Z. I. Borevich and I. R. Shafarevich, Number Theory, Nauka, Moscow, 1985 (in Russian).
- [C1] M. Ciemała, Natural homomorphisms of Witt rings of orders in algebraic number fields, Math. Slovaca 54 (2004), 473–477.
- [C2] M. Ciemała, Natural homomorphisms of Witt rings of orders in algebraic number fields, II, Acta Math. Univ. Ostrav. 14 (2006), 13–16.
- [CS] M. Ciemała and K. Szymiczek, On the existence of nonsingular bilinear forms on projective modules, Tatra Mt. Math. Publ. 32 (2005), 1–13.
- [Cz1] A. Czogała, Generators of the Witt groups of algebraic integers, in: Number Theory (Cieszyn, 1998), Ann. Math. Sil. 12 (1998), 105–121.
- [Cz2] A. Czogała, On reciprocity equivalence of quadratic number fields, Acta Arith. 58 (1991), 27–46.
- [Cz3] A. Czogała, Witt rings of Hasse domains of global fields, J. Algebra 244 (2001), 604–630.
- [GHK] A. Geroldinger, F. Halter-Koch and J. Kaczorowski, Non-unique factorizations in orders of global fields, J. Reine Angew. Math. 459 (1995), 89–118.
- [K] M. Knebusch, Grothendieck und Wittringe von nichtausgearteten symmetrischen Bilinearformen, S.-B. Heidelberger Akad. Wiss. Math.-Natur. Kl. 1969/1970, 93– 157.

384	B. Rothkegel
[M]	M. A. Marshall, <i>Bilinear Forms and Orderings on Commutative Rings</i> , Queen's Papers in Pure Appl. Math. 71, Queen's Univ., Kingston, ON, 1985.
[MH]	J. Milnor and D. Husemoller, <i>Symmetric Bilinear Forms</i> , Ergeb. Math. Grenzgeb. 73, Springer, New York, 1973.
[O]	O. T. O'Meara, <i>Introduction to Quadratic Forms</i> , Grundlehren Math. Wiss. 117, Academic Press, New York, and Springer, Berlin, 1963.
[P]	A. Pfister, Quadratic Forms with Applications to Algebraic Geometry and Topol- ogy, London Math. Soc. Lecture Note Ser. 217, Cambridge Univ. Press, 1995.
[R]	M. Rosen, Number Theory in Function Fields, Grad. Texts in Math. 210, Springer, New York, 2002.
[Ro]	B. Rothkegel, Nonsingular bilinear forms on direct sums of ideals, Math. Slovaca 63 (2013), 707–724.
$[\mathrm{RC}]$	B. Rothkegel and A. Czogała, Singular elements and the Witt equivalence of rings of algebraic integers, Ramanujan J. 17 (2008), 185–217.
[W]	Ch. Weibel, An introduction to algebraic K-theory, http://www.math.uiuc.edu/K-theory/0105/.
Beata Rothkegel	
Institute of Mathematics	
University of Silesia	
Bankowa 14	
40-007 Katowice, Poland	
E-mail: brothkegel@math.us.edu.pl	

Received on 20.7.2012 and in revised form on 25.2.2013

(7134)