The image of the natural homomorphism of Witt rings of orders in a global field

by
Beata Rothkegel (Katowice)

1. Introduction. Every homomorphism $\varphi: R \rightarrow P$ of commutative rings (with identity elements) induces a homomorphism $\varphi: W R \rightarrow W P$ between their Witt rings in the following way. If $\langle(M, \alpha)\rangle \in W R$ is the similarity class of an inner product space (M, α), i.e.

- M is a finitely generated projective R-module,
- $\alpha: M \times M \rightarrow R$ is a nonsingular bilinear form,
then

$$
\varphi\langle(M, \alpha)\rangle=\left\langle\left(M^{\prime}, \alpha^{\prime}\right)\right\rangle
$$

where $M^{\prime}=P \otimes_{R} M$ and $\alpha^{\prime}: M^{\prime} \times M^{\prime} \rightarrow P$ is the nonsingular bilinear form defined by

$$
\begin{equation*}
\alpha^{\prime}\left(x \otimes m, x^{\prime} \otimes m^{\prime}\right)=x x^{\prime} \varphi\left(\alpha\left(m, m^{\prime}\right)\right) \quad \text { for all } x, x^{\prime} \in P, m, m^{\prime} \in M \tag{1.1}
\end{equation*}
$$

The homomorphism $\varphi: W R \rightarrow W P$ is said to be natural if it is induced by an embedding $R \hookrightarrow P$. If R is a Dedekind domain and $P=K$ is its field of fractions, then the natural homomorphism $\phi: W R \rightarrow W K$ is injective (cf. [K, Satz 11.1.1]). This allows us to treat $W R$ as a subring of $W K$.

Let K be a global field, R be a Dedekind domain and K be its field of fractions. Let $\mathcal{O}<R$ be an order, i.e.:

- \mathcal{O} is a one-dimensional noetherian domain,
- R is the integral closure of \mathcal{O} in the field K,
- R is a finitely generated \mathcal{O}-module.

We will examine the image of the natural homomorphism $\varphi: W \mathcal{O} \rightarrow W R$.
Since the homomorphism $\phi: W R \rightarrow W K$ is injective, it is easy to observe that it is enough to examine the image of the composition $\phi \circ \varphi: W \mathcal{O} \rightarrow W K$. In [C1, C2] that image is examined in the case of orders in the rings R_{K}

[^0]of algebraic integers of some quadratic number fields $K=\mathbb{Q}(\sqrt{D})$. Ciemała has proved that there are infinitely many orders $\mathcal{O}<R_{K}$ such that the natural homomorphism $\varphi: W \mathcal{O} \rightarrow W R_{K}$ is surjective. In Sections 3, 4, 7 we will formulate necessary and sufficient conditions for the surjectivity of the natural homomorphisms in the case of all nonreal quadratic number fields, all real quadratic number fields $K=\mathbb{Q}(\sqrt{D})$ such that -1 is a norm in the extension K / \mathbb{Q}, and all quadratic function fields.

If R is a commutative ring, then we write $U(R)$ for the group of invertible elements of R. If $a_{1}, \ldots, a_{l} \in U(R)$, then $\left\langle a_{1}, \ldots, a_{l}\right\rangle$ will denote both a diagonal quadratic form and its class in the Witt ring $W R$. We write $\left\langle\left\langle a_{1}, a_{2}\right\rangle\right\rangle$ for the 2-fold Pfister form $\left\langle 1, a_{1}\right\rangle \otimes\left\langle 1, a_{2}\right\rangle=\left\langle 1, a_{1}, a_{2}, a_{1} a_{2}\right\rangle$.

Let R be a Dedekind domain and K be its field of fractions. We define the group $E(R)$ of singular elements of R to be

$$
E(R)=\left\{g \in \dot{K}: \operatorname{ord}_{\mathfrak{P}} g \equiv 0(\bmod 2) \text { for every maximal ideal } \mathfrak{P} \triangleleft R\right\}
$$

Every maximal ideal \mathfrak{P} of R determines a \mathfrak{P}-adic valuation on the field K with residue class field $\bar{K}_{\mathfrak{P}}$. According to [MH, (3.3) Corollary] we have the Knebusch-Milnor exact sequence

$$
0 \rightarrow W R \stackrel{\phi}{\rightarrow} W K \xrightarrow{\partial} \bigoplus_{\mathfrak{P}} W \bar{K}_{\mathfrak{P}}
$$

where the direct sum extends over all maximal ideals \mathfrak{P} of R. The additive group homomorphism ∂ is the direct sum of the second residue homomorphisms $\partial_{\mathfrak{P}}: W K \rightarrow W \bar{K}_{\mathfrak{P}}$. Directly from the sequence and the definition of $\partial_{\mathfrak{P}}$ we obtain

Proposition 1.1. If $g \in \dot{K}$, then

$$
\langle g\rangle \in \phi(W R) \Leftrightarrow g \in E(R)
$$

Let K be a global field of characteristic different from 2 . Let \mathcal{S} be a Hasse set on K (i.e. a finite nonempty set of primes of K containing the set of all infinite primes). Let $R=R_{K}(\mathcal{S})$ be the ring of \mathcal{S}-integers of the field K (the Hasse domain),

$$
R_{K}(\mathcal{S})=\left\{g \in K: \operatorname{ord}_{\mathfrak{P}} g \geq 0 \text { for all primes } \mathfrak{P} \notin \mathcal{S}\right\} .
$$

From [Cz3, Theorem 4.2] it follows that if K is a nonreal field, then the group $\phi\left(W R_{K}(\mathcal{S})\right)$ is additively generated by some rank one forms $\langle g\rangle$, $g \in E\left(R_{K}(\mathcal{S})\right)$, and some 2-fold Pfister forms $\langle\langle f, d\rangle\rangle$. If K is formally real, then $\phi\left(W R_{K}(\mathcal{S})\right)$ is generated by forms $\langle g\rangle, g \in E\left(R_{K}(\mathcal{S})\right)$, 2-fold Pfister forms $\langle\langle f, d\rangle\rangle$ and some forms $\langle z,-e z\rangle, e \in E\left(R_{K}(\mathcal{S})\right.$) (cf. [Cz3, Theorem 4.7]). In Sections 2 and 6 we formulate necessary and sufficient conditions for

$$
\langle g\rangle,\langle\langle f, d\rangle\rangle,\langle z,-e z\rangle \in \operatorname{im}(\phi \circ \varphi)
$$

to hold in the case of any Dedekind domain R and its field of fractions K (a global field of characteristic not necessarily different from 2).

If $\left\langle a_{1}, \ldots, a_{l}\right\rangle \in W K$ (i.e. $a_{1}, \ldots, a_{l} \in \dot{K}$), then we often assume that $a_{1}, \ldots, a_{l} \in \mathcal{O}$, thanks to the following observation. For every $i \in\{1, \ldots, l\}$ there exist $x_{i}, y_{i} \in \mathcal{O} \backslash\{0\}$ such that $a_{i}=x_{i} / y_{i}$. Then $x_{i} y_{i} \in \mathcal{O}$. Moreover, $a_{i} \dot{K}^{2}=x_{i} y_{i} \dot{K}^{2}$, so

$$
\left\langle a_{1}, \ldots, a_{l}\right\rangle=\left\langle x_{1} y_{1}, \ldots, x_{l} y_{l}\right\rangle \quad \text { in } W K
$$

Throughout the paper, ϕ and φ will denote the natural homomorphisms $\phi: W R \rightarrow W K$ and $\varphi: W \mathcal{O} \rightarrow W R$ for a suitable Dedekind domain R, respectively. Whenever we write " $R<K$ ", we mean " R is a Dedekind domain and K is its field of fractions".
2. Forms of rank 1. Assume K is a global field, $R<K$ is a Dedekind domain and $\mathcal{O}<R$ is an order.

Lemma 2.1. Let $\langle(N, \beta)\rangle \in \phi(W R)$ and let $\operatorname{det} \beta$ be the determinant of the form β in a fixed basis of the space N over K. If $\langle(N, \beta)\rangle \in \operatorname{im}(\phi \circ \varphi)$, then there exists an ideal I of the order \mathcal{O} and an element $k \in \dot{K}$ such that

$$
I^{2}=\left(\operatorname{det} \beta \cdot k^{2}\right) \mathcal{O}
$$

Proof. Assume

$$
\phi \circ \varphi\langle(M, \alpha)\rangle=\langle(N, \beta)\rangle,
$$

where $M=I \oplus \mathcal{O}^{n-1}, n \geq 1$, and I is an ideal of \mathcal{O} such that $I^{2}=p \mathcal{O}$ for some $0 \neq p \in \mathcal{O}$ (cf. [W, Chapter I, Propositions 3.4, 3.5], CS, Theorem 2.6]). Moreover, $\alpha: M \times M \rightarrow \mathcal{O}$ is a nonsingular \mathcal{O}-bilinear form defined by

$$
\begin{aligned}
\alpha\left(\left(x, y_{1}, \ldots, y_{n-1}\right),\left(x^{\prime}, y_{1}^{\prime}\right.\right. & \left.\left., \ldots, y_{n-1}^{\prime}\right)\right) \\
& =\frac{a}{p} x x^{\prime}+\sum_{i=1}^{n-1} \frac{b_{i}}{p}\left(y_{i} x^{\prime}+x y_{i}^{\prime}\right)+\sum_{i, j=1}^{n-1} \frac{c_{i j}}{p} y_{i} y_{j}^{\prime}
\end{aligned}
$$

for all $\left(x, y_{1}, \ldots, y_{n-1}\right),\left(x^{\prime}, y_{1}^{\prime}, \ldots, y_{n-1}^{\prime}\right) \in M$, where $a \in R, b_{i} \in I, c_{i j}=c_{j i}$ $\in I^{2}$ are uniquely determined (cf. [Ro, Proposition 2.8]). The determinant of

$$
A=\left[\begin{array}{ccccc}
a & b_{1} & b_{2} & \cdots & b_{n-1} \\
b_{1} & c_{11} & c_{12} & \cdots & c_{1 n-1} \\
b_{2} & c_{21} & c_{22} & \cdots & c_{2 n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
b_{n-1} & c_{n-11} & c_{n-12} & \cdots & c_{n-1 n-1}
\end{array}\right]
$$

is equal to $p^{n-1} \cdot u$ for some invertible $u \in \mathcal{O}$ (cf. [RO, Theorem 2.9]).

Consider the basis

$$
\mathcal{B}=(1 \otimes(p, 0, \ldots, 0), \ldots, 1 \otimes(0, \ldots, p, \ldots, 0), \ldots, 1 \otimes(0, \ldots, 0, p))
$$

of the linear space $M^{\prime}=K \otimes_{\mathcal{O}} M$ over K. Then the form $\alpha^{\prime}: M^{\prime} \times M^{\prime} \rightarrow K$ (defined as in 1.1)) has matrix $p A$ in the basis \mathcal{B}. Moreover,

$$
\left\langle\left(M^{\prime}, \alpha^{\prime}\right)\right\rangle=\phi \circ \varphi\langle(M, \alpha)\rangle=\langle(N, \beta)\rangle,
$$

so there exist metabolic spaces $\left(M_{1}, \alpha_{1}\right)$ and $\left(N_{1}, \beta_{1}\right)$ over K such that

$$
\left(M^{\prime}, \alpha^{\prime}\right) \perp\left(M_{1}, \alpha_{1}\right) \cong(N, \beta) \perp\left(N_{1}, \beta_{1}\right) .
$$

Therefore

$$
\operatorname{det}(p A) \dot{K}^{2}= \pm \operatorname{det} \beta \cdot \dot{K}^{2}, \quad \text { i.e. } \quad p^{2 n-1} \cdot u \dot{K}^{2}= \pm \operatorname{det} \beta \cdot \dot{K}^{2}
$$

There exists $k \in \dot{K}$ such that

$$
p u= \pm \operatorname{det} \beta \cdot k^{2},
$$

so $I^{2}=p \mathcal{O}=p u \mathcal{O}=\left(\operatorname{det} \beta \cdot k^{2}\right) \mathcal{O}$.
We give a necessary and sufficient condition for $\langle g\rangle \in \operatorname{im}(\phi \circ \varphi)$ for any $g \in E(R)$.

Proposition 2.2. Let $R<K$ be a Dedekind domain, $g \in E(R)$ and $\mathcal{O}<R$ be an order. Then $\langle g\rangle \in \operatorname{im}(\phi \circ \varphi)$ if and only if there exists a fractional ideal I in the field K such that

$$
I^{2}=g \mathcal{O}
$$

Proof. (\Rightarrow) From Lemma 2.1 it follows that there exists an ideal J of \mathcal{O} and an element $k \in \dot{K}$ such that

$$
J^{2}=g k^{2} \mathcal{O}
$$

For the fractional ideal $I=J \cdot k^{-1}$ we have

$$
I^{2}=g \mathcal{O}
$$

(\Leftarrow) The map $\alpha: I \times I \rightarrow \mathcal{O}$ defined by

$$
\alpha(x, y)=\frac{1}{g} x y \quad \text { for all } x, y \in I
$$

is a nonsingular bilinear form (cf. [CS, Theorem 3.1]). Hence $\langle(I, \alpha)\rangle \in W \mathcal{O}$. Consider the basis $\mathcal{B}=(1 \otimes g)$ of the space $M^{\prime}=K \otimes_{\mathcal{O}} I$ over K. Then the form $\alpha^{\prime}: M^{\prime} \times M^{\prime} \rightarrow K($ defined as in (1.1)) has matrix $[g]$ in the basis \mathcal{B}, so

$$
\phi \circ \varphi\langle(I, \alpha)\rangle=\langle g\rangle
$$

i.e. $\langle g\rangle \in \operatorname{im}(\phi \circ \varphi)$.

Now let \mathfrak{f} be the conductor of the order \mathcal{O}, i.e.

$$
\mathfrak{f}=\{x \in R: x R \subseteq \mathcal{O}\}
$$

(\mathfrak{f} is the greatest ideal of R lying in \mathcal{O}). Denote by $\mathcal{J}_{\mathfrak{f}}(R)$ and $\mathcal{J}_{\mathfrak{f}}(\mathcal{O})$ the multiplicative monoids of all invertible ideals of R and \mathcal{O}, respectively, relatively prime to the conductor \mathfrak{f}, i.e.

$$
\begin{aligned}
\mathcal{J}_{\mathfrak{f}}(R) & =\{I \triangleleft R: I \text { is invertible, } I+\mathfrak{f}=R\} \\
\mathcal{J}_{\mathfrak{f}}(\mathcal{O}) & =\{I \triangleleft \mathcal{O}: I \text { is invertible, } I+\mathfrak{f}=\mathcal{O}\}
\end{aligned}
$$

We will use the following fact.
Proposition 2.3 ([GHK, Lemma 3(i)]). Let I be an invertible ideal of the order \mathcal{O}. Then I has a unique decomposition

$$
I=I_{1} \cdot I_{2}
$$

where $I_{1} \in \mathcal{J}_{\mathfrak{f}}(\mathcal{O})$ has a unique representation as a product of powers of pairwise distinct maximal ideals $\mathfrak{p} \triangleleft \mathcal{O}$ such that $\mathfrak{p}+\mathfrak{f}=\mathcal{O}$, while I_{2} is a product of primary ideals $\mathfrak{q} \triangleleft \mathcal{O}$ such that $\mathfrak{q}+\mathfrak{f} \neq \mathcal{O}$.

From [GHK, proof of Proposition 4(ii)] it follows that an ideal \mathfrak{p} of \mathcal{O} is maximal if and only if there exists a maximal ideal \mathfrak{P} of R such that

$$
\mathfrak{p}=\mathfrak{P} \cap \mathcal{O}
$$

Let

$$
\mathfrak{f}=\mathfrak{Q}_{1}^{r_{1}} \cdots \mathfrak{Q}_{n}^{r_{n}}, \quad r_{1}, \ldots, r_{n} \in \mathbb{N}
$$

where $\mathfrak{Q}_{1}, \ldots, \mathfrak{Q}_{n}$ are pairwise distinct maximal ideals of R. By [GHK, p. 93] an ideal $0 \neq I \triangleleft R$ is relatively prime to the conductor \mathfrak{f} if and only if it has a unique representation as a product of powers of pairwise distinct maximal ideals $\mathfrak{P} \triangleleft R, \mathfrak{P} \notin\left\{\mathfrak{Q}_{1}, \ldots, \mathfrak{Q}_{n}\right\}$.

Also, by GHK, proof of Proposition 4(ii)] an ideal \mathfrak{p} of \mathcal{O} is a maximal ideal relatively prime to \mathfrak{f} if and only if there exists a unique maximal ideal $\mathfrak{P} \triangleleft R$ relatively prime to \mathfrak{f} (i.e. $\mathfrak{P} \notin\left\{\mathfrak{Q}_{1}, \ldots, \mathfrak{Q}_{n}\right\}$) such that

$$
\mathfrak{p}=\mathfrak{P} \cap \mathcal{O}
$$

Moreover, the map $F: \mathcal{J}_{\mathfrak{f}}(R) \rightarrow \mathcal{J}_{\mathfrak{f}}(\mathcal{O})$ defined by

$$
F(I)=I \cap \mathcal{O} \quad \text { for all } I \in \mathcal{J}_{\mathfrak{f}}(R)
$$

is an isomorphism of monoids.
Theorem 2.4. Let K be a global field and $R<K$ be a Dedekind domain. Moreover, let $\mathcal{O}<R$ be an order, \mathfrak{f} be the conductor of \mathcal{O} and $g \in E(R) \cap \mathcal{O}$. If $g \mathcal{O}+\mathfrak{f}=\mathcal{O}$, then $\langle g\rangle \in \operatorname{im}(\phi \circ \varphi)$.

Proof. First we show that

$$
g R \cap \mathcal{O}=g \mathcal{O}
$$

Since $g \mathcal{O}+\mathfrak{f}=\mathcal{O}$, we have

$$
\begin{equation*}
g \mathcal{O}=\mathfrak{p}_{1}^{s_{1}} \cdots \mathfrak{p}_{m}^{s_{m}}, \quad s_{1}, \ldots, s_{m} \in \mathbb{N} \tag{2.1}
\end{equation*}
$$

for some pairwise distinct maximal ideals $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{m} \triangleleft \mathcal{O}$ relatively prime to \mathfrak{f}. There exist maximal ideals $\mathfrak{P}_{1}, \ldots, \mathfrak{P}_{m}$ of R relatively prime to \mathfrak{f} such that

$$
\mathfrak{p}_{1}=\mathfrak{P}_{1} \cap \mathcal{O}, \quad \ldots, \quad \mathfrak{p}_{m}=\mathfrak{P}_{m} \cap \mathcal{O}
$$

Fix $i \in\{1, \ldots, m\}$ and observe that $\mathfrak{p}_{i} R=\mathfrak{P}_{i}$. Indeed, $\mathfrak{p}_{i} R \subseteq \mathfrak{P}_{i}$, so

$$
\mathfrak{p}_{i} \subseteq \mathfrak{p}_{i} R \cap \mathcal{O} \subseteq \mathfrak{P}_{i} \cap \mathcal{O}=\mathfrak{p}_{i}, \quad \text { i.e. } \quad \mathfrak{p}_{i} R \cap \mathcal{O}=\mathfrak{P}_{i} \cap \mathcal{O}
$$

Since $\mathfrak{p}_{i} R, \mathfrak{P}_{i} \in \mathcal{J}_{\mathfrak{f}}(R)$ and

$$
F: \mathcal{J}_{\mathfrak{f}}(R) \rightarrow \mathcal{J}_{\mathfrak{f}}(\mathcal{O}), \quad F(I)=I \cap \mathcal{O}
$$

is an isomorphism, $\mathfrak{p}_{i} R=\mathfrak{P}_{i}$. Therefore by 2.1),

$$
g R=\mathfrak{P}_{1}^{s_{1}} \cdots \mathfrak{P}_{m}^{s_{m}}
$$

Using the map F we get

$$
g R \cap \mathcal{O}=\left(\mathfrak{P}_{1} \cap \mathcal{O}\right)^{s_{1}} \cdots\left(\mathfrak{P}_{m} \cap \mathcal{O}\right)^{s_{m}}=\mathfrak{p}_{1}^{s_{1}} \cdots \mathfrak{p}_{m}^{s_{m}}=g \mathcal{O}
$$

From the assumption it follows that $g \in E(R) \cap R$, so $g R=J^{2}$ for some $J \triangleleft R$. It is easy to observe that J is relatively prime to \mathfrak{f}. Using again the isomorphism F we get

$$
g \mathcal{O}=g R \cap \mathcal{O}=J^{2} \cap \mathcal{O}=(J \cap \mathcal{O})^{2}
$$

so $\langle g\rangle \in \operatorname{im}(\phi \circ \varphi)$ by Proposition 2.2 .
We will prove that the existence of $h \in \mathcal{O}$ such that

$$
h \dot{K}^{2}=g \dot{K}^{2} \quad \text { and } \quad h \mathcal{O}+\mathfrak{f}=\mathcal{O}
$$

is a necessary and sufficient condition for $\langle g\rangle \in \operatorname{im}(\phi \circ \varphi)$.
Lemma 2.5. Let \mathfrak{q} be a primary ideal of the order \mathcal{O} such that $\mathfrak{q}+\mathfrak{f} \neq \mathcal{O}$. Then the radical rad \mathfrak{q} of the ideal \mathfrak{q} is a maximal ideal in \mathcal{O} such that

$$
\operatorname{rad} \mathfrak{q}+\mathfrak{f} \neq \mathcal{O}
$$

Proof. Since \mathfrak{q} is a primary ideal, $\operatorname{rad} \mathfrak{q}$ is a prime ideal. But \mathcal{O} is a one-dimensional domain, so $\operatorname{rad} \mathfrak{q}$ is a maximal ideal.

Suppose $\operatorname{rad} \mathfrak{q}+\mathfrak{f}=\mathcal{O}$. We know that $\mathfrak{f} \subseteq \operatorname{rad} \mathfrak{f}$, so $\operatorname{rad} \mathfrak{q}+\operatorname{rad} \mathfrak{f}=\mathcal{O}$. Hence $\mathfrak{q}+\mathfrak{f}=\mathcal{O}$, a contradiction.

LEMMA 2.6. Let $\mathfrak{f}=\mathfrak{Q}_{1}^{r_{1}} \cdots \mathfrak{Q}_{n}^{r_{n}}, r_{1}, \ldots, r_{n} \in \mathbb{N}$, be the representation of the conductor \mathfrak{f} of the order \mathcal{O} as a product of powers of pairwise distinct maximal ideals of the Dedekind domain R. Moreover, let \mathfrak{q} be a primary ideal in \mathcal{O} such that $\mathfrak{q}+\mathfrak{f} \neq \mathcal{O}$. Then

$$
\mathfrak{q} R=\mathfrak{Q}_{i_{1}}^{s_{1}} \cdots \mathfrak{Q}_{i_{m}}^{s_{m}}
$$

for some $s_{1}, \ldots, s_{m} \in \mathbb{N}$ and pairwise distinct $i_{1}, \ldots, i_{m} \in\{1, \ldots, n\}$.

Proof. First observe that $\mathfrak{q} R \neq R$. Indeed, since $\mathfrak{q} \neq \mathcal{O}$, there exists a maximal ideal $\mathfrak{P} \cap \mathcal{O}$ of \mathcal{O} such that

$$
\mathfrak{q} \subseteq \mathfrak{P} \cap \mathcal{O}
$$

(\mathfrak{P} is a maximal ideal of R). If $\mathfrak{q} R=R$, then

$$
R=\mathfrak{q} R \subseteq(\mathfrak{P} \cap \mathcal{O}) R \subseteq \mathfrak{P}
$$

which is impossible.
Suppose that in the decomposition of the ideal $\mathfrak{q} R$ there is a maximal ideal $\mathfrak{P} \triangleleft R$ such that $\mathfrak{P} \notin\left\{\mathfrak{Q}_{1}, \ldots, \mathfrak{Q}_{n}\right\}$ (i.e. $\mathfrak{P}+\mathfrak{f}=R$). Then $\mathfrak{q} R \subseteq \mathfrak{P}$, so

$$
\mathfrak{q} \subseteq \mathfrak{q} R \cap \mathcal{O} \subseteq \mathfrak{P} \cap \mathcal{O}
$$

The ideal $\mathfrak{P} \cap \mathcal{O}$ is a maximal ideal of \mathcal{O} relatively prime to \mathfrak{f}. Moreover,

$$
\begin{equation*}
\operatorname{rad} \mathfrak{q} \subseteq \operatorname{rad}(\mathfrak{P} \cap \mathcal{O})=\mathfrak{P} \cap \mathcal{O} \tag{2.2}
\end{equation*}
$$

From Lemma 2.5 it follows that $\operatorname{rad} \mathfrak{q}$ is a maximal ideal such that $\operatorname{rad} \mathfrak{q}+\mathfrak{f}$ $\neq \mathcal{O}$. However, by (2.2), $\operatorname{rad} \mathfrak{q}=\mathfrak{P} \cap \mathcal{O}$, which leads to a contradiction.

Corollary 2.7. Let I be an invertible ideal of the order \mathcal{O}. Then

$$
I+\mathfrak{f}=\mathcal{O} \Leftrightarrow I R+\mathfrak{f}=R
$$

Proof. The implication " \Rightarrow " is obvious.
Assume $I R+\mathfrak{f}=R$. Suppose $I+\mathfrak{f} \neq \mathcal{O}$. From Proposition 2.3 it follows that in a representation of the ideal I there is a primary ideal \mathfrak{q} of \mathcal{O} such that $\mathfrak{q}+\mathfrak{f} \neq \mathcal{O}$. However, Lemma 2.6 shows that $\mathfrak{q} R \subseteq \mathfrak{Q}$ for some ideal $\mathfrak{Q} \triangleleft R$ in the decomposition of \mathfrak{f}. Hence $I R \subseteq \mathfrak{Q}$, i.e. $I R+\mathfrak{f} \neq R$, which is impossible.

Now we prove a lemma which is true for any integral domain, not necessarily an order.

Lemma 2.8. Let P be an integral domain, I be an invertible ideal of P and $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{m} \triangleleft P$ be pairwise distinct maximal ideals. Then

$$
I \neq I \mathfrak{p}_{1} \cup \cdots \cup I \mathfrak{p}_{m} .
$$

Proof. Of course $I \mathfrak{p}_{1} \cup \cdots \cup I \mathfrak{p}_{m} \subseteq I$. We show by induction on m that

$$
I \nsubseteq I \mathfrak{p}_{1} \cup \cdots \cup I \mathfrak{p}_{m} .
$$

For $m=1$, if $I \subseteq I \mathfrak{p}_{1}$, then

$$
I^{-1} \cdot I \subseteq I^{-1} \cdot I \mathfrak{p}_{1}
$$

i.e. $P \subseteq \mathfrak{p}_{1}$, a contradiction.

Suppose

$$
I \subseteq I \mathfrak{p}_{1} \cup \cdots \cup I \mathfrak{p}_{m-1} \cup I \mathfrak{p}_{m} .
$$

By the induction assumption

$$
I \nsubseteq I \mathfrak{p}_{1} \cup \cdots \cup I \mathfrak{p}_{m-1} .
$$

Choose an element

$$
\begin{equation*}
x \in I \mathfrak{p}_{m} \backslash\left(I \mathfrak{p}_{1} \cup \cdots \cup I \mathfrak{p}_{m-1}\right) \tag{2.3}
\end{equation*}
$$

We prove that

$$
I \mathfrak{p}_{1} \cap \cdots \cap I \mathfrak{p}_{m-1} \nsubseteq I \mathfrak{p}_{m}
$$

Indeed, if $I \mathfrak{p}_{1} \cap \cdots \cap I \mathfrak{p}_{m-1} \subseteq I \mathfrak{p}_{m}$, then

$$
I \cdot\left(\mathfrak{p}_{1} \cap \cdots \cap \mathfrak{p}_{m-1}\right) \subseteq I \mathfrak{p}_{1} \cap \cdots \cap I \mathfrak{p}_{m-1} \subseteq I \mathfrak{p}_{m}
$$

i.e. $\mathfrak{p}_{1} \cap \cdots \cap \mathfrak{p}_{m-1} \subseteq \mathfrak{p}_{m}$. Since $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{m-1}$ are pairwise distinct (so relatively prime) maximal ideals,

$$
\mathfrak{p}_{1} \cdots \mathfrak{p}_{m-1}=\mathfrak{p}_{1} \cap \cdots \cap \mathfrak{p}_{m-1} \subseteq \mathfrak{p}_{m}
$$

Hence $\mathfrak{p}_{i}=\mathfrak{p}_{m}$ for some $i \in\{1, \ldots, m-1\}$, which is impossible.
Choose an element

$$
y \in\left(I \mathfrak{p}_{1} \cap \cdots \cap I \mathfrak{p}_{m-1}\right) \backslash I \mathfrak{p}_{m}
$$

Because I is an ideal, $x+y \in I$. There exists $i \in\{1, \ldots, m\}$ such that $x+y \in I \mathfrak{p}_{i}$.

If $i \in\{1, \ldots, m-1\}$, then $x \in I \mathfrak{p}_{i}$. This contradicts (2.3). If $i=m$, then $y \in I \mathfrak{p}_{m}$. This is also impossible.

Theorem 2.9. Let K be a global field and $R<K$ be a Dedekind domain. Moreover, let $\mathcal{O}<R$ be an order, \mathfrak{f} be the conductor of \mathcal{O} and $g \in E(R) \cap \mathcal{O}$. Then $\langle g\rangle \in \operatorname{im}(\phi \circ \varphi)$ if and only if there exists $h \in \mathcal{O}$ such that

$$
h \dot{K}^{2}=g \dot{K}^{2} \quad \text { and } \quad h R+\mathfrak{f}=R
$$

Proof. (\Rightarrow) From Lemma 2.1 it follows that there exists an ideal J of \mathcal{O} and an element $k \in \dot{K}$ such that

$$
J^{2}=g k^{2} \mathcal{O}
$$

Since $k=k_{1} / k_{2}$ for some $k_{1}, k_{2} \in \mathcal{O} \backslash\{0\}$,

$$
\begin{equation*}
I^{2}=g k_{1}^{2} \mathcal{O} \tag{2.4}
\end{equation*}
$$

where $I=J k_{2}$ is an invertible ideal of \mathcal{O}.
From [GHK, proof of Proposition 4(ii)] it follows that there are only finitely many maximal ideals in \mathcal{O} which are not relatively prime to \mathfrak{f}. Let $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{m}$ be all the pairwise distinct maximal ideals of \mathcal{O} such that

$$
\mathfrak{p}_{i}+\mathfrak{f} \neq \mathcal{O} \quad \text { for each } i \in\{1, \ldots, m\}
$$

There exists an element

$$
\begin{equation*}
x \in I \backslash\left(I \mathfrak{p}_{1} \cup \cdots \cup I \mathfrak{p}_{m}\right) \tag{2.5}
\end{equation*}
$$

Obviously $x \neq 0$ and $x \mathcal{O} \subseteq I$. Moreover, $x I^{-1} \subseteq \mathcal{O}$ is an invertible ideal of \mathcal{O}.

Notice that $x I^{-1}+\mathfrak{f}=\mathcal{O}$. Indeed, otherwise by Proposition 2.3 there exists a primary ideal $\mathfrak{q} \triangleleft \mathcal{O}$ such that

$$
\mathfrak{q}+\mathfrak{f} \neq \mathcal{O} \quad \text { and } \quad x I^{-1} \subseteq \mathfrak{q}
$$

But $\mathfrak{q} \subseteq \operatorname{rad} \mathfrak{q}$ and Lemma 2.5 shows that $\operatorname{rad} \mathfrak{q}$ is a maximal ideal in \mathcal{O} such that $\operatorname{rad} \mathfrak{q}+\mathfrak{f} \neq \mathcal{O}$. Therefore

$$
x I^{-1} \subseteq \mathfrak{q} \subseteq \operatorname{rad} \mathfrak{q}=\mathfrak{p}_{i}
$$

for some $i \in\{1, \ldots, m\}$. Hence $x \mathcal{O} \subseteq I \mathfrak{p}_{i}$, i.e. $x \in I \mathfrak{p}_{i}$. This contradicts (2.5).

Proposition 2.3 implies that the ideal $x I^{-1}$ has a unique representation as a product of powers of maximal ideals of \mathcal{O} relatively prime to \mathfrak{f}.

Since $x^{2} \in I^{2}$, by (2.4) there exists a nonzero $h \in \mathcal{O}$ such that

$$
\begin{equation*}
x^{2}=g k_{1}^{2} h \tag{2.6}
\end{equation*}
$$

Of course $h \dot{K}^{2}=g \dot{K}^{2}$. We show that $h \mathcal{O}+\mathfrak{f}=\mathcal{O}$. Indeed, otherwise by Proposition 2.3 there exists a primary ideal $\mathfrak{q}_{1} \triangleleft \mathcal{O}$ such that

$$
\mathfrak{q}_{1}+\mathfrak{f} \neq \mathcal{O} \quad \text { and } \quad h \mathcal{O} \subseteq \mathfrak{q}_{1}
$$

Therefore by (2.6),

$$
x^{2} \mathcal{O}=g k_{1}^{2} \mathcal{O} \cdot h \mathcal{O} \subseteq I^{2} \mathfrak{q}_{1}
$$

i.e. $\left(x I^{-1}\right)^{2} \subseteq \mathfrak{q}_{1}$. But the ideal $\left(x I^{-1}\right)^{2}$ is a product of powers of maximal ideals of \mathcal{O} relatively prime to \mathfrak{f}, so

$$
\left(x I^{-1}\right)^{2}+\mathfrak{f}=\mathcal{O}
$$

Hence $\mathfrak{q}_{1}+\mathfrak{f}=\mathcal{O}$, a contradiction.
Thus, $h \mathcal{O}+\mathfrak{f}=\mathcal{O}$, so $h R+\mathfrak{f}=R$.
(\Leftarrow) By assumption, $h \dot{K}^{2}=g \dot{K}^{2}$, so $h \in E(R) \cap \mathcal{O}$ and $\langle g\rangle=\langle h\rangle$ in the Witt ring $W K$. Corollary 2.7 yields $h \mathcal{O}+\mathfrak{f}=\mathcal{O}$, so $\langle g\rangle=\langle h\rangle \in \operatorname{im}(\phi \circ \varphi)$, by Theorem 2.4 .

COROLLARY 2.10. Let $\mathfrak{f}=\mathfrak{Q}_{1}^{r_{1}} \cdots \mathfrak{Q}_{n}^{r_{n}}, r_{1}, \ldots, r_{n} \in \mathbb{N}$, be the representation of the conductor \mathfrak{f} of the order \mathcal{O} as a product of powers of pairwise distinct maximal ideals of the Dedekind domain R. Moreover, let $g \in E(R) \cap \mathcal{O}$. Then $\langle g\rangle \in \operatorname{im}(\phi \circ \varphi)$ if and only if there exists $h \in \mathcal{O}$ such that $h \dot{K}^{2}=g \dot{K}^{2}$ and the ideal $h R$ has a unique representation as a product of powers of pairwise distinct maximal ideals $\mathfrak{P} \notin\left\{\mathfrak{Q}_{1}, \ldots, \mathfrak{Q}_{n}\right\}$.
3. Quadratic number fields. As an example we examine the surjectivity of the natural homomorphism $\varphi: W \mathcal{O} \rightarrow W R$ in the case when K is some quadratic number field and $R=R_{K}$ is the ring of algebraic integers of K.

Let $K=\mathbb{Q}(\sqrt{D})$, where D is a square-free integer. Assume p_{1}, \ldots, p_{s} are all the pairwise distinct prime divisors of the discriminant of the field K (if
$D \equiv 3(\bmod 4)$, then we assume $\left.p_{1}=2\right)$. From [Cz1, pp. 110, 116-117] it follows that in the case when K is a nonreal field $(D<0)$ the set

$$
\begin{aligned}
\left\{\langle 1\rangle,\left\langle p_{1}\right\rangle, \ldots,\left\langle p_{s-1}\right\rangle\right\} & \text { when } D \neq-1, \\
\{\langle 1\rangle,\langle 2\rangle\} & \text { when } D=-1,
\end{aligned}
$$

generates the group $\phi\left(W R_{K}\right)$.
Assume K is a real field $(D>0)$. Then K has two real infinite primes ∞_{1}, ∞_{2}. From [Cz1, pp. 114, 117-119] it follows that the set

$$
\left\{\langle 1\rangle,\left\langle p_{1}\right\rangle, \ldots,\left\langle p_{s-1}\right\rangle\right\}
$$

is contained in the set of generators of the group $\phi\left(W R_{K}\right)$.
Let $N_{K / \mathbb{Q}}(\dot{K})$ denote the norm group of the extension K / \mathbb{Q}. If $-1 \in$ $N_{K / \mathbb{Q}}(\dot{K})$, then there exists $b \in E\left(R_{K}\right)$ that is positive at ∞_{1} and negative at ∞_{2} (cf. [Cz2, proof of Proposition 3.2]). Moreover, the class $\langle b\rangle$ belongs to the set of generators of the group $\phi\left(W R_{K}\right)$. In particular, if $D \not \equiv 1(\bmod 8)$, then the set

$$
\left\{\langle 1\rangle,\left\langle p_{1}\right\rangle, \ldots,\left\langle p_{s-1}\right\rangle,\langle b\rangle\right\}
$$

generates $\phi\left(W R_{K}\right)$ (cf. [Cz1, pp. 114, 117]).
Let $K=\mathbb{Q}(\sqrt{D})$ be any quadratic number field. It is known that

$$
R_{K}= \begin{cases}\mathbb{Z}[\sqrt{D}] & \text { when } D \not \equiv 1(\bmod 4), \\ \mathbb{Z}[(1+\sqrt{D}) / 2] & \text { when } D \equiv 1(\bmod 4) .\end{cases}
$$

Moreover, $\mathcal{O}<R_{K}$ is an order if and only if there exists $m \in \mathbb{N}$ such that

$$
\mathcal{O}= \begin{cases}\mathbb{Z}[m \sqrt{D}] & \text { when } D \not \equiv 1(\bmod 4), \\ \mathbb{Z}[m(1+\sqrt{D}) / 2] & \text { when } D \equiv 1(\bmod 4)\end{cases}
$$

(cf. [BC, p. 151]). The conductor \mathfrak{f} of \mathcal{O} is then the principal ideal generated by $m, \mathfrak{f}=m R_{K}$.

Proposition 3.1. Let $K=\mathbb{Q}(\sqrt{D})$ be a quadratic number field, $\mathcal{O}<R_{K}$ be an order and $\mathfrak{f}=m R_{K}$ be its conductor. Let $p \in E\left(R_{K}\right)$ be a prime number satisfying one of the following two conditions:
(i) $p \nmid m$,
(ii) $p \mid m$ and $p \mid D$.

Then $\langle p\rangle \in \operatorname{im}(\phi \circ \varphi)$.
Proof. (i) Since $\operatorname{gcd}(p, m)=1$, there exist $x, y \in \mathbb{Z}$ such that

$$
p x+m y=1 .
$$

In particular $p R_{K}+\mathfrak{f}=R_{K}$, so $\langle p\rangle \in \operatorname{im}(\phi \circ \varphi)$.
(ii) Assume $m=p^{r} \cdot m^{\prime}$ for some $r, m^{\prime} \in \mathbb{N}$ and $p \nmid m^{\prime}$. Consider the element

$$
z:=p^{r+1} \cdot m+m^{\prime} \cdot m \sqrt{D} \in \mathcal{O} .
$$

Then

$$
z^{2}=p m^{2} \cdot\left[\left(p^{2 r+1}+m^{\prime 2} \cdot \frac{D}{p}\right)+2 m \sqrt{D}\right]=p m^{2} \cdot h
$$

Moreover, $h \in \mathcal{O}$ and $h \dot{K}^{2}=p \dot{K}^{2}$. Since $p \nmid m^{\prime}$ and D is a square-free integer, it is easy to observe that

$$
\operatorname{gcd}\left(p^{2 r+1}, m^{\prime 2} \cdot \frac{D}{p}\right)=1
$$

Hence

$$
p^{2 r+1} R_{K}+m^{\prime 2} \cdot \frac{D}{p} R_{K}=R_{K}
$$

We show that $h R_{K}+\mathfrak{f}=R_{K}$. Indeed, otherwise there exists a maximal ideal \mathfrak{Q} in the representation of the conductor $\mathfrak{f}=m R_{K}$ which is also in the representation of the ideal $h R_{K}$. Then $h R_{K} \subseteq \mathfrak{Q}$, i.e. $h \in \mathfrak{Q}$. But $2 m \sqrt{D} \in \mathfrak{f} \subseteq \mathfrak{Q}$, so

$$
\begin{equation*}
p^{2 r+1}+m^{\prime 2} \cdot \frac{D}{p} \in \mathfrak{Q} \tag{3.1}
\end{equation*}
$$

Because $p^{r} \cdot m^{\prime}=m \in \mathfrak{Q}$, either $p \in \mathfrak{Q}$ or $m^{\prime} \in \mathfrak{Q}$. In both cases, by 3.1),

$$
p^{2 r+1} \in \mathfrak{Q} \quad \text { and } \quad m^{\prime 2} \cdot \frac{D}{p} \in \mathfrak{Q}
$$

Therefore

$$
R_{K}=p^{2 r+1} R_{K}+m^{\prime 2} \cdot \frac{D}{p} R_{K} \subseteq \mathfrak{Q}
$$

which is impossible.
Finally, from Theorem 2.9 it follows that $\langle p\rangle \in \operatorname{im}(\phi \circ \varphi)$.
Observe that every prime divisor $p_{i}, i \in\{1, \ldots, s\}$, of the discriminant of the field $K=\mathbb{Q}(\sqrt{D})$ is a divisor of the integer D (except for $p_{1}=2$ in the case when $D \equiv 3(\bmod 4))$.

Corollary 3.2. Let $K=\mathbb{Q}(\sqrt{D})$ be a nonreal quadratic number field with $D \not \equiv 3(\bmod 4)$. Moreover, let \mathcal{O} be an order. Then the natural homomorphism $\varphi: W \mathcal{O} \rightarrow W R_{K}$ is surjective.

Corollary 3.3. Let $K=\mathbb{Q}(\sqrt{D})$ be a nonreal quadratic number field with $D \equiv 3(\bmod 4)$. Moreover, let $\mathcal{O}=\mathbb{Z}[m \sqrt{D}]$ be an order such that $2 \nmid m$. Then the natural homomorphism $\varphi: W \mathcal{O} \rightarrow W R_{K}$ is surjective.

Proposition 3.4. Let $K=\mathbb{Q}(\sqrt{D})$ be any quadratic number field with $D \equiv 3(\bmod 4)$. If $\mathcal{O}=\mathbb{Z}[m \sqrt{D}]$ is an order such that $2 \mid m$, then

$$
\left\langle p_{1}\right\rangle=\langle 2\rangle \notin \operatorname{im}(\phi \circ \varphi) .
$$

Proof. First assume $m=2$. Denote $\mathcal{O}_{1}:=\mathbb{Z}[2 \sqrt{D}]$ and suppose that $\langle 2\rangle \in \operatorname{im}\left(\phi \circ \varphi_{1}\right)$, where $\varphi_{1}: W \mathcal{O}_{1} \rightarrow W R_{K}$ is the natural homomorphism.

In the same way as in (2.4), from Lemma 2.1 it follows that there exists an ideal I of \mathcal{O}_{1} and an element $k_{1} \in \mathcal{O}_{1} \backslash\{0\}$ such that

$$
I^{2}=2 k_{1}^{2} \mathcal{O}_{1}
$$

Multiplying the above equality by the principal ideal of \mathcal{O}_{1} generated by the element conjugate to k_{1}^{2}, we obtain

$$
T^{2}=2 n^{2} \mathcal{O}_{1}
$$

for some ideal T of \mathcal{O}_{1} and $n \in \mathbb{N}$. We will show that this is impossible.
Assume $2 \nmid n$. Then for every $x+2 y \sqrt{D} \in T$, where $x, y \in \mathbb{Z}$, we have

$$
2 \mid(x+2 y \sqrt{D})^{2}
$$

Hence $2 \mid x$, so in particular the rational part of every element of the ideal T^{2} is divisible by 4 . But $2 n^{2} \in T^{2} \cap \mathbb{N}$ and $2 \nmid n$, a contradiction.

Assume $n=2^{r} \cdot n^{\prime}$ for some $r, n^{\prime} \in \mathbb{N}$ and $2 \nmid n^{\prime}$. Then

$$
\begin{equation*}
T^{2}=2^{2 r+1} \cdot n^{\prime 2} \mathcal{O}_{1} \tag{3.2}
\end{equation*}
$$

Since $2 r+1 \geq 3$, for every $x+2 y \sqrt{D} \in T$ we have

$$
2^{3} \mid(x+2 y \sqrt{D})^{2} \quad \text { in } \mathcal{O}_{1}=\mathbb{Z}[2 \sqrt{D}]
$$

Hence

$$
2^{3} \mid\left(x^{2}+4 y^{2} D\right) \quad \text { and } \quad 2^{2} \mid x y
$$

By assumption, $D \equiv 3(\bmod 4)$, so $2 \mid x$ and $2 \mid y$. Therefore

$$
2 \mid(x+2 y \sqrt{D}) \quad \text { in } \mathcal{O}_{1}
$$

There exists an ideal T_{1} of \mathcal{O}_{1} such that

$$
T=2 \mathcal{O}_{1} \cdot T_{1}
$$

i.e. by 3.2,

$$
T_{1}^{2}=2^{2 r-1} \cdot n^{\prime 2} \mathcal{O}_{1}
$$

where $2 r-1 \geq 1$.
Repeating this procedure until $2 r-1=1$, we prove that there exists an ideal T^{\prime} of \mathcal{O}_{1} such that

$$
T^{\prime 2}=2 n^{\prime 2} \mathcal{O}_{1}
$$

But $2 \nmid n^{\prime}$, so this is impossible.
To sum up, we have shown that if $\mathcal{O}_{1}=\mathbb{Z}[2 \sqrt{D}]$, then $\langle 2\rangle \notin \operatorname{im}\left(\phi \circ \varphi_{1}\right)$.
Assume that $\mathcal{O}=\mathbb{Z}[m \sqrt{D}]$ is any order such that $2 \mid m$. Suppose that $\langle 2\rangle \in \operatorname{im}(\phi \circ \varphi)$. By Theorem 2.9 there exists $h \in \mathcal{O}$ such that

$$
h \dot{K}^{2}=2 \dot{K}^{2} \quad \text { and } \quad h R_{K}+m R_{K}=R_{K}
$$

But

$$
\mathbb{Z}[m \sqrt{D}] \subseteq \mathbb{Z}[2 \sqrt{D}]=\mathcal{O}_{1}
$$

so $h \in \mathcal{O}_{1}$. Moreover,

$$
R_{K}=h R_{K}+m R_{K} \subseteq h R_{K}+2 R_{K}, \quad \text { i.e. } \quad h R_{K}+2 R_{K}=R_{K}
$$

Using again Theorem 2.9 we get $\langle 2\rangle \in \operatorname{im}\left(\phi \circ \varphi_{1}\right)$, a contradiction. Thus, $\langle 2\rangle \notin \operatorname{im}(\phi \circ \varphi)$.

Corollary 3.5. Let $K=\mathbb{Q}(\sqrt{D})$ with $D \equiv 3(\bmod 4)$. Moreover, let $\mathcal{O}=\mathbb{Z}[m \sqrt{D}]$ be an order such that $2 \mid m$. Then $\varphi: W \mathcal{O} \rightarrow W R_{K}$ is not surjective.

Now assume $K=\mathbb{Q}(\sqrt{D})$ is a real field with $-1 \in N_{K / \mathbb{Q}}(\dot{K})$. If p_{1}, \ldots, p_{s} are all the pairwise distinct prime divisors of the discriminant of K, then the condition $-1 \in N_{K / \mathbb{Q}}(\dot{K})$ can be replaced by $p_{i} \equiv 1,2(\bmod 4)$ for $i=1, \ldots, s$.

We give a necessary and sufficient condition for $\langle b\rangle \in \operatorname{im}(\phi \circ \varphi)$, where $b \in E\left(R_{K}\right) \cap \mathcal{O}$ is positive at ∞_{1} and negative at ∞_{2}.

In elementary number theory the following fact is known.
Proposition 3.6. Let $c=2^{r} q_{1} \cdots q_{l}$, where $r \in \mathbb{N} \cup\{0\}$ and q_{1}, \ldots, q_{l} are odd prime numbers. Then the equation $X^{2}+Y^{2}=c$ has a solution $(x, y) \in \mathbb{Z} \times \mathbb{Z}$ with $\operatorname{gcd}(x, y, c)=1$ if and only if $r \in\{0,1\}$ and $q_{i} \equiv 1$ $(\bmod 4)$ for every $i \in\{1, \ldots, l\}$.

Proposition 3.7. Let $K=\mathbb{Q}(\sqrt{D})$ be a real quadratic number field with $D \equiv 1(\bmod 4)$ and $-1 \in N_{K / \mathbb{Q}}(\dot{K})$. Let $\mathcal{O}=\mathbb{Z}[m(1+\sqrt{D}) / 2]$ be an order with $m=2^{r} q_{1} \cdots q_{l}$, where $r \in \mathbb{N} \cup\{0\}$ and q_{1}, \ldots, q_{l} are odd prime numbers. Moreover, let $b \in E\left(R_{K}\right) \cap \mathcal{O}$ be positive at ∞_{1} and negative at ∞_{2}. Then $\langle b\rangle \in \operatorname{im}(\phi \circ \varphi)$ if and only if $r \in\{0,1\}$ and $q_{i} \equiv 1(\bmod 4)$ for every $i \in\{1, \ldots, l\}$.

Proof. (\Rightarrow) By Theorem 2.9 there exists $h=x+y m(1+\sqrt{D}) / 2 \in \mathcal{O}$ such that

$$
h \dot{K}^{2}=b \dot{K}^{2} \quad \text { and } \quad h R_{K}+\mathfrak{f}=R_{K}
$$

Because $N_{K / \mathbb{Q}}(h)<0$ and $h \in E\left(R_{K}\right) \cap \mathcal{O}$, we have

$$
N_{K / \mathbb{Q}}(h)=-t^{2} \quad \text { for some } t \in \mathbb{N} .
$$

Observe that

$$
-t^{2}=N_{K / \mathbb{Q}}(h)=h \bar{h}=x^{2}+m \cdot\left[x y+\frac{y^{2}}{4} m(1-D)\right],
$$

where \bar{h} denotes the element conjugate to h. Since $D \equiv 1(\bmod 4)$,

$$
a:=x y+\frac{y^{2}}{4} m(1-D) \in \mathbb{Z}
$$

Hence

$$
\begin{equation*}
x^{2}+t^{2}=-m a, \quad \text { where }-m a \in \mathbb{N} \tag{3.3}
\end{equation*}
$$

We assume $\operatorname{gcd}\left(x^{2}, t^{2}, a\right)$ is a square-free integer (if $n^{2} \mid \operatorname{gcd}\left(x^{2}, t^{2}, a\right)$ for some $n \in \mathbb{N}$, then we divide (3.3) by n^{2}).

Suppose either $r>1$, or $q_{i} \equiv 3(\bmod 4)$ for some $i \in\{1, \ldots, l\}$. By Proposition 3.6 there exists a prime number p such that $p|x, p| t$ and $p^{2} \mid m a$. Since $\operatorname{gcd}\left(x^{2}, t^{2}, a\right)$ is a square-free integer, $p \mid m$. Hence $p \mid(x+y m(1+\sqrt{D}) / 2)$ in the ring R_{K}, i.e.

$$
h R_{K}+\mathfrak{f}=h R_{K}+m R_{K} \neq R_{K}
$$

a contradiction.
(\Leftarrow) Let

$$
m_{1}:= \begin{cases}m & \text { when } 2 \nmid m \\ m / 2 & \text { when } 2 \mid m\end{cases}
$$

Obviously $m_{1} \equiv 1(\bmod 2)$.
Since $D \equiv 1(\bmod 4)$ and $-1 \in N_{K / \mathbb{Q}}(\dot{K})$, every prime divisor of D is congruent to 1 modulo 4 . By Proposition 3.6 there exist $x, y \in \mathbb{Z}$ such that

$$
x^{2}+y^{2}=m_{1}^{2} D \quad \text { and } \quad \operatorname{gcd}\left(x, y, m_{1}^{2} D\right)=1
$$

We assume $y \equiv 1(\bmod 2)$.
Consider

$$
g:=x+m_{1} \sqrt{D}= \begin{cases}(x-m)+2 m(1+\sqrt{D}) / 2 & \text { when } 2 \nmid m \\ \left(x-m_{1}\right)+m(1+\sqrt{D}) / 2 & \text { when } 2 \mid m\end{cases}
$$

Observe that $g \in \mathcal{O}$ and

$$
N_{K / \mathbb{Q}}(g)=g \bar{g}=x^{2}-m_{1}^{2} D=-y^{2} .
$$

Moreover, $\operatorname{gcd}\left(N_{K / \mathbb{Q}}(g), m\right)=1$, so

$$
g R_{K}+\mathfrak{f}=g R_{K}+m R_{K}=R_{K}
$$

We show that $g \in E\left(R_{K}\right)$.
If $g \in U\left(R_{K}\right)$, then $g \in E\left(R_{K}\right)$. Assume $g \notin U\left(R_{K}\right)$. Let \mathfrak{P} be a maximal ideal in the decomposition of the ideal $g R_{K}$. The ideal \mathfrak{P} lies over some prime number p.
(a) If p ramifies in $K\left(p R_{K}=\mathfrak{P}^{2}\right)$, then $p \mid D$. Moreover, $p \mid N_{K / \mathbb{Q}}(g)$, so $\operatorname{gcd}\left(x, y, m_{1}^{2} D\right)>1$, a contradiction.
(b) If p remains prime in $K\left(p R_{K}=\mathfrak{P}\right)$, then $p \mid g$ in R_{K}. It is easy to observe that $p \mid 2 m$ and $p \mid N_{K / \mathbb{Q}}(g)$. If $p \mid m_{1}$, then $\operatorname{gcd}\left(x, y, m_{1}^{2} D\right)>1$, which is not the case. If $p=2$, then $2 \mid y$, which is not the case either.
(c) Hence p splits in $K, p R_{K}=\mathfrak{P P}$. Observe that the ideal $\overline{\mathfrak{P}}$ does not belong to the decomposition of the ideal $g R_{K}$. Otherwise, $p \mid g$ in R_{K}, which is a contradiction. The ideal $\overline{\mathfrak{P}}$ belongs only to the decomposition of the ideal $\bar{g} R_{K}$. Because

$$
g R_{K} \cdot \bar{g} R_{K}=\left(y R_{K}\right)^{2}
$$

we have $\operatorname{ord}_{\mathfrak{P}} g=\operatorname{ord}_{\overline{\mathfrak{P}}} \bar{g} \equiv 0(\bmod 2)$. Finally, $g \in E\left(R_{K}\right) \cap \mathcal{O}$.

Theorem 2.9 implies that

$$
\begin{equation*}
\langle g\rangle \in \operatorname{im}(\phi \circ \varphi) . \tag{3.4}
\end{equation*}
$$

Since $N_{K / \mathbb{Q}}(g)=-y^{2}$, from [Cz2, Proposition 3.2, p. 36] it follows that

$$
b \dot{K}^{2}= \pm g p_{1}^{r_{1}} \cdots p_{s-1}^{r_{s-1}} \dot{K}^{2}
$$

where $p_{1} \ldots, p_{s-1}$ are pairwise distinct prime divisors of the discriminant of the field K and $r_{i} \in\{0,1\}, i=1, \ldots, s-1$. Hence

$$
\langle b\rangle= \pm\langle g\rangle\left\langle p_{1}^{r_{1}}\right\rangle \cdots\left\langle p_{s-1}^{r_{s-1}}\right\rangle
$$

in the Witt ring $W K$. By (3.4) and Proposition 3.1, $\langle b\rangle \in \operatorname{im}(\phi \circ \varphi)$.
Corollary 3.8. Let $K=\mathbb{Q}(\sqrt{D})$ be a real quadratic number field with $D \equiv 5(\bmod 8)$ and $-1 \in N_{K / \mathbb{Q}}(\dot{K})$. Moreover, let $\mathcal{O}=\mathbb{Z}[m(1+\sqrt{D}) / 2]$ be an order with $m=2^{r} q_{1} \cdots q_{l}$, where $r \in\{0,1\}$ and q_{1}, \ldots, q_{l} are odd prime numbers such that $q_{i} \equiv 1(\bmod 4)$ for every $i \in\{1, \ldots, l\}$. Then $\varphi: W \mathcal{O} \rightarrow W R_{K}$ is surjective.

Proof. This follows from statements on page 358 and Propositions 3.1 and 3.7.

Corollary 3.9. Let $K=\mathbb{Q}(\sqrt{D})$ be a real quadratic number field with $D \equiv 1(\bmod 4)$ and $-1 \in N_{K / \mathbb{Q}}(\dot{K})$. Moreover, let $\mathcal{O}=\mathbb{Z}[m(1+\sqrt{D}) / 2]$ be an order with $m=2^{r} q_{1} \cdots q_{l}$, where $r \in \mathbb{N} \cup\{0\}$ and q_{1}, \ldots, q_{l} are odd prime numbers. If either $r>1$, or $q_{i} \equiv 3(\bmod 4)$ for some $i \in\{1, \ldots, l\}$, then $\varphi: W \mathcal{O} \rightarrow W R_{K}$ is not surjective.

Proposition 3.10. Let $K=\mathbb{Q}(\sqrt{D})$ be a real quadratic number field with $2 \mid D$ and $-1 \in N_{K / \mathbb{Q}}(\dot{K})$. Let $\mathcal{O}=\mathbb{Z}[m \sqrt{D}]$ be an order with $m=$ $2^{r} q_{1} \cdots q_{l}$, where $r \in \mathbb{N} \cup\{0\}$ and q_{1}, \ldots, q_{l} are odd prime numbers. Moreover, let $b \in E\left(R_{K}\right) \cap \mathcal{O}$ be positive at ∞_{1} and negative at ∞_{2}. Then $\langle b\rangle \in \operatorname{im}(\phi \circ \varphi)$ if and only if $r=0$ and $q_{i} \equiv 1(\bmod 4)$ for every $i \in\{1, \ldots, l\}$.

Proof. (\Rightarrow) Theorem 2.9 yields $h=x+y m \sqrt{D} \in \mathcal{O}$ such that

$$
h \dot{K}^{2}=b \dot{K}^{2} \quad \text { and } \quad h R_{K}+\mathfrak{f}=R_{K}
$$

As in the proof of the implication " \Rightarrow " of Proposition 3.7 we notice that $N_{K / \mathbb{Q}}(h)=-t^{2}$ for some $t \in \mathbb{N}$. Hence

$$
x^{2}+t^{2}=m^{2} y^{2} D
$$

We assume $\operatorname{gcd}(x, t, y)=1$.
If either $r>0$, or $q_{i} \equiv 3(\bmod 4)$ for some $i \in\{1, \ldots, l\}$, then by Proposition 3.6 there exists a prime number p such that $p|x, p| t$ and $p^{2} \mid m^{2} D$. Since D is a square-free integer, $p \mid m$. Then $p \mid h$ in R_{K}, so

$$
h R_{K}+\mathfrak{f}=h R_{K}+m R_{K} \neq R_{K}
$$

a contradiction.
(\Leftarrow) Since $-1 \in N_{K / \mathbb{Q}}(\dot{K})$, every odd prime divisor of D is congruent to 1 modulo 4. Proposition 3.6 gives $x, y \in \mathbb{Z}$ such that

$$
x^{2}+y^{2}=m^{2} D \quad \text { and } \quad \operatorname{gcd}\left(x, y, m^{2} D\right)=1 .
$$

Consider $g:=x+m \sqrt{D} \in \mathcal{O}$. Obviously,

$$
N_{K / \mathbb{Q}}(g)=x^{2}-m^{2} D=-y^{2} .
$$

Moreover, $\operatorname{gcd}\left(N_{K / \mathbb{Q}}(g), m\right)=1$, so

$$
g R_{K}+\mathfrak{f}=g R_{K}+m R_{K}=R_{K} .
$$

As in the proof of the implication " \Leftarrow " of Proposition 3.7, we show that $g \in E\left(R_{K}\right)$. Hence $\langle g\rangle \in \operatorname{im}(\phi \circ \varphi)$ and finally,

$$
\langle b\rangle= \pm\langle g\rangle\left\langle p_{1}^{r_{1}}\right\rangle \cdots\left\langle p_{s-1}^{r_{s-1}}\right\rangle \in \operatorname{im}(\phi \circ \varphi) .
$$

Corollary 3.11. Let $K=\mathbb{Q}(\sqrt{D})$ be a real quadratic number field with $2 \mid D$ and $-1 \in N_{K / \mathbb{Q}}(\dot{K})$. Moreover, let $\mathcal{O}=\mathbb{Z}[m \sqrt{D}]$ be an order with $m=2^{r} q_{1} \cdots q_{l}$, where $r \in \mathbb{N} \cup\{0\}$ and q_{1}, \ldots, q_{l} are odd prime numbers. Then $\varphi: W \mathcal{O} \rightarrow W R_{K}$ is surjective if and only if $r=0$ and $q_{i} \equiv 1(\bmod 4)$ for every $i \in\{1, \ldots, l\}$.

Proof. This follows from page 358 and Propositions 3.1 and 3.10 .
4. Quadratic function fields. Assume \mathbb{F} is a finite field of characteristic $\neq 2$. Assume ϵ is a generator of the group $\dot{\mathbb{F}}$. Let $F=\mathbb{F}(X)$ be the rational function field over \mathbb{F} and ∞_{F} be the prime of F with uniformizing parameter $1 / X$.

Let $D \in \mathbb{F}[X]$ be a square-free polynomial of degree ≥ 1 and a_{d} be the leading coefficient of D. We assume a_{d} is either 1 or ϵ. Let $K=F(\sqrt{D})$.

Theorem 4.1 (\mathbb{R}, Proposition 14.6]).
(i) If $\operatorname{deg} D \equiv 1(\bmod 2)$, then ∞_{F} ramifies in K.
(ii) If $\operatorname{deg} D \equiv 0(\bmod 2)$ and $a_{d}=1$, then ∞_{F} splits in K.
(iii) If $\operatorname{deg} D \equiv 0(\bmod 2)$ and $a_{d}=\epsilon$, then ∞_{F} is prime in K.

The field K is said to be real if ∞_{F} splits in K, and nonreal otherwise.
Throughout this section we assume that \mathcal{S} is the set of primes of K which lie over \propto_{F}. Let

$$
D_{K}(\mathcal{S})=\left\{g \in E\left(R_{K}(\mathcal{S})\right):(-1, g)_{\mathfrak{F}}=1 \text { for every } \mathfrak{P} \in \mathcal{S}\right\},
$$

where $(\cdot, \cdot)_{\mathfrak{F}}$ denotes the \mathfrak{P}-adic Hilbert symbol. Let $u_{K}(\mathcal{S})$ denote the 2-rank of the group $E\left(R_{K}(\mathcal{S})\right) / D_{K}(\mathcal{S})$ (cf. [Cz3, p. 607], [RC, p. 196]).

Assume $p_{1}, \ldots, p_{s} \in \mathbb{F}[X]$ are all the pairwise distinct monic irreducible polynomials which divide D. From [RC, Proposition 6.2] it follows that $\epsilon \in N_{K / F}(\dot{K})$ if and only if each p_{i} has even degree. If $\epsilon \in N_{K / F}(\dot{K})$, then
there exists $b \in E\left(R_{K}(\mathcal{S})\right)$ such that $N_{K / F}(b) \in \epsilon \dot{F}^{2}$ (cf. [RC, Lemma 1.12]). By [RC, p. 208] and [Cz3, Theorem 4.2] the set of classes

$$
\begin{align*}
\left\{\langle 1\rangle,\langle\epsilon\rangle,\left\langle p_{1}\right\rangle, \ldots,\left\langle p_{s-1}\right\rangle,\langle b\rangle\right\} & \text { when } \epsilon \in N_{K / F}(\dot{K}), \tag{4.1}\\
\left\{\langle 1\rangle,\langle\epsilon\rangle,\left\langle p_{1}\right\rangle, \ldots,\left\langle p_{s-1}\right\rangle\right\} & \text { when } \epsilon \notin N_{K / F}(\dot{K}),
\end{align*}
$$

is contained in the set of generators of the group $\phi\left(W R_{K}(\mathcal{S})\right)$. In particular, if K is either a nonreal field, or a real field and $u_{K}(\mathcal{S}) \neq 0$, then the set (4.1) generates $\phi\left(W R_{K}(\mathcal{S})\right)$.

It is known that

$$
R_{K}(\mathcal{S})=\mathbb{F}[X][\sqrt{D}]
$$

Moreover, $\mathcal{O}<R_{K}(\mathcal{S})$ is an order if and only if there exists $0 \neq m \in \mathbb{F}[X]$ such that

$$
\mathcal{O}=\mathbb{F}[X][m \sqrt{D}]
$$

(cf. [R, p. 248, Proposition 17.6]). The conductor \mathfrak{f} of \mathcal{O} is the principal ideal generated by $m, \mathfrak{f}=m R_{K}(\mathcal{S})$.

Proposition 4.2. Let $K=F(\sqrt{D})$ be a quadratic function field, let $\mathcal{O}<R_{K}(\mathcal{S})$ be an order and let $\mathfrak{f}=m R_{K}(\mathcal{S})$ be its conductor. Suppose that $p \in E\left(R_{K}(\mathcal{S})\right) \cap \mathbb{F}[X]$ is an irreducible polynomial satisfying one of the following two conditions:
(i) $p \nmid m$,
(ii) $p \mid m$ and $p \mid D$.

Then $\langle p\rangle \in \operatorname{im}(\phi \circ \varphi)$.
Proof. This is proved similarly to Proposition 3.1.
The element ϵ is invertible in \mathcal{O}. Hence

$$
\begin{equation*}
\langle\epsilon\rangle \in \operatorname{im}(\phi \circ \varphi) . \tag{4.2}
\end{equation*}
$$

Corollary 4.3. Let $K=F(\sqrt{D})$ be a nonreal quadratic function field with $\epsilon \notin N_{K / F}(\dot{K})$. Moreover, let $\mathcal{O}<R_{K}(\mathcal{S})$ be an order. Then the natural homomorphism $\varphi: W \mathcal{O} \rightarrow W R_{K}(\mathcal{S})$ is surjective.

Corollary 4.4. Let $K=F(\sqrt{D})$ be a real quadratic function field with $\epsilon \notin N_{K / F}(\dot{K})$ and $u_{K}(\mathcal{S}) \neq 0$. Moreover, let $\mathcal{O}<R_{K}(\mathcal{S})$ be an order. Then $\varphi: W \mathcal{O} \rightarrow W R_{K}(\mathcal{S})$ is surjective.

Assume $\epsilon \in N_{K / F}(\dot{K})$. We give a necessary and sufficient condition for $\langle b\rangle \in \operatorname{im}(\phi \circ \varphi)$.

Lemma 4.5. Let $c=q_{1} \cdots q_{l}$, where $q_{1}, \ldots, q_{l} \in \mathbb{F}[X]$ are irreducible. Then the equation $X^{2}-\epsilon Y^{2}=c$ has a solution $(x, y) \in \mathbb{F}[X] \times \mathbb{F}[X]$ with $\operatorname{gcd}(x, y, c) \sim 1$ if and only if $\operatorname{deg} q_{i} \equiv 0(\bmod 2)$ for every $i \in\{1, \ldots, l\}$.

Proof. (\Rightarrow) Suppose $\operatorname{deg} q_{i} \equiv 1(\bmod 2)$ for some $i \in\{1, \ldots, l\}$. Obviously, $x^{2}-\epsilon y^{2} \equiv 0\left(\bmod q_{i}\right)$. Because $\operatorname{gcd}(x, y, c) \sim 1$, we have $y \not \equiv 0$ $\left(\bmod q_{i}\right)$. Then $(x / y)^{2} \equiv \epsilon\left(\bmod q_{i}\right)$, i.e. ϵ is a square modulo q_{i}. This is impossible (cf. [R, Propositions 3.13), 3.2]).
(\Leftarrow) We use induction on l. Fix $i \in\{1, \ldots, l\}$. Because $\operatorname{deg} q_{i} \equiv 0(\bmod 2)$, we have

$$
\left(\epsilon, q_{i}\right)_{q_{i}}=1 \quad \text { and } \quad\left(\epsilon, q_{i}\right)_{\infty_{F}}=1
$$

For every prime $\mathfrak{p} \notin\left\{q_{i}, \infty_{F}\right\}$ of the field F the elements ϵ, q_{i} are \mathfrak{p}-adic units, so $\left(\epsilon, q_{i}\right)_{\mathfrak{p}}=1$. From the local-global principle it follows that the form $\left\langle\epsilon, q_{i}\right\rangle$ represents 1 over the field F. It is easy to observe that the form $\langle 1,-\epsilon\rangle$ represents q_{i} over F. By [$\mathrm{P}, 2.2$ Theorem, Chapter 1] the form $\langle 1,-\epsilon\rangle$ represents q_{i} over the ring $\mathbb{F}[X]$. Hence there exist $z_{i}, t_{i} \in \mathbb{F}[X]$ such that $z_{i}^{2}-\epsilon t_{i}^{2}=q_{i}$. Obviously, $\operatorname{gcd}\left(z_{i}, t_{i}, q_{i}\right) \sim 1$.

Consider the equation $X^{2}-\epsilon Y^{2}=q_{1} \cdots q_{l} q_{l+1}$. By the induction assumption there exist $x, y \in \mathbb{F}[X]$ such that

$$
x^{2}-\epsilon y^{2}=q_{1} \cdots q_{l} \quad \text { and } \quad \operatorname{gcd}\left(x, y, q_{1} \cdots q_{l}\right) \sim 1
$$

Observe that

$$
\begin{aligned}
& \left(z_{l+1} x+\epsilon t_{l+1} y\right)^{2}-\epsilon\left(z_{l+1} y+t_{l+1} x\right)^{2}=q_{1} \cdots q_{l} q_{l+1} \\
& \left(z_{l+1} x-\epsilon t_{l+1} y\right)^{2}-\epsilon\left(z_{l+1} y-t_{l+1} x\right)^{2}=q_{1} \cdots q_{l} q_{l+1}
\end{aligned}
$$

Using elementary arguments we prove that either

$$
\begin{aligned}
& \operatorname{gcd}\left(z_{l+1} x+\epsilon t_{l+1} y, z_{l+1} y+t_{l+1} x, q_{1} \cdots q_{l} q_{l+1}\right) \sim 1, \quad \text { or } \\
& \operatorname{gcd}\left(z_{l+1} x-\epsilon t_{l+1} y, z_{l+1} y-t_{l+1} x, q_{1} \cdots q_{l} q_{l+1}\right) \sim 1 .
\end{aligned}
$$

Proposition 4.6. Let $K=F(\sqrt{D})$ be a quadratic function field with $\epsilon \in N_{K / F}(\dot{K})$. Let $\mathcal{O}=\mathbb{F}[X][m \sqrt{D}]$ be an order with $m=q_{1} \cdots q_{l}$, where $q_{1}, \ldots, q_{l} \in \mathbb{F}[X]$ are irreducible polynomials. Moreover, let $b \in E\left(R_{K}(\mathcal{S})\right) \cap \mathcal{O}$ with $N_{K / F}(b) \in \epsilon \dot{F}^{2}$. Then $\langle b\rangle \in \operatorname{im}(\phi \circ \varphi)$ if and only if $\operatorname{deg} q_{i} \equiv 0(\bmod 2)$ for every $i \in\{1, \ldots, l\}$.

Proof. Using Lemma 4.5 we prove the implication " \Rightarrow " similarly to " \Rightarrow " of Proposition 3.10.
(\Leftarrow) Since $\epsilon \in N_{K / F}(\dot{K})$, every monic irreducible polynomial which divides D has even degree. Lemma 4.5 yields $x, y \in \mathbb{F}[X]$ such that

$$
x^{2}-\epsilon y^{2}=m^{2} D \quad \text { and } \quad \operatorname{gcd}\left(x, y, m^{2} D\right) \sim 1
$$

Consider $g:=x+m \sqrt{D} \in \mathcal{O}$. Similarly to the proofs of " \Leftarrow " of Propositions 3.7 and 3.10 we show that

$$
\begin{equation*}
\langle g\rangle \in \operatorname{im}(\phi \circ \varphi) \tag{4.3}
\end{equation*}
$$

Since $N_{K / F}(g)=\epsilon y^{2}$, from [RC, p. 208] it follows that

$$
b \dot{K}^{2}=g \epsilon^{r} p_{1}^{r_{1}} \cdots p_{s-1}^{r_{s-1}} \dot{K}^{2}
$$

where $p_{1}, \ldots, p_{s-1} \in \mathbb{F}[X]$ are pairwise distinct monic irreducible polynomials which divide D, and $r, r_{i} \in\{0,1\}, i=1, \ldots, s-1$. Hence

$$
\langle b\rangle=\langle g\rangle\left\langle\epsilon^{r}\right\rangle\left\langle p_{1}^{r_{1}}\right\rangle \cdots\left\langle p_{s-1}^{r_{s-1}}\right\rangle
$$

in $W K$. By 4.2, 4.3) and Proposition 4.2, $\langle b\rangle \in \operatorname{im}(\phi \circ \varphi)$.
Corollary 4.7. Let $K=F(\sqrt{D})$ be a nonreal quadratic function field with $\epsilon \in N_{K / F}(\dot{K})$. Moreover, let $\mathcal{O}=\mathbb{F}[X][m \sqrt{D}]$ be an order with $m=$ $q_{1} \cdots q_{l}$, where $q_{1}, \ldots, q_{l} \in \mathbb{F}[X]$ are irreducible polynomials such that $\operatorname{deg} q_{i} \equiv 0(\bmod 2)$ for every $i \in\{1, \ldots, l\}$. Then the natural homomorphism $\varphi: W \mathcal{O} \rightarrow W R_{K}(\mathcal{S})$ is surjective.

Corollary 4.8. Let $K=F(\sqrt{D})$ be a real quadratic function field with $\epsilon \in N_{K / F}(\dot{K})$ and $u_{K}(\mathcal{S}) \neq 0$. Moreover, let $\mathcal{O}=\mathbb{F}[X][m \sqrt{D}]$ be an order with $m=q_{1} \cdots q_{l}$, where $q_{1}, \ldots, q_{l} \in \mathbb{F}[X]$ are irreducible polynomials such that $\operatorname{deg} q_{i} \equiv 0(\bmod 2)$ for every $i \in\{1, \ldots, l\}$. Then $\varphi: W \mathcal{O} \rightarrow W R_{K}(\mathcal{S})$ is surjective.

Corollaries 4.7 and 4.8 follow from statements on page 365, 4.2) and Propositions 4.2 and 4.6 .

Corollary 4.9. Let $K=F(\sqrt{D})$ with $\epsilon \in N_{K / F}(\dot{K})$. Moreover, let $\mathcal{O}=\mathbb{F}[X][m \sqrt{D}]$ be an order with $m=q_{1} \cdots q_{l}$, where $q_{1}, \ldots, q_{l} \in \mathbb{F}[X]$ are irreducible polynomials. If $\operatorname{deg} q_{i} \equiv 1(\bmod 2)$ for some $i \in\{1, \ldots, l\}$, then $\varphi: W \mathcal{O} \rightarrow W R_{K}(\mathcal{S})$ is not surjective.
5. Forms of rank ≥ 1. Let K be a global field and $R<K$ be a Dedekind domain. Now we generalize Theorem 2.4.

Lemma 5.1. Let $\mathcal{O}<R$ be an order, \mathfrak{f} be its conductor and \mathfrak{P} be a maximal ideal of R such that $\mathfrak{P}+\mathfrak{f}=R$. Then the localisation of the ring R at the ideal \mathfrak{P} is equal to the localisation of \mathcal{O} at the maximal ideal $\mathfrak{P} \cap \mathcal{O}$,

$$
R_{\mathfrak{P}}=\mathcal{O}_{\mathfrak{P} \cap \mathcal{O}}
$$

Proof. " \supseteq " This inclusion is obvious.
" \subseteq " Let $x / y \in R_{\mathfrak{P}}$. Then $x, y \in R$ and $y \notin \mathfrak{P}$. Because $\mathfrak{P}+\mathfrak{f}=R$, we have $\mathfrak{f} \nsubseteq \mathfrak{P}$. Choose an element $z \in \mathfrak{f} \backslash \mathfrak{P}$. Then $z x, z y \in \mathcal{O}$ and

$$
\frac{x}{y}=\frac{z x}{z y} \in \mathcal{O}_{\mathfrak{P} \cap \mathcal{O}}
$$

Indeed, if $z y \in \mathfrak{P} \cap \mathcal{O}$, then $z y \in \mathfrak{P}$, i.e. either $z \in \mathfrak{P}$ or $y \in \mathfrak{P}$, which is not the case.

Corollary 5.2. Let M be an R-module and \mathfrak{P} be a maximal ideal of R such that $\mathfrak{P}+\mathfrak{f}=R$. Then the localisation of the module M at the ideal \mathfrak{P} is equal to the localisation of M over the order \mathcal{O} at the maximal ideal
$\mathfrak{P} \cap \mathcal{O} \triangleleft \mathcal{O}:$

$$
M_{\mathfrak{P}}=M_{\mathfrak{P} \cap \mathcal{O}} .
$$

Lemma 5.3. Let $\mathcal{O}<R$ be an order and $M_{1}, \ldots, M_{s} \subseteq K^{l}$ be \mathcal{O}-modules, $l \in \mathbb{N}$. Moreover, let \mathfrak{p} be a maximal ideal of \mathcal{O}. Then

$$
\left(M_{1}\right)_{\mathfrak{p}} \cap \cdots \cap\left(M_{s}\right)_{\mathfrak{p}}=\left(M_{1} \cap \cdots \cap M_{s}\right)_{\mathfrak{p}} .
$$

Proof. The inclusion \supseteq is obvious.
" \subseteq " Let $x \in\left(M_{1}\right)_{\mathfrak{p}} \cap \cdots \cap\left(M_{s}\right)_{\mathfrak{p}}$. Then

$$
x=\frac{m_{1}}{y_{1}}=\cdots=\frac{m_{s}}{y_{s}}
$$

for some $m_{1} \in M_{1}, \ldots, m_{s} \in M_{s}$ and $y_{1}, \ldots, y_{s} \in \mathcal{O} \backslash \mathfrak{p}$. Multiplying the above equalities of vectors by $y_{1} \cdots y_{s}$ we get the existence of elements $z_{1}, \ldots, z_{s} \in \mathcal{O} \backslash \mathfrak{p}$ such that

$$
z_{1} m_{1}=\cdots=z_{s} m_{s} \in M_{1} \cap \cdots \cap M_{s}
$$

Hence

$$
x=\frac{m_{1}}{y_{1}}=\frac{z_{1} m_{1}}{z_{1} y_{1}} \in\left(M_{1} \cap \cdots \cap M_{s}\right)_{\mathfrak{p}} .
$$

Let $\alpha: K^{l} \times K^{l} \rightarrow K$ be a bilinear form. Assume that α has a nonsingular diagonal matrix

$$
A=\left[\begin{array}{ccc}
a_{1} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & a_{l}
\end{array}\right]
$$

in the canonical basis of K^{l}, i.e. $\left\langle a_{1}, \ldots, a_{l}\right\rangle \in W K$. Moreover, assume that $\left\langle a_{1}, \ldots, a_{l}\right\rangle \in \phi(W R), a_{i} \in \mathcal{O}$ and $a_{i} R+\mathfrak{f}=R$ for every $i \in\{1, \ldots, l\}$. We will generalize Theorem 2.4 to the form $\left\langle a_{1}, \ldots, a_{l}\right\rangle$.

Observe that

$$
\operatorname{ord}_{\mathfrak{F}} a_{i}=0 \quad \text { for every } i \in\{1, \ldots, l\}
$$

for all but a finite number of maximal ideals $\mathfrak{P} \triangleleft R$.
(I) Fix such an $\mathfrak{P} \triangleleft R$. Consider the free module $\bigoplus_{i=1}^{l} w_{i}^{\mathfrak{P}} R_{\mathfrak{P}} \subseteq K^{l}$ over the ring $R_{\mathfrak{P}}$, where

$$
w_{1}^{\mathfrak{P}}=(1,0, \ldots, 0), \quad \ldots, \quad w_{l}^{\mathfrak{P}}=(0, \ldots, 0,1) .
$$

Consider the restriction of α to $\bigoplus_{i=1}^{l} w_{i}^{\mathfrak{P}} R_{\mathfrak{P}} \times \bigoplus_{i=1}^{l} w_{i}^{\mathfrak{P}} R_{\mathfrak{P}}$. Then the form $\alpha: \oplus_{i=1}^{l} w_{i}^{\mathfrak{P}} R_{\mathfrak{P}} \times \oplus_{i=1}^{l} w_{i}^{\mathfrak{P}} R_{\mathfrak{P}} \rightarrow R_{\mathfrak{P}}$ has matrix A in the basis $\left(w_{1}^{\mathfrak{P}}, \ldots, w_{l}^{\mathfrak{P}}\right)$. Since ord $\mathfrak{B} a_{i}=0$ for every $i \in\{1, \ldots, l\}$,

$$
\operatorname{det} A=a_{1} \cdots a_{l} \in U\left(R_{\mathfrak{P}}\right) .
$$

Thus α is nonsingular over the ring $R_{\mathfrak{F}}$.
(II) Let $\mathfrak{P} \triangleleft R$ be a maximal ideal R such that

$$
\operatorname{ord}_{\mathfrak{P}} a_{i}>0 \quad \text { for some } i \in\{1, \ldots, l\} .
$$

The localisation $R_{\mathfrak{P}}$ is a \mathfrak{P}-adic valuation ring. If $\bar{K}_{\mathfrak{P}}$ denotes the residue class field, then from [MH, (3.3) Corollary] it follows that $\left\langle a_{1}, \ldots, a_{l}\right\rangle$ belongs to the kernel of the second residue homomorphism of Witt groups $\partial_{\mathfrak{P}}: W K \rightarrow W \bar{K}_{\mathfrak{P}}$. By [MH, proof of (3.1) Theorem] there exists a free module $\left(R_{\mathfrak{P}}\right.$-lattice) $\bigoplus_{i=1}^{l} w_{i}^{\mathfrak{P}} R_{\mathfrak{P}} \subseteq K^{l}$ over $R_{\mathfrak{P}}$ such that the form $\alpha: \bigoplus_{i=1}^{l} w_{i}^{\mathfrak{P}} R_{\mathfrak{P}} \times \bigoplus_{i=1}^{l} w_{i}^{\mathfrak{P}} R_{\mathfrak{P}} \rightarrow R_{\mathfrak{P}}$ is nonsingular.

Denote by $\mathcal{P}_{\mathfrak{f}}$ the set of all maximal ideals \mathfrak{P} of R such that $\mathfrak{P}+\mathfrak{f}=R$. Let $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{m}$ be all the pairwise distinct maximal ideals of \mathcal{O} such that

$$
\mathfrak{p}_{j}+\mathfrak{f} \neq \mathcal{O} \quad \text { for every } j \in\{1, \ldots, m\}
$$

Let

$$
M:=\bigcap_{\mathfrak{P} \in \mathcal{P}_{\mathfrak{f}}}\left(\bigoplus_{i=1}^{l} w_{i}^{\mathfrak{P}} R_{\mathfrak{P}}\right) \cap \bigcap_{j=1}^{m} \mathcal{O}_{\mathfrak{p}_{j}}^{l},
$$

where for every $\mathfrak{P} \in \mathcal{P}_{\mathfrak{f}}$ the vectors $w_{1}^{\mathfrak{P}}, \ldots, w_{l}^{\mathfrak{P}}$ are as in (I) and (II). It is easy to observe that M is an \mathcal{O}-module.

Proposition 5.4. Let $a_{1}, \ldots, a_{l} \in \mathcal{O}$ and suppose $a_{i} R+\mathfrak{f}=R$ for every $i \in\{1, \ldots, l\}$. Under the assumptions and notation of pages 368 and 369 ,
(i) $M_{\mathfrak{P} \cap \mathcal{O}}=\bigoplus_{i=1}^{l} w_{i}^{\mathfrak{P}} R_{\mathfrak{P}} \quad$ for every $\mathfrak{P} \in \mathcal{P}_{\mathfrak{f}}$,
(ii) $M_{\mathfrak{p}_{j}}=\mathcal{O}_{\mathfrak{p}_{j}}^{l}$ for every $j \in\{1, \ldots, m\}$.

Proof. (i) Fix $\mathfrak{P}_{0} \in \mathcal{P}_{\mathfrak{f}}$. It is easy to observe that

$$
M \subseteq \bigoplus_{i=1}^{l} w_{i}^{\mathfrak{P}_{0}} R_{\mathfrak{P}_{0}}
$$

From Lemma 5.1 it follows that $R_{\mathfrak{P}_{0}}=\mathcal{O}_{\mathfrak{P}_{0} \cap \mathcal{O}}$. Therefore

$$
\begin{equation*}
M_{\mathfrak{P}_{0} \cap \mathcal{O}} \subseteq \bigoplus_{i=1}^{l} w_{i}^{\mathfrak{P}_{0}} R_{\mathfrak{P}_{0}} \tag{5.1}
\end{equation*}
$$

To show the opposite inclusion, let $\mathfrak{Q}_{1}, \ldots, \mathfrak{Q}_{n}$ be all the pairwise distinct maximal ideals of R such that

$$
\mathfrak{Q}_{i}+\mathfrak{f} \neq R \quad \text { for every } i \in\{1, \ldots, n\}
$$

(these are all the maximal ideals in the decomposition of \mathfrak{f}). Consider the module

$$
N:=\bigcap_{\mathfrak{P} \in \mathcal{P}_{\mathfrak{f}}}\left(\bigoplus_{i=1}^{l} w_{i}^{\mathfrak{P}} R_{\mathfrak{P}}\right) \cap \bigcap_{i=1}^{n} R_{\mathfrak{Q}_{i}}^{l}
$$

over the ring R. Since

$$
w_{1}^{\mathfrak{P}}=(1,0, \ldots, 0), \ldots, w_{l}^{\mathfrak{P}}=(0, \ldots, 0,1)
$$

for all but a finite number of $\mathfrak{P} \in \mathcal{P}_{\mathfrak{f}}$, from [O, 81:14], [MH, (3.2) Lemma] it follows that

$$
N_{\mathfrak{P}_{0}}=\bigoplus_{i=1}^{l} w_{i}^{\mathfrak{P}_{0}} R_{\mathfrak{P}_{0}} .
$$

Hence in particular

$$
\bigoplus_{i=1}^{l} w_{i}^{\mathfrak{P}_{0}} R_{\mathfrak{P}_{0}} \subseteq\left[\bigcap_{\mathfrak{P} \in \mathcal{P}_{\mathfrak{f}}}\left(\bigoplus_{i=1}^{l} w_{i}^{\mathfrak{P}} R_{\mathfrak{P}}\right)\right]_{\mathfrak{P}_{0}} .
$$

Because by assumption $\mathfrak{P}_{0}+\mathfrak{f}=R$, Corollary 5.2 yields

$$
\left[\bigcap_{\mathfrak{P} \in \mathcal{P}_{\mathfrak{f}}}\left(\bigoplus_{i=1}^{l} w_{i}^{\mathfrak{P}} R_{\mathfrak{P}}\right)\right]_{\mathfrak{P}_{0}}=\left[\bigcap_{\mathfrak{P} \in \mathcal{P}_{\mathfrak{f}}}\left(\bigoplus_{i=1}^{l} w_{i}^{\mathfrak{P}} R_{\mathfrak{P}}\right)\right]_{\mathfrak{P}_{0} \cap \mathcal{O}},
$$

i.e.

$$
\begin{equation*}
\bigoplus_{i=1}^{l} w_{i}^{\mathfrak{P}_{0}} R_{\mathfrak{P}_{0}} \subseteq\left[\bigcap_{\mathfrak{P} \in \mathcal{P}_{\mathfrak{f}}}\left(\bigoplus_{i=1}^{l} w_{i}^{\mathfrak{P}} R_{\mathfrak{P}}\right)\right]_{\mathfrak{P}_{0} \cap \mathcal{O}} . \tag{5.2}
\end{equation*}
$$

We will show that also

$$
\bigoplus_{i=1}^{l} w_{i}^{\mathfrak{P}_{0}} R_{\mathfrak{P}_{0}} \subseteq \bigcap_{j=1}^{m}\left(\mathcal{O}_{\mathfrak{p}_{j}}^{l}\right)_{\mathfrak{P}_{0} \cap \mathcal{O}} .
$$

Fix an ideal \mathfrak{p}_{j}.
(I) Assume that \mathfrak{P}_{0} is an ideal such that

$$
\operatorname{ord}_{\mathfrak{P}_{0}} a_{i}=0 \quad \text { for every } i \in\{1, \ldots, l\} .
$$

Then

$$
w_{1}^{\mathfrak{P}_{0}}=(1,0, \ldots, 0), \ldots, w_{l}^{\mathfrak{P}_{0}}=(0, \ldots, 0,1),
$$

so $w_{1}^{\mathfrak{P}_{0}}, \ldots, w_{l}^{\mathfrak{P}_{0}} \in \mathcal{O}_{\mathfrak{p}_{j}}^{l}$. Hence

$$
\bigoplus_{i=1}^{l} w_{i}^{\mathfrak{P}_{0}} R_{\mathfrak{P}_{0}}=\bigoplus_{i=1}^{l} w_{i}^{\mathfrak{P}_{0}} \mathcal{O}_{\mathfrak{P}_{0} \cap \mathcal{O}} \subseteq\left(\mathcal{O}_{\mathfrak{p}_{j}}^{l}\right)_{\mathfrak{P}_{0} \cap \mathcal{O}}
$$

and finally

$$
\bigoplus_{i=1}^{l} w_{i}^{\mathfrak{P}_{0}} R_{\mathfrak{P}_{0}} \subseteq \bigcap_{j=1}^{m}\left(\mathcal{O}_{\mathfrak{p}_{j}}^{l}\right)_{\mathfrak{P}_{0} \cap \mathcal{O}} .
$$

(II) Assume that

$$
\operatorname{ord}_{\mathfrak{P}_{0}} a_{i}>0 \quad \text { for some } i \in\{1, \ldots, l\} .
$$

Fix such an element $a_{i_{0}}, i_{0} \in\{1, \ldots, l\}$.

Since by assumption $a_{i_{0}} R+\mathfrak{f}=R$, observe that $a_{i_{0}} \in U\left(\mathcal{O}_{\mathfrak{p}_{j}}\right)$. Indeed, it is enough to prove that $a_{i_{0}} \notin \mathfrak{p}_{j}$. From Corollary 2.7 it follows that $a_{i_{0}} \mathcal{O}+\mathfrak{f}=\mathcal{O}$. Therefore if $a_{i_{0}} \in \mathfrak{p}_{j}$, then

$$
\mathcal{O}=a_{i_{0}} \mathcal{O}+\mathfrak{f} \subseteq \mathfrak{p}_{j}+\mathfrak{f} \neq \mathcal{O}
$$

which is impossible.
Let $\pi \in R_{\mathfrak{P}_{0}}$ with $\operatorname{ord}_{\mathfrak{P}_{0}} \pi=1$. Then $a_{i_{0}}=\pi^{k} \cdot u$ for some $k \in \mathbb{N}$ and $u \in U\left(R_{\mathfrak{P}_{0}}\right)$.

Observe that

$$
\begin{equation*}
\bigoplus_{i=1}^{l} w_{i}^{\mathfrak{P}_{0}} K=K^{l}=(1,0, \ldots, 0) K \oplus \cdots \oplus(0, \ldots, 0,1) K \tag{5.3}
\end{equation*}
$$

For every vector $w_{i}^{\mathfrak{P}_{0}}$ there exist $x_{1}, \ldots, x_{l} \in K$ such that

$$
w_{i}^{\mathfrak{P}_{0}}=(1,0, \ldots, 0) x_{1}+\cdots+(0, \ldots, 0,1) x_{l}
$$

Fix $x_{s}, s \in\{1, \ldots, l\}$. Assume $x_{s} \neq 0$. Then $x_{s}=\pi^{r} \cdot v$ for some $r \in \mathbb{Z}$ and $v \in U\left(R_{\mathfrak{P}_{0}}\right)$.

If $r \geq 0$, then $x_{s} \in R_{\mathfrak{P}_{0}}=\mathcal{O}_{\mathfrak{P}_{0} \cap \mathcal{O}}$, so

$$
\left(0, \ldots, 1_{s}, \ldots, 0\right) x_{s} \in\left(\mathcal{O}_{\mathfrak{p}_{j}}^{l}\right)_{\mathfrak{P}_{0} \cap \mathcal{O}}
$$

If $r<0$, then choose $c \in \mathbb{N}$ such that $r \geq-c k$. Then

$$
x_{s}=\pi^{r} \cdot v=a_{i_{0}}^{-c} \cdot \pi^{r+c k} \cdot u^{c} \cdot v
$$

where $a_{i_{0}}^{-c} \in \mathcal{O}_{\mathfrak{p}_{j}}, \pi^{r+c k} \cdot u^{c} \cdot v \in R_{\mathfrak{P}_{0}}=\mathcal{O}_{\mathfrak{P}_{0} \cap \mathcal{O}}$, so again

$$
\left(0, \ldots, 1_{s}, \ldots, 0\right) x_{s} \in\left(\mathcal{O}_{\mathfrak{p}_{j}}^{l}\right)_{\mathfrak{P}_{0} \cap \mathcal{O}}
$$

We get

$$
\begin{equation*}
w_{i}^{\mathfrak{P}_{0}} \in\left(\mathcal{O}_{\mathfrak{p}_{j}}^{l}\right)_{\mathfrak{P}_{0} \cap \mathcal{O}} . \tag{5.4}
\end{equation*}
$$

Hence

$$
\bigoplus_{i=1}^{l} w_{i}^{\mathfrak{P}_{0}} R_{\mathfrak{P}_{0}} \subseteq\left(\mathcal{O}_{\mathfrak{p}_{j}}^{l}\right)_{\mathfrak{P}_{0} \cap \mathcal{O}}
$$

and finally

$$
\bigoplus_{i=1}^{l} w_{i}^{\mathfrak{P}_{0}} R_{\mathfrak{P}_{0}} \subseteq \bigcap_{j=1}^{m}\left(\mathcal{O}_{\mathfrak{p}_{j}}^{l}\right)_{\mathfrak{P}_{0} \cap \mathcal{O}}
$$

From (I), (II) and (5.2) it follows that

$$
\bigoplus_{i=1}^{l} w_{i}^{\mathfrak{P}_{0}} R_{\mathfrak{P}_{0}} \subseteq\left[\bigcap_{\mathfrak{P} \in \mathcal{P}_{\mathfrak{f}}}\left(\bigoplus_{i=1}^{l} w_{i}^{\mathfrak{P}} R_{\mathfrak{P}}\right)\right]_{\mathfrak{P}_{0} \cap \mathcal{O}} \cap \bigcap_{j=1}^{m}\left(\mathcal{O}_{\mathfrak{p}_{j}}^{l}\right)_{\mathfrak{P}_{0} \cap \mathcal{O}} .
$$

By Lemma 5.3 .

$$
\bigoplus_{i=1}^{l} w_{i}^{\mathfrak{P}_{0}} R_{\mathfrak{P}_{0}} \subseteq M_{\mathfrak{P}_{0} \cap \mathcal{O}}
$$

(ii) Fix $j_{0} \in\{1, \ldots, m\}$. The inclusion $M_{\mathfrak{p}_{j_{0}}} \subseteq \mathcal{O}_{\mathfrak{p}_{j_{0}}}^{l}$ is obvious. Observe that

$$
(1,0, \ldots, 0), \ldots,(0, \ldots, 0,1) \in \bigcap_{j=1}^{m} \mathcal{O}_{\mathfrak{p}_{j}}^{l}
$$

Hence

$$
\begin{equation*}
\mathcal{O}_{\mathfrak{p}_{j_{0}}}^{l} \subseteq\left(\bigcap_{j=1}^{m} \mathcal{O}_{\mathfrak{p}_{j}}^{l}\right)_{\mathfrak{p}_{j_{0}}} \tag{5.5}
\end{equation*}
$$

Denote by $\mathcal{P}_{\mathfrak{f}_{1}}$ and $\mathcal{P}_{\mathfrak{f}_{2}}$ the sets of maximal ideals $\mathfrak{P} \in \mathcal{P}_{\mathfrak{f}}$ such that

$$
\operatorname{ord}_{\mathfrak{P}} a_{i}=0 \quad \text { for every } i \in\{1, \ldots, l\}
$$

and of maximal ideals $\mathfrak{P} \in \mathcal{P}_{\mathfrak{f}}$ such that

$$
\operatorname{ord}_{\mathfrak{P}} a_{i}>0 \quad \text { for some } i \in\{1, \ldots, l\}
$$

respectively. Obviously $\mathcal{P}_{f_{2}}$ is a finite set.
Because for every $\mathfrak{P} \in \mathcal{P}_{f_{1}}$ we have

$$
w_{1}^{\mathfrak{P}}=(1,0, \ldots, 0), \ldots, w_{l}^{\mathfrak{P}}=(0, \ldots, 0,1)
$$

as in (5.5 we obtain

$$
\begin{equation*}
\mathcal{O}_{\mathfrak{p}_{0}}^{l} \subseteq\left(\bigcap_{\mathfrak{P} \in \mathcal{P}_{\mathfrak{f}_{1}}} \bigoplus_{i=1}^{l} w_{i}^{\mathfrak{P}} R_{\mathfrak{P}}\right)_{\mathfrak{p}_{j_{0}}} \tag{5.6}
\end{equation*}
$$

However, using (5.3) for $\mathfrak{P}_{0}=\mathfrak{P}$ and applying similar arguments to those for (5.4) we prove that

$$
(1,0, \ldots, 0), \ldots,(0, \ldots, 0,1) \in\left(\bigoplus_{i=1}^{l} w_{i}^{\mathfrak{P}} R_{\mathfrak{P}}\right)_{\mathfrak{p}_{j_{0}}}
$$

for every $\mathfrak{P} \in \mathcal{P}_{\mathfrak{f}_{2}}$, i.e.

$$
\begin{equation*}
\mathcal{O}_{\mathfrak{p}_{j_{0}}}^{l} \subseteq \bigcap_{\mathfrak{P} \in \mathcal{P}_{\mathfrak{f}_{2}}}\left(\bigoplus_{i=1}^{l} w_{i}^{\mathfrak{P}} R_{\mathfrak{P}}\right)_{\mathfrak{p}_{j_{0}}} \tag{5.7}
\end{equation*}
$$

From (5.5)-5.7) and Lemma 5.3 it follows that $\mathcal{O}_{\mathfrak{p}_{j_{0}}}^{l} \subseteq M_{\mathfrak{p}_{j_{0}}}$.

Proposition 5.5. Let $a_{1}, \ldots, a_{l} \in \mathcal{O}$ and suppose that $a_{i} R+\mathfrak{f}=R$ for every $i \in\{1, \ldots, l\}$. Moreover, let

$$
M=\bigcap_{\mathfrak{P} \in \mathcal{P}_{\mathfrak{f}}}\left(\bigoplus_{i=1}^{l} w_{i}^{\mathfrak{P}} R_{\mathfrak{P}}\right) \cap \bigcap_{j=1}^{m} \mathcal{O}_{\mathfrak{p}_{j}}^{l}
$$

under the assumptions and notation of pages 368 and 369. Then the \mathcal{O}-module M is finitely generated and projective of rank l.

Proof. Fix a maximal ideal \mathfrak{p} of \mathcal{O}. Assume $\mathfrak{p}+\mathfrak{f}=\mathcal{O}$. There exists a unique maximal ideal $\mathfrak{P} \in \mathcal{P}_{\mathfrak{f}}$ such that $\mathfrak{p}=\mathfrak{P} \cap \mathcal{O}$. Therefore from Proposition 5.4 it follows that

$$
M_{\mathfrak{p}}=M_{\mathfrak{P} \cap \mathcal{O}}=\bigoplus_{i=1}^{l} w_{i}^{\mathfrak{P}} R_{\mathfrak{P}} .
$$

Hence $M_{\mathfrak{p}}$ is a free $\mathcal{O}_{\mathfrak{p}}\left(=R_{\mathfrak{P}}\right)$-module of rank l.
Let $\mathfrak{p}+\mathfrak{f} \neq \mathcal{O}$ (i.e. $\mathfrak{p} \in\left\{\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{m}\right\}$). Again Proposition 5.4 yields $M_{\mathfrak{p}}=\mathcal{O}_{\mathfrak{p}}^{l}$, so $M_{\mathfrak{p}}$ is a free $\mathcal{O}_{\mathfrak{p}}$-module of rank l.

To sum up, the localisation of the module M at every maximal ideal of the order \mathcal{O} is a free module of rank l. Therefore it suffices to prove that M is finitely generated over \mathcal{O}.

Observe that we have at most finitely many vectors $w_{i}^{\mathfrak{P}}$ such that $w_{i}^{\mathfrak{P}} \notin \mathcal{O}^{l}$. Every coordinate of a vector $w_{i}^{\mathfrak{P}}$ has the form

$$
x_{i}^{\mathfrak{P}} / y_{i}^{\mathfrak{P}} \quad \text { for some } x_{i}^{\mathfrak{P}} \in \mathcal{O}, y_{i}^{\mathfrak{P}} \in \mathcal{O} \backslash\{0\} .
$$

Consider the following element z of the order \mathcal{O}. If there does not exist a vector $w_{i}^{\mathfrak{P}}$ such that $w_{i}^{\mathfrak{P}} \notin \mathcal{O}^{l}$, then we take $z=1$. Otherwise, let z be the product of the denominators $y_{i}^{\mathfrak{P}}$ of all vectors $w_{i}^{\mathfrak{P}}$ such that $w_{i}^{\mathfrak{P}} \notin \mathcal{O}^{l}$. Then $z w_{i}^{\mathfrak{P}} \in \mathcal{O}^{l}$ for every $\mathfrak{P} \in \mathcal{P}_{\mathfrak{f}}$. Moreover,

$$
z M=\bigcap_{\mathfrak{P} \in \mathcal{P}_{\mathfrak{f}}}\left(\bigoplus_{i=1}^{l} z w_{i}^{\mathfrak{P}} R_{\mathfrak{P}}\right) \cap \bigcap_{j=1}^{m} z \mathcal{O}_{\mathfrak{p}_{j}}^{l} \subseteq \bigcap_{\mathfrak{P} \in \mathcal{P}_{\mathfrak{f}}} R_{\mathfrak{P}^{l} \cap \bigcap_{j=1}^{m} \mathcal{O}_{\mathfrak{p}_{j}}^{l}}
$$

But $R_{\mathfrak{P}}=\mathcal{O}_{\mathfrak{P} \cap \mathcal{O}}$ for every $\mathfrak{P} \in \mathcal{P}_{\mathfrak{f}}$, so

$$
z M \subseteq \bigcap_{\mathfrak{P} \in \mathcal{P}_{\mathfrak{f}}} \mathcal{O}_{\mathfrak{P} \cap \mathcal{O}}^{l} \cap \bigcap_{j=1}^{m} \mathcal{O}_{\mathfrak{p}_{j}}^{l}
$$

Since $\left\{\mathfrak{P} \cap \mathcal{O}: \mathfrak{P} \in \mathcal{P}_{\mathfrak{f}}\right\}, \mathfrak{p}_{1}, \ldots, \mathfrak{p}_{m}$ are all the pairwise distinct maximal ideals of \mathcal{O} (cf. [GHK, proof of Proposition 4(ii)]), it is easy to observe that

$$
\bigcap_{\mathfrak{P} \in \mathcal{P}_{\mathfrak{f}}} \mathcal{O}_{\mathfrak{P} \cap \mathcal{O}}^{l} \cap \bigcap_{j=1}^{m} \mathcal{O}_{\mathfrak{p}_{j}}^{l}=\mathcal{O}^{l}
$$

Hence $z M \subseteq \mathcal{O}^{l}$ is a submodule of the finitely generated \mathcal{O}-module \mathcal{O}^{l}. But \mathcal{O} is a noetherian domain, so $z M$ is a finitely generated \mathcal{O}-module. It suffices to notice that $M \cong z M$, i.e. M is finitely generated over \mathcal{O}.

TheOrem 5.6. Let K be a global field and $R<K$ be a Dedekind domain. Moreover, let $\mathcal{O}<R$ be an order, \mathfrak{f} be the conductor of \mathcal{O} and suppose that $\left\langle a_{1}, \ldots, a_{l}\right\rangle \in \phi(W R)$ with $a_{1}, \ldots, a_{l} \in \mathcal{O}$. If

$$
a_{i} R+\mathfrak{f}=R \quad \text { for every } i \in\{1, \ldots, l\}
$$

then $\left\langle a_{1}, \ldots, a_{l}\right\rangle \in \operatorname{im}(\phi \circ \varphi)$.
Proof. Let $\alpha: K^{l} \times K^{l} \rightarrow K$ be a nonsingular bilinear form with matrix

$$
A=\left[\begin{array}{ccc}
a_{1} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & a_{l}
\end{array}\right]
$$

in the basis

$$
\mathcal{B}=((1,0, \ldots, 0), \ldots,(0, \ldots, 0,1))
$$

of K^{l}. Consider the finitely generated projective \mathcal{O}-module M from Proposition 5.5 and the restriction of α to $M \times M$, and fix a maximal ideal \mathfrak{p} of \mathcal{O}.

Assume $\mathfrak{p}+\mathfrak{f}=\mathcal{O}$. Then there exists a unique maximal ideal $\mathfrak{P} \in \mathcal{P}_{\mathfrak{f}}$ of R such that $\mathfrak{p}=\mathfrak{P} \cap \mathcal{O}$. We have

$$
M_{\mathfrak{p}}=M_{\mathfrak{P} \cap \mathcal{O}}=\bigoplus_{i=1}^{l} w_{i}^{\mathfrak{P}} R_{\mathfrak{P}} .
$$

Moreover, $R_{\mathfrak{P}}=\mathcal{O}_{\mathfrak{p}}$. From (I) and (II) on pages 368 and 369 it follows that the localisation $\alpha_{\mathfrak{p}}: M_{\mathfrak{p}} \times M_{\mathfrak{p}} \rightarrow \mathcal{O}_{\mathfrak{p}}$ is nonsingular over $\mathcal{O}_{\mathfrak{p}}$.

Let $\mathfrak{p}+\mathfrak{f} \neq \mathcal{O}$. Then $M_{\mathfrak{p}}=\mathcal{O}_{\mathfrak{p}}^{l}$. Since $a_{i} R+\mathfrak{f}=R$, we have $a_{i} \in U\left(\mathcal{O}_{\mathfrak{p}}\right)$ for every $i \in\{1, \ldots, l\}$ (see proof of Proposition 5.4(i)). The localisation $\alpha_{\mathfrak{p}}: M_{\mathfrak{p}} \times M_{\mathfrak{p}} \rightarrow \mathcal{O}_{\mathfrak{p}}$ has matrix A in the basis \mathcal{B} of the free module $M_{\mathfrak{p}}$. Hence $\alpha_{\mathfrak{p}}$ is nonsingular over $\mathcal{O}_{\mathfrak{p}}$.

To sum up, the localisation of the form α at every maximal ideal \mathfrak{p} of \mathcal{O} is nonsingular. Hence by [B , (1.4) Proposition] the form $\alpha: M \times M \rightarrow \mathcal{O}$ is nonsingular over \mathcal{O}, so in particular $\langle(M, \alpha)\rangle \in W \mathcal{O}$.

It is easy to observe that

$$
\phi \circ \varphi\langle(M, \alpha)\rangle=\left\langle a_{1}, \ldots, a_{l}\right\rangle,
$$

i.e. $\left\langle a_{1}, \ldots, a_{l}\right\rangle \in \operatorname{im}(\phi \circ \varphi)$.
6. Forms $\langle\langle f, d\rangle\rangle,\langle z,-e z\rangle$. Now we formulate some facts for integral semilocal domains.

Proposition 6.1. If P is an integral semilocal domain, then every element of the Witt ring WP can be written in the form $\left\langle a_{1}, \ldots, a_{l}\right\rangle$ for some $a_{1}, \ldots, a_{l} \in U(P)$.

Proof. Since P is an integral domain, every finitely generated projective P-module is free (cf. [M, p. 26]). It suffices to use [M, 2.7 Corollary, p. 32].

Let P be an integral semilocal domain and K be its field of fractions. Denote by $I(K)$ the fundamental ideal of $W K$ consisting of the Witt classes of even dimensional forms over K. Denote by $I^{2}(P)$ the subgroup of the second power $I^{2}(K)$ of the ideal $I(K)$ additively generated by the set

$$
\{\langle\langle a, b\rangle\rangle \in W K: a, b \in U(P)\} .
$$

We will write

$$
\left\langle a_{1}, \ldots, a_{l}\right\rangle \equiv\left\langle b_{1}, \ldots, b_{k}\right\rangle \bmod I^{2}(P)
$$

if $\left\langle a_{1}, \ldots, a_{l}\right\rangle-\left\langle b_{1}, \ldots, b_{k}\right\rangle \in I^{2}(P)$.
Proposition 6.2. Let $\left\langle a_{1}, \ldots, a_{l}\right\rangle \in W P$ with $a_{1}, \ldots, a_{l} \in U(P)$ and l odd. Moreover, let

$$
a_{1} \cdots a_{l} \dot{K}^{2}= \begin{cases}\dot{K}^{2} & \text { when } l \equiv 3(\bmod 4), \\ -\dot{K}^{2} & \text { when } l \equiv 1(\bmod 4) .\end{cases}
$$

Then $\left\langle 1, a_{1}, \ldots, a_{l}\right\rangle \in I^{2}(P)$.
Proof. We use induction on l. If $l=1$, then $a_{1} \dot{K}^{2}=-\dot{K}^{2}$, so $\left\langle a_{1}\right\rangle=\langle-1\rangle$ in $W K$. Therefore

$$
\left\langle 1, a_{1}\right\rangle=\langle 1,-1\rangle=\langle 1,-1,1,-1\rangle \in I^{2}(P) .
$$

Assume $l=3$. Then $a_{1} a_{2} a_{3} \dot{K}^{2}=\dot{K}^{2}$, i.e. $a_{3} \dot{K}^{2}=a_{1} a_{2} \dot{K}^{2}$. Hence

$$
\begin{equation*}
\left\langle 1, a_{1}, a_{2}, a_{3}\right\rangle=\left\langle 1, a_{1}, a_{2}, a_{1} a_{2}\right\rangle \in I^{2}(P) . \tag{6.1}
\end{equation*}
$$

Let $l=5$. Observe that

$$
\begin{align*}
\left\langle a_{1}, a_{2}, a_{3}, a_{4}\right\rangle= & \left\langle 1, a_{1}, a_{2}, a_{1} a_{2}\right\rangle+\left\langle 1, a_{3}, a_{4}, a_{3} a_{4}\right\rangle \tag{6.2}\\
& -\left\langle 1,1, a_{1} a_{2}, a_{1} a_{2}\right\rangle+\left\langle a_{1} a_{2},-a_{3} a_{4}\right\rangle
\end{align*}
$$

in $W K$, so

$$
\left\langle 1, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right\rangle \equiv\left\langle 1, a_{1} a_{2},-a_{3} a_{4}, a_{5}\right\rangle \bmod I^{2}(P) .
$$

Since $\left\langle a_{1} a_{2},-a_{3} a_{4}, a_{5}\right\rangle \in W P$ and $-a_{1} a_{2} a_{3} a_{4} a_{5} \dot{K}^{2}=\dot{K}^{2}$, analogously to (6.1) we get

$$
\left\langle 1, a_{1} a_{2},-a_{3} a_{4}, a_{5}\right\rangle \in I^{2}(P) .
$$

Hence $\left\langle 1, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right\rangle \in I^{2}(P)$.
Assume $l=4 k+3$ for some $k \in \mathbb{N}$. Using (6.2) we obtain

$$
\left\langle a_{1}, \ldots, a_{4 k}\right\rangle \equiv\left\langle b_{1}, \ldots, b_{2 k}\right\rangle \bmod I^{2}(P)
$$

for some $b_{1}, \ldots, b_{2 k} \in U(P)$. Therefore

$$
\begin{aligned}
\left\langle 1, a_{1}, \ldots, a_{l}\right\rangle & =\left\langle 1, a_{1}, \ldots, a_{4 k}, a_{4 k+1}, a_{4 k+2}, a_{4 k+3}\right\rangle \\
& \equiv\left\langle 1, b_{1}, \ldots, b_{2 k}, a_{4 k+1}, a_{4 k+2}, a_{4 k+3}\right\rangle \bmod I^{2}(P) .
\end{aligned}
$$

Observe that

$$
b_{1} \cdots b_{2 k} \dot{K}^{2}= \begin{cases}a_{1} \cdots a_{4 k} \dot{K}^{2} & \text { when } k \equiv 0(\bmod 2), \\ -a_{1} \cdots a_{4 k} \dot{K}^{2} & \text { when } k \equiv 1(\bmod 2) .\end{cases}
$$

Assume $k=2 s$ for some $s \in \mathbb{N}$. The form

$$
\left\langle b_{1}, \ldots, b_{2 k}, a_{4 k+1}, a_{4 k+2}, a_{4 k+3}\right\rangle \in W P
$$

has rank $4 s+3<l$. Its determinant over K is equal to $a_{1} \cdots a_{l} \dot{K}^{2}=\dot{K}^{2}$. By the induction assumption,

$$
\left\langle 1, b_{1}, \ldots, b_{2 k}, a_{4 k+1}, a_{4 k+2}, a_{4 k+3}\right\rangle \in I^{2}(P)
$$

i.e. $\left\langle 1, a_{1}, \ldots, a_{l}\right\rangle \in I^{2}(P)$.

Assume $k=2 s+1$ for some $s \in \mathbb{N} \cup\{0\}$. The form

$$
\left\langle b_{1}, \ldots, b_{2 k}, a_{4 k+1}, a_{4 k+2}, a_{4 k+3}\right\rangle \in W P
$$

has rank $4(s+1)+1<l$. Its determinant over K is $-a_{1} \cdots a_{l} \dot{K}^{2}=-\dot{K}^{2}$. By the induction assumption,

$$
\left\langle 1, b_{1}, \ldots, b_{2 k}, a_{4 k+1}, a_{4 k+2}, a_{4 k+3}\right\rangle \in I^{2}(P),
$$

i.e. $\left\langle 1, a_{1}, \ldots, a_{l}\right\rangle \in I^{2}(P)$.

Analogously to the case $l=4 k+3$ we prove that $\left\langle 1, a_{1}, \ldots, a_{l}\right\rangle \in I^{2}(P)$ for $l=4 k+1, k \in \mathbb{N}$.

Let K be a global field and $R<K$ be a Dedekind domain. Moreover, let $\mathcal{O}<R$ be an order and \mathfrak{f} be its conductor. Let $\mathcal{P}=\bigcup_{i=1}^{m} \mathfrak{p}_{i}$, where $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{m}$ are all the pairwise distinct maximal ideals of \mathcal{O} such that

$$
\mathfrak{p}_{i}+\mathfrak{f} \neq \mathcal{O} \quad \text { for every } i \in\{1, \ldots, m\} .
$$

Denote by $\mathcal{O}_{\mathcal{P}}$ the localisation of the order \mathcal{O} at the set $\mathcal{O} \backslash \mathcal{P}$. The ring $\mathcal{O}_{\mathcal{P}}$ is an integral semilocal domain.

Lemma 6.3. If $a \in \mathcal{O}$ is nonzero, then

$$
a \in U\left(\mathcal{O}_{\mathcal{P}}\right) \Leftrightarrow a R+\mathfrak{f}=R .
$$

Proof. (\Leftarrow) It suffices to observe that $a \notin \mathfrak{p}_{i}$ for every $i \in\{1, \ldots, m\}$ (see proof of Proposition 5.4(i)).
(\Rightarrow) Suppose $a R+\mathfrak{f} \neq R$. Then there exists a maximal ideal \mathfrak{Q} in the decomposition of \mathfrak{f} such that $a R \subseteq \mathfrak{Q}$ (cf. [GHK, p. 93]). Hence

$$
a \in \mathfrak{Q} \cap \mathcal{O}=\mathfrak{p}_{i} \quad \text { for some } i \in\{1, \ldots, m\}
$$

(cf. [GHK, proof of Proposition 4(ii)]). This is impossible.

Corollary 6.4. The group $I^{2}\left(\mathcal{O}_{\mathcal{P}}\right)$ is additively generated by the Pfister forms $\langle\langle a, b\rangle\rangle \in W K$ such that $a, b \in \mathcal{O}$ and $a R+\mathfrak{f}=R, b R+\mathfrak{f}=R$.

Proof. Let $\langle\langle c, d\rangle\rangle \in W K$ and $c, d \in U\left(\mathcal{O}_{\mathcal{P}}\right)$. Then $c=x_{1} / y_{1}, d=x_{2} / y_{2}$ for some $x_{1}, x_{2}, y_{1}, y_{2} \in \mathcal{O} \backslash \mathcal{P}$. Moreover, we have $a:=x_{1} y_{1} \in \mathcal{O} \cap U\left(\mathcal{O}_{\mathcal{P}}\right)$, $b:=x_{2} y_{2} \in \mathcal{O} \cap U\left(\mathcal{O}_{\mathcal{P}}\right)$ and $\langle\langle c, d\rangle\rangle=\langle\langle a, b\rangle\rangle$ in $W K$.

Theorem 6.5. Let K be a global field, $R<K$ be a Dedekind domain and $\mathcal{O}<R$ be an order. Moreover, let $\left\langle a_{1}, \ldots, a_{l}\right\rangle \in \phi(W R)$ with l odd and

$$
a_{1} \cdots a_{l} \dot{K}^{2}= \begin{cases}\dot{K}^{2} & \text { when } l \equiv 3(\bmod 4) \\ -\dot{K}^{2} & \text { when } l \equiv 1(\bmod 4)\end{cases}
$$

Then

$$
\left\langle a_{1}, \ldots, a_{l}\right\rangle \in \operatorname{im}(\phi \circ \varphi) \Leftrightarrow\left\langle 1, a_{1}, \ldots, a_{l}\right\rangle \in I^{2}\left(\mathcal{O}_{\mathcal{P}}\right) .
$$

Proof. (\Leftarrow) From Corollary 6.4 it follows that

$$
\left\langle 1, a_{1}, \ldots, a_{l}\right\rangle=\left\langle 1, b_{1}, c_{1}, \overline{b_{1} c_{1}}\right\rangle+\cdots+\left\langle 1, b_{k}, c_{k}, b_{k} c_{k}\right\rangle \in \phi(W R)
$$

for some $b_{1}, c_{1}, \ldots, b_{k}, c_{k} \in \mathcal{O}$ such that

$$
b_{i} R+\mathfrak{f}=R, \quad c_{i} R+\mathfrak{f}=R \quad \text { for every } i \in\{1, \ldots, k\}
$$

Since none of the maximal ideals in the decomposition of \mathfrak{f} belongs to the decompositions of the ideals $b_{i} R, c_{i} R$, none of them belongs to the decomposition of $b_{i} c_{i} R$. Therefore

$$
b_{i} c_{i} R+\mathfrak{f}=R \quad \text { for every } i \in\{1, \ldots, k\}
$$

By Theorem 5.6,

$$
\begin{aligned}
\left\langle 1, a_{1}, \ldots, a_{l}\right\rangle & =\left\langle 1, b_{1}, c_{1}, b_{1} c_{1}\right\rangle+\cdots+\left\langle 1, b_{k}, c_{k}, b_{k} c_{k}\right\rangle \in \operatorname{im}(\phi \circ \varphi), \text { i.e. } \\
\left\langle a_{1}, \ldots, a_{l}\right\rangle & =-\langle 1\rangle+\left\langle 1, a_{1}, \ldots, a_{l}\right\rangle \in \operatorname{im}(\phi \circ \varphi)
\end{aligned}
$$

(\Rightarrow) Let $\varphi_{1}: W \mathcal{O}_{\mathcal{P}} \rightarrow W K$ be the natural homomorphism. Because $\left\langle a_{1}, \ldots, a_{l}\right\rangle \in \operatorname{im}(\phi \circ \varphi)$, also $\left\langle a_{1}, \ldots, a_{l}\right\rangle \in \operatorname{im} \varphi_{1}$. By Proposition 6.1 there exist $b_{1}, \ldots, b_{k} \in U\left(\mathcal{O}_{\mathcal{P}}\right)$ such that

$$
\varphi_{1}\left(\left\langle b_{1}, \ldots, b_{k}\right\rangle\right)=\left\langle a_{1}, \ldots, a_{l}\right\rangle
$$

Then $\left\langle b_{1}, \ldots, b_{k}\right\rangle=\left\langle a_{1}, \ldots, a_{l}\right\rangle$ in $W K$. Moreover, $k \equiv l(\bmod 2)$, i.e. k is odd. Comparing the discriminants of these forms we get

$$
(-1)^{\frac{1}{2} k(k-1)} b_{1} \cdots b_{k} \dot{K}^{2}=(-1)^{\frac{1}{2} l(l-1)} a_{1} \cdots a_{l} \dot{K}^{2} .
$$

Therefore

$$
b_{1} \cdots b_{k} \dot{K}^{2}= \begin{cases}\dot{K}^{2} & \text { when } k \equiv 3(\bmod 4) \\ -\dot{K}^{2} & \text { when } k \equiv 1(\bmod 4)\end{cases}
$$

By Proposition 6.2,

$$
\left\langle 1, a_{1}, \ldots, a_{l}\right\rangle=\left\langle 1, b_{1}, \ldots, b_{k}\right\rangle \in I^{2}\left(\mathcal{O}_{\mathcal{P}}\right)
$$

Corollary 6.6. Let $\langle\langle f, d\rangle\rangle \in \phi(W R)$. Then

$$
\langle\langle f, d\rangle\rangle \in \operatorname{im}(\phi \circ \varphi) \Leftrightarrow\langle\langle f, d\rangle\rangle \in I^{2}\left(\mathcal{O}_{\mathcal{P}}\right) .
$$

Proof. Notice that $\langle\langle f, d\rangle\rangle \in \operatorname{im}(\phi \circ \varphi) \Leftrightarrow\langle f, d, f d\rangle \in \operatorname{im}(\phi \circ \varphi)$.
Let \mathcal{P}_{2} denote the set of all dyadic primes of the field K.
Corollary 6.7. Let K be a global field with char $K \neq 2, \mathcal{S}$ be a Hasse set on K and $\mathcal{O}<R_{K}(\mathcal{S})$ be an order. Moreover, let \mathfrak{f} be the conductor of \mathcal{O} and $\langle\langle f, d\rangle\rangle \in \phi\left(W R_{K}(\mathcal{S})\right)$. If there exist $f^{\prime}, d^{\prime} \in \mathcal{O}$ with the properties that $f^{\prime} R_{K}(\mathcal{S})+\mathfrak{f}=R_{K}(\mathcal{S}), d^{\prime} R_{K}(\mathcal{S})+\mathfrak{f}=R_{K}(\mathcal{S})$ and
(i) $\left(-f^{\prime},-d^{\prime}\right)_{\mathfrak{W}}=(-f,-d)_{\mathfrak{F}}$ for every $\mathfrak{P} \in \mathcal{P}_{2} \cup \mathcal{S}$,
(ii) $\left(-f^{\prime},-d^{\prime}\right)_{\mathfrak{F}}=1$ for every $\mathfrak{P} \notin \mathcal{P}_{2} \cup \mathcal{S}$,
then $\langle\langle f, d\rangle\rangle \in \operatorname{im}(\phi \circ \varphi)$.
Proof. Let $\mathfrak{P} \in \mathcal{S}$ be a real prime of K. Denote by $\operatorname{sign}_{\mathfrak{F}}$ the signature determined by \mathfrak{P}. From (i) it follows that

$$
\operatorname{sign}_{\mathfrak{F}}\left\langle\left\langle f^{\prime}, d^{\prime}\right\rangle\right\rangle=\operatorname{sign}_{\mathfrak{P}}\langle\langle f, d\rangle\rangle .
$$

Assume $\mathfrak{P} \in \mathcal{P}_{2} \cup \mathcal{S}$ is a finite prime. Denote by $h_{\mathfrak{P}}$ the \mathfrak{P}-adic Hasse-Witt invariant. Also from (i) it follows that

$$
h_{\mathfrak{F}}\left\langle\left\langle f^{\prime}, d^{\prime}\right\rangle\right\rangle=\left(-f^{\prime},-d^{\prime}\right)_{\mathfrak{F}}=(-f,-d)_{\mathfrak{P}}=h_{\mathfrak{P}}\langle\langle f, d\rangle\rangle .
$$

If $\mathfrak{P} \notin \mathcal{P}_{2} \cup \mathcal{S}$, then $(-f,-d)_{\mathfrak{F}}=1$ (cf. [Cz3, Lemma 3.4]), so by (ii),

$$
h_{\mathfrak{P}}\left\langle\left\langle f^{\prime}, d^{\prime}\right\rangle\right\rangle=h_{\mathfrak{P}}\langle\langle f, d\rangle\rangle .
$$

Finally, $\left\langle\left\langle f^{\prime}, d^{\prime}\right\rangle\right\rangle \cong\langle\langle f, d\rangle\rangle$ over the \mathfrak{P}-adic completion $K_{\mathfrak{F}}$ of the field K for every prime \mathfrak{P} of K. By the local-global principle, $\left\langle\left\langle f^{\prime}, d^{\prime}\right\rangle\right\rangle \cong\langle\langle f, d\rangle\rangle$ over K. Hence $\left\langle\left\langle f^{\prime}, d^{\prime}\right\rangle\right\rangle=\langle\langle f, d\rangle\rangle$ in $W K$.

From Corollary 6.4 it follows that $\left\langle\left\langle f^{\prime}, d^{\prime}\right\rangle\right\rangle \in I^{2}\left(\mathcal{O}_{\mathcal{P}}\right)$. By Corollary 6.6 ,

$$
\langle\langle f, d\rangle\rangle=\left\langle\left\langle f^{\prime}, d^{\prime}\right\rangle\right\rangle \in \operatorname{im}(\phi \circ \varphi) .
$$

Theorem 6.5 also has the following corollaries for the form $\langle z,-e z\rangle$, $e \in E(R) \cap \mathcal{O}$.

Corollary 6.8. Let K be any global field, $R<K$ be a Dedekind domain and $\mathcal{O}<R$ be an order. Moreover, let \mathfrak{f} be the conductor of \mathcal{O} and $\langle z,-e z\rangle \in$ $\phi(W R)$ with $e \in E(R) \cap \mathcal{O}$. Then $\langle z,-e z\rangle \in \operatorname{im}(\phi \circ \varphi)$ if and only if $\langle\langle-e, z\rangle\rangle \in$ $I^{2}\left(\mathcal{O}_{\mathcal{P}}\right)$ and there exists $e^{\prime} \in \mathcal{O}$ such that

$$
e^{\prime} \dot{K}^{2}=e \dot{K}^{2} \quad \text { and } \quad e^{\prime} R+\mathfrak{f}=R .
$$

Proof. By assumption, $e \in E(R)$, so $\langle e\rangle \in \phi(W R)$. Hence

$$
\langle-e, z,-e z\rangle=-\langle e\rangle+\langle z,-e z\rangle \in \phi(W R) .
$$

(\Leftarrow) Since $\langle 1,-e, z,-e z\rangle \in I^{2}\left(\mathcal{O}_{\mathcal{P}}\right)$, from Theorem 6.5 it follows that $\langle-e, z,-e z\rangle \in \operatorname{im}(\phi \circ \varphi)$. But $\langle e\rangle \in \operatorname{im}(\phi \circ \varphi)$ (see Theorem 2.9), so

$$
\langle z,-e z\rangle=\langle e\rangle+\langle-e, z,-e z\rangle \in \operatorname{im}(\phi \circ \varphi)
$$

(\Rightarrow) Since $\langle z,-e z\rangle \in \operatorname{im}(\phi \circ \varphi)$, by Lemma 2.1 there exists an ideal J of \mathcal{O} and an element $k \in \dot{K}$ such that

$$
J^{2}=e k^{2} \mathcal{O}
$$

For the fractional ideal $I=J k^{-1}$ we have

$$
I^{2}=e \mathcal{O}
$$

By Proposition 2.2,

$$
\begin{equation*}
\langle e\rangle \in \operatorname{im}(\phi \circ \varphi) . \tag{6.3}
\end{equation*}
$$

Hence

$$
\langle-e, z,-e z\rangle=-\langle e\rangle+\langle z,-e z\rangle \in \operatorname{im}(\phi \circ \varphi)
$$

By Theorem 6.5,

$$
\langle\langle-e, z\rangle\rangle \in I^{2}\left(\mathcal{O}_{\mathcal{P}}\right)
$$

The second part of the conclusion follows from (6.3) and Theorem 2.9.
Corollary 6.9. Let K be a global field with char $K \neq 2$, \mathcal{S} be a Hasse set on K and $\mathcal{O}<R_{K}(\mathcal{S})$ be an order. Moreover, let \mathfrak{f} be the conductor of \mathcal{O} and $\langle z,-e z\rangle \in \phi\left(W R_{K}(\mathcal{S})\right)$ with $e \in E\left(R_{K}(\mathcal{S})\right) \cap \mathcal{O}$. If there exist $e^{\prime}, z^{\prime} \in \mathcal{O}$ such that $e^{\prime} \dot{K}^{2}=e \dot{K}^{2}, e^{\prime} R_{K}(\mathcal{S})+\mathfrak{f}=R_{K}(\mathcal{S}), z^{\prime} R_{K}(\mathcal{S})+\mathfrak{f}=R_{K}(\mathcal{S})$ and
(i) $\left(e,-z^{\prime}\right)_{\mathfrak{P}}=(e,-z)_{\mathfrak{P}}$ for every $\mathfrak{P} \in \mathcal{P}_{2} \cup \mathcal{S}$,
(ii) $\left(e,-z^{\prime}\right)_{\mathfrak{P}}=1$ for every $\mathfrak{P} \notin \mathcal{P}_{2} \cup \mathcal{S}$,
then $\langle z,-e z\rangle \in \operatorname{im}(\phi \circ \varphi)$.
Proof. Analogously to the proof of Corollary 6.7 we show that

$$
\langle\langle-e, z\rangle\rangle=\left\langle\left\langle-e, z^{\prime}\right\rangle\right\rangle
$$

in $W K$. Because $e^{\prime} \dot{K}^{2}=e \dot{K}^{2}$,

$$
\langle\langle-e, z\rangle\rangle=\left\langle\left\langle-e, z^{\prime}\right\rangle\right\rangle=\left\langle\left\langle-e^{\prime}, z^{\prime}\right\rangle\right\rangle .
$$

From Corollary 6.4 it follows that

$$
\langle\langle-e, z\rangle\rangle=\left\langle\left\langle-e^{\prime}, z^{\prime}\right\rangle\right\rangle \in I^{2}\left(\mathcal{O}_{\mathcal{P}}\right)
$$

By Corollary 6.8, $\langle z,-e z\rangle \in \operatorname{im}(\phi \circ \varphi)$.
Example 6.10. Let $K=\mathbb{Q}(\sqrt{3})$. There is one dyadic prime \mathfrak{P}_{0} in K, so $\mathcal{P}_{2}=\left\{\mathfrak{P}_{0}\right\}$. The ring R_{K} of algebraic integers of K is the ring $R_{K}(\mathcal{S})$ of \mathcal{S}-integers of K, where \mathcal{S} consists of the two infinite primes ∞_{1}, ∞_{2} of K. Assume $\sqrt{3}$ is positive at ∞_{1} and negative at ∞_{2}. Since $-1 \notin N_{K / \mathbb{Q}}(\dot{K})$, from [Cz1, p. 114, 118] it follows that the set

$$
\{\langle 1\rangle,\langle 2\rangle,\langle z,-e z\rangle\}
$$

generates the group $\phi\left(W R_{K}\right)$, where $e=-1$ and $z \in K$ is such that

$$
(-1, z)_{\mathfrak{P}_{0}}=-1, \quad(-1, z)_{\infty_{1}}=-1, \quad(-1, z)_{\infty_{2}}=1
$$

(cf. [Cz1, p. 113]). Observe that

$$
\begin{aligned}
(-1,-z))_{\mathfrak{P}_{0}} & =(-1,-1)_{\mathfrak{P}_{0}}(-1, z)_{\mathfrak{P}_{0}}=-1 \\
(-1,-z)_{\infty_{1}} & =(-1,-1)_{\infty_{1}}(-1, z)_{\infty_{1}}=1 \\
(-1,-z)_{\infty_{2}} & =(-1,-1)_{\infty_{2}}(-1, z)_{\infty_{2}}=-1
\end{aligned}
$$

Consider the element $a:=1-\sqrt{3} \in R_{K}=\mathbb{Z}[\sqrt{3}]$. For $n \in \mathbb{N}$ let

$$
a^{n}=x_{n}+y_{n} \sqrt{3}, \quad x_{n}, y_{n} \in \mathbb{Z}
$$

Analogously to [C2, Lemma 2] one can prove that there are infinitely many prime numbers dividing the sequence $\left(y_{2 n+1}\right)_{n=1}^{\infty}$. Hence there are infinitely many natural odd numbers m such that m divides $\left(y_{2 n+1}\right)$. Choose such an m and a number $2 n+1$ such that $m \mid y_{2 n+1}$.

Consider the order $\mathcal{O}=\mathbb{Z}[m \sqrt{3}]$. Obviously,

$$
a^{2 n+1}=x_{2 n+1}+y_{2 n+1} \sqrt{3} \in \mathcal{O}
$$

Because

$$
N_{K / \mathbb{Q}}\left(a^{2 n+1}\right)=N_{K / \mathbb{Q}}(1-\sqrt{3})^{2 n+1}=-2^{2 n+1},
$$

we have $\operatorname{gcd}\left(N_{K / \mathbb{Q}}\left(a^{2 n+1}\right), m\right)=1$. Hence

$$
a^{2 n+1} R_{K}+\mathfrak{f}=a^{2 n+1} R_{K}+m R_{K}=R_{K}
$$

Moreover,

$$
\begin{aligned}
\left(-1,-a^{2 n+1}\right)_{\mathfrak{P}_{0}} & =\left(-1, N_{K / \mathbb{Q}}(1-\sqrt{3})\right)_{2}=(-1,-2)_{2}=-1, \\
\left(-1,-a^{2 n+1}\right)_{\infty_{1}} & =(-1,-1+\sqrt{3})_{\infty_{1}}=1, \\
\left(-1,-a^{2 n+1}\right)_{\infty_{2}} & =(-1,-1+\sqrt{3})_{\infty_{2}}=-1 .
\end{aligned}
$$

For every $\mathfrak{P} \notin \mathcal{P}_{2} \cup \mathcal{S}$ the elements $-1,-a^{2 n+1}$ are \mathfrak{P}-adic units, so $\left(-1,-a^{2 n+1}\right)_{\mathfrak{F}}=1$. By Corollary 6.9, $\langle z,-e z\rangle \in \operatorname{im}(\phi \circ \varphi)$. Hence and from Proposition 3.1 it follows that $\varphi: W \mathcal{O} \rightarrow W R_{K}$ is surjective.

We have obtained the following observation.
There are infinitely many natural odd numbers m such that the natural homomorphism $\varphi: W \mathbb{Z}[m \sqrt{3}] \rightarrow W R_{K}$ is surjective.
7. Real quadratic global fields. Let $K=\mathbb{Q}(\sqrt{D})$ be a quadratic number field, where $D \equiv 1(\bmod 8)$ is a square-free positive integer. There are two dyadic primes $\mathfrak{P}_{1}, \mathfrak{P}_{2}$ in K, so $\mathcal{P}_{2}=\left\{\mathfrak{P}_{1}, \mathfrak{P}_{2}\right\}$. Analogously to Example 6.10 the ring R_{K} of algebraic integers of K is the ring $R_{K}(\mathcal{S})$ of \mathcal{S}-integers of K, where \mathcal{S} consists of the two infinite primes ∞_{1}, ∞_{2} of K.

Assume $-1 \in N_{K / \mathbb{Q}}(\dot{K})$ and choose $b \in E\left(R_{K}\right)$ positive at ∞_{1} and negative at ∞_{2}. Let p_{1}, \ldots, p_{s} be all the pairwise distinct prime divisors
of D. From [Cz1, pp. 114, 118] it follows that the set

$$
\left\{\langle 1\rangle,\left\langle p_{1}\right\rangle, \ldots,\left\langle p_{s-1}\right\rangle,\langle b\rangle,\langle\langle f, d\rangle\rangle\right\}
$$

generates the group $\phi\left(W R_{K}\right)$, where $f, d \in K$ are such that $-f$ is totally positive and

$$
(-f,-d)_{\mathfrak{P}_{1}}=(-f,-d)_{\mathfrak{F}_{2}}=-1
$$

(cf. [Cz1, p. 109]).
Proposition 7.1. Let $\mathcal{O}=\mathbb{Z}[m(1+\sqrt{D}) / 2]$ be an order such that every odd prime divisor of $m \in \mathbb{N}$ is congruent to 1 modulo 4 . Then

$$
\langle\langle f, d\rangle\rangle \in \operatorname{im}(\phi \circ \varphi) .
$$

Proof. For an odd prime number p denote by $(\dot{\bar{p}})$ the Legendre symbol.
By [0, 65:17] there are infinitely many prime numbers p such that

$$
\left(\frac{D}{p}\right)=-1 \quad \text { and } \quad\left(\frac{-1}{p}\right)=-1
$$

Fix such a p. From $\left(\frac{D}{p}\right)=-1$ it follows that p does not split in K. From $\left(\frac{-1}{p}\right)=-1$ it follows that $p \equiv 3(\bmod 4)$. Hence $p \nmid m$, so

$$
p R_{K}+\mathfrak{f}=p R_{K}+m R_{K}=R_{K} .
$$

Let \mathfrak{P} be the prime of K which lies over p. Then $(-1, p)_{\mathfrak{F}}=1$. Because $p \equiv 3(\bmod 4)$, we have $(-1, p)_{2}=-1$, i.e.

$$
(-1, p)_{\mathfrak{P}_{1}}=(-1, p)_{\mathfrak{P}_{2}}=(-1, p)_{2}=-1 .
$$

Moreover,

$$
(-1, p)_{\infty_{1}}=(-f,-d)_{\infty_{1}}=1 \quad \text { and } \quad(-1, p)_{\infty_{2}}=(-f,-d)_{\infty_{2}}=1
$$

For every prime $\mathfrak{r} \notin\{\mathfrak{P}\} \cup \mathcal{P}_{2} \cup \mathcal{S}$ of K the elements $-1, p$ are \mathfrak{r}-adic units, so $(-1, p)_{\mathfrak{r}}=1$. By Corollary 6.7. $\langle\langle f, d\rangle\rangle \in \operatorname{im}(\phi \circ \varphi)$.

Corollary 7.2. Let $K=\mathbb{Q}(\sqrt{D})$ be a real quadratic number field with $D \equiv 1(\bmod 4)$ and $-1 \in N_{K / \mathbb{Q}}(\dot{K})$. Moreover, let $\mathcal{O}=\mathbb{Z}[m(1+\sqrt{D}) / 2]$ be an order with $m=2^{r} q_{1} \cdots q_{l}$, where $r \in \mathbb{N} \cup\{0\}$ and q_{1}, \ldots, q_{l} are odd prime numbers. Then the natural homomorphism $\varphi: W \mathcal{O} \rightarrow W R_{K}$ is surjective if and only if $r \in\{0,1\}$ and $q_{i} \equiv 1(\bmod 4)$ for every $i \in\{1, \ldots, l\}$.

Proof. This follows from Propositions $3.1,3.7$ and 7.1 and Corollaries 3.8 and 3.9

Now assume $K=F(\sqrt{D})$ is a real quadratic function field as in Section 4 . The set \mathcal{S} consists of two primes ∞_{1}, ∞_{2} of K which lie over the prime ∞_{F} of $F=\mathbb{F}(X)$ with uniformizing parameter $1 / X$. Assume $u_{K}(\mathcal{S})=0$.

Let ϵ be a generator of the group $\dot{\mathbb{F}}$. If $\epsilon \in N_{K / F}(\dot{K})$, then choose $b \in E\left(R_{K}(\mathcal{S})\right)$ such that $N_{K / F}(b) \in \epsilon \dot{F}^{2}$. Let $p_{1}, \ldots, p_{s} \in \mathbb{F}[X]$ be all the
pairwise distinct monic irreducible polynomials which divide D. By RC , p. 208] and [Cz3, Theorem 4.2] the set

$$
\begin{aligned}
\left\{\langle 1\rangle,\langle\epsilon\rangle,\left\langle p_{1}\right\rangle, \ldots,\left\langle p_{s-1}\right\rangle,\langle b\rangle,\langle\langle f, d\rangle\rangle\right\} & \text { when } \epsilon \in N_{K / F}(\dot{K}), \\
\left\{\langle 1\rangle,\langle\epsilon\rangle,\left\langle p_{1}\right\rangle, \ldots,\left\langle p_{s-1}\right\rangle,\langle\langle f, d\rangle\rangle\right\} & \text { when } \epsilon \notin N_{K / F}(\dot{K}),
\end{aligned}
$$

generates the group $\phi\left(W R_{K}(\mathcal{S})\right)$, where $f, d \in K$ are such that

$$
(-f,-d)_{\infty_{1}}=(-f,-d)_{\infty_{2}}=-1
$$

(cf. [Cz3, p. 611]).
Proposition 7.3. Assume $\epsilon \in N_{K / F}(\dot{K})$. Let $\mathcal{O}=\mathbb{F}[X][m \sqrt{D}]$ be an order with $m=q_{1} \cdots q_{l}$, where $q_{1}, \ldots, q_{l} \in \mathbb{F}[X]$ are irreducible polynomials with $\operatorname{deg} q_{i} \equiv 0(\bmod 2)$ for every $i \in\{1, \ldots, l\}$. Then $\langle\langle f, d\rangle\rangle \in \operatorname{im}(\phi \circ \varphi)$.

Proof. For an irreducible polynomial $p \in \mathbb{F}[X]$ denote by (\dot{p}) the quadratic residue symbol (cf. [R, p. 24]).

By [O, 65:17] there are infinitely many irreducible polynomials $p \in \mathbb{F}[X]$ such that

$$
\left(\frac{D}{p}\right) \neq 1 \quad \text { and } \quad\left(\frac{\epsilon}{p}\right) \neq 1
$$

Fix such a p. From $\left(\frac{D}{p}\right) \neq 1$ it follows that p does not split in K (cf. $\underline{\mathrm{R}}$, Proposition 10.5]. From $\left(\frac{\epsilon}{p}\right) \neq 1$ it follows that $\operatorname{deg} p \equiv 1(\bmod 2)(c f$. \mathbb{R}, Proposition 3.2]). Hence $p \nmid m$, so

$$
p R_{K}(\mathcal{S})+\mathfrak{f}=p R_{K}(\mathcal{S})+m R_{K}(\mathcal{S})=R_{K}(\mathcal{S})
$$

Let \mathfrak{P} be the prime of K which lies over p. Then $(\epsilon, p)_{\mathfrak{P}}=1$. Because $\operatorname{deg} p \equiv 1(\bmod 2)$, we have $(\epsilon, p)_{\infty_{F}}=-1$, i.e.

$$
(\epsilon, p)_{\infty_{1}}=(\epsilon, p)_{\infty_{2}}=(\epsilon, p)_{\infty_{F}}=-1
$$

For every prime $\mathfrak{r} \notin\{\mathfrak{P}\} \cup \mathcal{S}$ of K the elements ϵ, p are \mathfrak{r}-adic units, so $(\epsilon, p)_{\mathfrak{r}}=1$. By Corollary 6.7, $\langle\langle f, d\rangle\rangle \in \operatorname{im}(\phi \circ \varphi)$.

Corollary 7.4. Let $K=F(\sqrt{D})$ be a real quadratic function field with $\epsilon \in N_{K / F}(\dot{K})$. Moreover, let $\mathcal{O}=\mathbb{F}[X][m \sqrt{D}]$ be an order such that $m=q_{1} \cdots q_{l}$, where $q_{1}, \ldots, q_{l} \in \mathbb{F}[X]$ are irreducible polynomials. Then the homomorphism $\varphi: W \mathcal{O} \rightarrow W R_{K}(\mathcal{S})$ is surjective if and only if $\operatorname{deg} q_{i} \equiv 0(\bmod 2)$ for every $i \in\{1, \ldots, l\}$.

Proof. This follows from (4.2), Propositions $4.2,4.6$ and 7.3 , and Corollaries 4.8 and 4.9 .

Proposition 7.5. Let $K=F(\sqrt{D})$ be a real quadratic function field with $\epsilon \notin N_{K / F}(\dot{K})$ and $u_{K}(\mathcal{S})=0$. Moreover, let $\mathcal{O}<R_{K}(\mathcal{S})$ be an order. Then $\langle\langle f, d\rangle\rangle \in \operatorname{im}(\phi \circ \varphi)$.

Proof. From [RC, Proposition 6.2] it follows that there is an irreducible divisor p_{i} of the polynomial D such that $\operatorname{deg} p_{i} \equiv 1(\bmod 2)$. It is easy to observe that p_{i} ramifies in K.

Analogously to the proof of Proposition 7.3 we show that

$$
\left(\epsilon, p_{i}\right)_{\infty_{1}}=\left(\epsilon, p_{i}\right)_{\infty_{2}}=-1
$$

and $\left(\epsilon, p_{i}\right)_{\mathfrak{r}}=1$ for every prime $\mathfrak{r} \notin \mathcal{S}$ of K.
Proposition 4.2 implies that $\left\langle p_{i}\right\rangle \in \operatorname{im}(\phi \circ \varphi)$. By Theorem 2.9 there exists $h \in \mathcal{O}$ such that

$$
h \dot{K}^{2}=p_{i} \dot{K}^{2} \quad \text { and } \quad h R_{K}(\mathcal{S})+\mathfrak{f}=R_{K}(\mathcal{S}) .
$$

Obviously,

$$
(\epsilon, h)_{\infty_{1}}=(\epsilon, h)_{\infty_{2}}=-1
$$

and $(\epsilon, h)_{\mathfrak{r}}=1$ for every prime $\mathfrak{r} \notin \mathcal{S}$ of K. Now Corollary 6.7 implies that $\langle\langle f, d\rangle\rangle \in \operatorname{im}(\phi \circ \varphi)$.

Corollary 7.6. Let $K=F(\sqrt{D})$ be a real quadratic function field with $\epsilon \notin N_{K / F}(\dot{K})$. Moreover, let $\mathcal{O}<R_{K}(\mathcal{S})$ be an order. Then the homomorphism $\varphi: W \mathcal{O} \rightarrow W R_{K}(\mathcal{S})$ is surjective.

Proof. This follows from 4.2, Propositions 4.2 and 7.5, and Corollary 4.4.

References

[B] R. Baeza, Quadratic Forms over Semilocal Rings, Lecture Notes in Math. 655, Springer, Berlin, 1978.
[BC] Z. I. Borevich and I. R. Shafarevich, Number Theory, Nauka, Moscow, 1985 (in Russian).
[C1] M. Ciemała, Natural homomorphisms of Witt rings of orders in algebraic number fields, Math. Slovaca 54 (2004), 473-477.
[C2] M. Ciemała, Natural homomorphisms of Witt rings of orders in algebraic number fields, II, Acta Math. Univ. Ostrav. 14 (2006), 13-16.
[CS] M. Ciemała and K. Szymiczek, On the existence of nonsingular bilinear forms on projective modules, Tatra Mt. Math. Publ. 32 (2005), 1-13.
[Cz1] A. Czogała, Generators of the Witt groups of algebraic integers, in: Number Theory (Cieszyn, 1998), Ann. Math. Sil. 12 (1998), 105-121.
[Cz2] A. Czogała, On reciprocity equivalence of quadratic number fields, Acta Arith. 58 (1991), 27-46.
[Cz3] A. Czogała, Witt rings of Hasse domains of global fields, J. Algebra 244 (2001), 604-630.
[GHK] A. Geroldinger, F. Halter-Koch and J. Kaczorowski, Non-unique factorizations in orders of global fields, J. Reine Angew. Math. 459 (1995), 89-118.
[K] M. Knebusch, Grothendieck und Wittringe von nichtausgearteten symmetrischen Bilinearformen, S.-B. Heidelberger Akad. Wiss. Math.-Natur. Kl. 1969/1970, 93157.
[M] M. A. Marshall, Bilinear Forms and Orderings on Commutative Rings, Queen's Papers in Pure Appl. Math. 71, Queen's Univ., Kingston, ON, 1985.
[MH] J. Milnor and D. Husemoller, Symmetric Bilinear Forms, Ergeb. Math. Grenzgeb. 73, Springer, New York, 1973.
[O] O. T. O’Meara, Introduction to Quadratic Forms, Grundlehren Math. Wiss. 117, Academic Press, New York, and Springer, Berlin, 1963.
[P] A. Pfister, Quadratic Forms with Applications to Algebraic Geometry and Topology, London Math. Soc. Lecture Note Ser. 217, Cambridge Univ. Press, 1995.
[R] M. Rosen, Number Theory in Function Fields, Grad. Texts in Math. 210, Springer, New York, 2002.
[Ro] B. Rothkegel, Nonsingular bilinear forms on direct sums of ideals, Math. Slovaca 63 (2013), 707-724.
[RC] B. Rothkegel and A. Czogała, Singular elements and the Witt equivalence of rings of algebraic integers, Ramanujan J. 17 (2008), 185-217.
[W] Ch. Weibel, An introduction to algebraic K-theory, http://www.math.uiuc.edu/ K-theory/0105/.

Beata Rothkegel
Institute of Mathematics
University of Silesia
Bankowa 14
40-007 Katowice, Poland
E-mail: brothkegel@math.us.edu.pl

[^0]: 2010 Mathematics Subject Classification: Primary 11E81; Secondary 19G12. Key words and phrases: order, natural homomorphism.

