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The image of the natural homomorphism of Witt rings
of orders in a global field
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1. Introduction. Every homomorphism ϕ : R → P of commutative
rings (with identity elements) induces a homomorphism ϕ : WR → WP
between their Witt rings in the following way. If 〈(M,α)〉 ∈ WR is the
similarity class of an inner product space (M,α), i.e.

• M is a finitely generated projective R-module,
• α : M ×M → R is a nonsingular bilinear form,

then

ϕ〈(M,α)〉 = 〈(M ′, α′)〉,
where M ′ = P ⊗RM and α′ : M ′×M ′ → P is the nonsingular bilinear form
defined by

α′(x⊗m,x′ ⊗m′) = xx′ϕ(α(m,m′)) for all x, x′ ∈ P, m,m′ ∈M.(1.1)

The homomorphism ϕ : WR→WP is said to be natural if it is induced by
an embedding R ↪→ P . If R is a Dedekind domain and P = K is its field of
fractions, then the natural homomorphism φ : WR → WK is injective (cf.
[K, Satz 11.1.1]). This allows us to treat WR as a subring of WK.

Let K be a global field, R be a Dedekind domain and K be its field of
fractions. Let O < R be an order, i.e.:

• O is a one-dimensional noetherian domain,
• R is the integral closure of O in the field K,
• R is a finitely generated O-module.

We will examine the image of the natural homomorphism ϕ : WO →WR.
Since the homomorphism φ : WR→WK is injective, it is easy to observe

that it is enough to examine the image of the composition φ◦ϕ : WO →WK.
In [C1, C2] that image is examined in the case of orders in the rings RK
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of algebraic integers of some quadratic number fields K = Q(
√
D). Ciema la

has proved that there are infinitely many orders O < RK such that the
natural homomorphism ϕ : WO → WRK is surjective. In Sections 3, 4, 7
we will formulate necessary and sufficient conditions for the surjectivity of
the natural homomorphisms in the case of all nonreal quadratic number
fields, all real quadratic number fields K = Q(

√
D) such that −1 is a norm

in the extension K/Q, and all quadratic function fields.

If R is a commutative ring, then we write U(R) for the group of invertible
elements of R. If a1, . . . , al ∈ U(R), then 〈a1, . . . , al〉 will denote both a
diagonal quadratic form and its class in the Witt ringWR. We write 〈〈a1, a2〉〉
for the 2-fold Pfister form 〈1, a1〉 ⊗ 〈1, a2〉 = 〈1, a1, a2, a1a2〉.

Let R be a Dedekind domain and K be its field of fractions. We define
the group E(R) of singular elements of R to be

E(R) = {g ∈ K̇ : ordP g ≡ 0 (mod 2) for every maximal ideal P�R}.
Every maximal ideal P of R determines a P-adic valuation on the field K
with residue class field KP. According to [MH, (3.3) Corollary] we have the
Knebusch–Milnor exact sequence

0→WR
φ−→WK

∂−→
⊕
P

WKP,

where the direct sum extends over all maximal ideals P of R. The additive
group homomorphism ∂ is the direct sum of the second residue homomor-
phisms ∂P : WK →WKP. Directly from the sequence and the definition of
∂P we obtain

Proposition 1.1. If g ∈ K̇, then

〈g〉 ∈ φ(WR) ⇔ g ∈ E(R).

Let K be a global field of characteristic different from 2. Let S be a
Hasse set on K (i.e. a finite nonempty set of primes of K containing the
set of all infinite primes). Let R = RK(S) be the ring of S-integers of the
field K (the Hasse domain),

RK(S) = {g ∈ K : ordP g ≥ 0 for all primes P /∈ S}.
From [Cz3, Theorem 4.2] it follows that if K is a nonreal field, then the
group φ(WRK(S)) is additively generated by some rank one forms 〈g〉,
g ∈ E(RK(S)), and some 2-fold Pfister forms 〈〈f, d〉〉. If K is formally real,
then φ(WRK(S)) is generated by forms 〈g〉, g ∈ E(RK(S)), 2-fold Pfister
forms 〈〈f, d〉〉 and some forms 〈z,−ez〉, e ∈ E(RK(S)) (cf. [Cz3, Theorem
4.7]). In Sections 2 and 6 we formulate necessary and sufficient conditions
for

〈g〉, 〈〈f, d〉〉, 〈z,−ez〉 ∈ im(φ ◦ ϕ)
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to hold in the case of any Dedekind domain R and its field of fractions K
(a global field of characteristic not necessarily different from 2).

If 〈a1, . . . , al〉 ∈ WK (i.e. a1, . . . , al ∈ K̇), then we often assume that
a1, . . . , al ∈ O, thanks to the following observation. For every i ∈ {1, . . . , l}
there exist xi, yi ∈ O \ {0} such that ai = xi/yi. Then xiyi ∈ O. Moreover,
aiK̇

2 = xiyiK̇
2, so

〈a1, . . . , al〉 = 〈x1y1, . . . , xlyl〉 in WK.

Throughout the paper, φ and ϕ will denote the natural homomorphisms
φ : WR → WK and ϕ : WO → WR for a suitable Dedekind domain R,
respectively. Whenever we write “R < K”, we mean “R is a Dedekind
domain and K is its field of fractions”.

2. Forms of rank 1. Assume K is a global field, R < K is a Dedekind
domain and O < R is an order.

Lemma 2.1. Let 〈(N, β)〉 ∈ φ(WR) and let detβ be the determinant of
the form β in a fixed basis of the space N over K. If 〈(N, β)〉 ∈ im(φ ◦ ϕ),
then there exists an ideal I of the order O and an element k ∈ K̇ such that

I2 = (detβ · k2)O.
Proof. Assume

φ ◦ ϕ〈(M,α)〉 = 〈(N, β)〉,
where M = I ⊕On−1, n ≥ 1, and I is an ideal of O such that I2 = pO for
some 0 6= p ∈ O (cf. [W, Chapter I, Propositions 3.4, 3.5], [CS, Theorem
2.6]). Moreover, α : M ×M → O is a nonsingular O-bilinear form defined
by

α((x, y1, . . . , yn−1), (x
′, y′1, . . . , y

′
n−1))

=
a

p
xx′ +

n−1∑
i=1

bi
p

(yix
′ + xy′i) +

n−1∑
i,j=1

cij
p
yiy
′
j

for all (x, y1, . . . , yn−1), (x
′, y′1, . . . , y

′
n−1) ∈M , where a ∈ R, bi ∈ I, cij = cji

∈ I2 are uniquely determined (cf. [Ro, Proposition 2.8]). The determinant
of

A =



a b1 b2 · · · bn−1

b1 c11 c12 · · · c1n−1

b2 c21 c22 · · · c2n−1
...

...
...

. . .
...

bn−1 cn−1 1 cn−1 2 · · · cn−1n−1


is equal to pn−1 · u for some invertible u ∈ O (cf. [Ro, Theorem 2.9]).
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Consider the basis

B = (1⊗ (p, 0, . . . , 0), . . . , 1⊗ (0, . . . , p, . . . , 0), . . . , 1⊗ (0, . . . , 0, p))

of the linear space M ′ = K⊗OM over K. Then the form α′ : M ′×M ′ → K
(defined as in (1.1)) has matrix pA in the basis B. Moreover,

〈(M ′, α′)〉 = φ ◦ ϕ〈(M,α)〉 = 〈(N, β)〉,
so there exist metabolic spaces (M1, α1) and (N1, β1) over K such that

(M ′, α′) ⊥ (M1, α1) ∼= (N, β) ⊥ (N1, β1).

Therefore

det(pA)K̇2 = ±detβ · K̇2, i.e. p2n−1 · uK̇2 = ±detβ · K̇2.

There exists k ∈ K̇ such that

pu = ±detβ · k2,
so I2 = pO = puO = (detβ · k2)O.

We give a necessary and sufficient condition for 〈g〉 ∈ im(φ ◦ ϕ) for any
g ∈ E(R).

Proposition 2.2. Let R < K be a Dedekind domain, g ∈ E(R) and
O < R be an order. Then 〈g〉 ∈ im(φ ◦ ϕ) if and only if there exists a
fractional ideal I in the field K such that

I2 = gO.
Proof. (⇒) From Lemma 2.1 it follows that there exists an ideal J of O

and an element k ∈ K̇ such that

J2 = gk2O.
For the fractional ideal I = J · k−1 we have

I2 = gO.
(⇐) The map α : I × I → O defined by

α(x, y) =
1

g
xy for all x, y ∈ I

is a nonsingular bilinear form (cf. [CS, Theorem 3.1]). Hence 〈(I, α)〉 ∈WO.
Consider the basis B = (1⊗ g) of the space M ′ = K ⊗O I over K. Then the
form α′ : M ′ ×M ′ → K (defined as in (1.1)) has matrix [g] in the basis B,
so

φ ◦ ϕ〈(I, α)〉 = 〈g〉,
i.e. 〈g〉 ∈ im(φ ◦ ϕ).

Now let f be the conductor of the order O, i.e.

f = {x ∈ R : xR ⊆ O}
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(f is the greatest ideal of R lying in O). Denote by Jf(R) and Jf(O) the mul-
tiplicative monoids of all invertible ideals of R and O, respectively, relatively
prime to the conductor f, i.e.

Jf(R) = {I �R : I is invertible, I + f = R},
Jf(O) = {I �O : I is invertible, I + f = O}.

We will use the following fact.

Proposition 2.3 ([GHK, Lemma 3(i)]). Let I be an invertible ideal of
the order O. Then I has a unique decomposition

I = I1 · I2,
where I1 ∈ Jf(O) has a unique representation as a product of powers of
pairwise distinct maximal ideals p � O such that p + f = O, while I2 is a
product of primary ideals q�O such that q + f 6= O.

From [GHK, proof of Proposition 4(ii)] it follows that an ideal p of O is
maximal if and only if there exists a maximal ideal P of R such that

p = P ∩ O.
Let

f = Qr1
1 · · ·Q

rn
n , r1, . . . , rn ∈ N,

where Q1, . . . ,Qn are pairwise distinct maximal ideals of R. By [GHK, p. 93]
an ideal 0 6= I �R is relatively prime to the conductor f if and only if it has
a unique representation as a product of powers of pairwise distinct maximal
ideals P�R, P /∈ {Q1, . . . ,Qn}.

Also, by [GHK, proof of Proposition 4(ii)] an ideal p of O is a maximal
ideal relatively prime to f if and only if there exists a unique maximal ideal
P�R relatively prime to f (i.e. P /∈ {Q1, . . . ,Qn}) such that

p = P ∩ O.
Moreover, the map F : Jf(R)→ Jf(O) defined by

F (I) = I ∩ O for all I ∈ Jf(R)

is an isomorphism of monoids.

Theorem 2.4. Let K be a global field and R < K be a Dedekind domain.
Moreover, let O < R be an order, f be the conductor of O and g ∈ E(R)∩O.
If gO + f = O, then 〈g〉 ∈ im(φ ◦ ϕ).

Proof. First we show that

gR ∩ O = gO.
Since gO + f = O, we have

gO = ps11 · · · p
sm
m , s1, . . . , sm ∈ N,(2.1)
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for some pairwise distinct maximal ideals p1, . . . , pm � O relatively prime
to f. There exist maximal ideals P1, . . . ,Pm of R relatively prime to f such
that

p1 = P1 ∩ O, . . . , pm = Pm ∩ O.

Fix i ∈ {1, . . . ,m} and observe that piR = Pi. Indeed, piR ⊆ Pi, so

pi ⊆ piR ∩ O ⊆ Pi ∩ O = pi, i.e. piR ∩ O = Pi ∩ O.

Since piR,Pi ∈ Jf(R) and

F : Jf(R)→ Jf(O), F (I) = I ∩ O,

is an isomorphism, piR = Pi. Therefore by (2.1),

gR = Ps1
1 · · ·P

sm
m .

Using the map F we get

gR ∩ O = (P1 ∩ O)s1 · · · (Pm ∩ O)sm = ps11 · · · p
sm
m = gO.

From the assumption it follows that g ∈ E(R)∩R, so gR = J2 for some
J �R. It is easy to observe that J is relatively prime to f. Using again the
isomorphism F we get

gO = gR ∩ O = J2 ∩ O = (J ∩ O)2,

so 〈g〉 ∈ im(φ ◦ ϕ) by Proposition 2.2.

We will prove that the existence of h ∈ O such that

hK̇2 = gK̇2 and hO + f = O

is a necessary and sufficient condition for 〈g〉 ∈ im(φ ◦ ϕ).

Lemma 2.5. Let q be a primary ideal of the order O such that q+ f 6= O.
Then the radical rad q of the ideal q is a maximal ideal in O such that

rad q + f 6= O.

Proof. Since q is a primary ideal, rad q is a prime ideal. But O is a
one-dimensional domain, so rad q is a maximal ideal.

Suppose rad q + f = O. We know that f ⊆ rad f, so rad q + rad f = O.
Hence q + f = O, a contradiction.

Lemma 2.6. Let f = Qr1
1 · · ·Qrn

n , r1, . . . , rn ∈ N, be the representation
of the conductor f of the order O as a product of powers of pairwise distinct
maximal ideals of the Dedekind domain R. Moreover, let q be a primary
ideal in O such that q + f 6= O. Then

qR = Qs1
i1
· · ·Qsm

im

for some s1, . . . , sm ∈ N and pairwise distinct i1, . . . , im ∈ {1, . . . , n}.
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Proof. First observe that qR 6= R. Indeed, since q 6= O, there exists a
maximal ideal P ∩ O of O such that

q ⊆ P ∩ O
(P is a maximal ideal of R). If qR = R, then

R = qR ⊆ (P ∩ O)R ⊆ P,

which is impossible.
Suppose that in the decomposition of the ideal qR there is a maximal

ideal P�R such that P /∈ {Q1, . . . ,Qn} (i.e. P+ f = R). Then qR ⊆ P, so

q ⊆ qR ∩ O ⊆ P ∩ O.
The ideal P ∩ O is a maximal ideal of O relatively prime to f. Moreover,

rad q ⊆ rad(P ∩ O) = P ∩ O.(2.2)

From Lemma 2.5 it follows that rad q is a maximal ideal such that rad q+ f
6= O. However, by (2.2), rad q = P ∩ O, which leads to a contradiction.

Corollary 2.7. Let I be an invertible ideal of the order O. Then

I + f = O ⇔ IR+ f = R.

Proof. The implication “⇒” is obvious.
Assume IR+ f = R. Suppose I + f 6= O. From Proposition 2.3 it follows

that in a representation of the ideal I there is a primary ideal q of O such
that q + f 6= O. However, Lemma 2.6 shows that qR ⊆ Q for some ideal
Q � R in the decomposition of f. Hence IR ⊆ Q, i.e. IR + f 6= R, which is
impossible.

Now we prove a lemma which is true for any integral domain, not nec-
essarily an order.

Lemma 2.8. Let P be an integral domain, I be an invertible ideal of P
and p1, . . . , pm � P be pairwise distinct maximal ideals. Then

I 6= Ip1 ∪ · · · ∪ Ipm.
Proof. Of course Ip1 ∪ · · · ∪ Ipm ⊆ I. We show by induction on m that

I * Ip1 ∪ · · · ∪ Ipm.
For m = 1, if I ⊆ Ip1, then

I−1 · I ⊆ I−1 · Ip1,
i.e. P ⊆ p1, a contradiction.

Suppose
I ⊆ Ip1 ∪ · · · ∪ Ipm−1 ∪ Ipm.

By the induction assumption

I * Ip1 ∪ · · · ∪ Ipm−1.
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Choose an element

x ∈ Ipm \ (Ip1 ∪ · · · ∪ Ipm−1).(2.3)

We prove that

Ip1 ∩ · · · ∩ Ipm−1 * Ipm.

Indeed, if Ip1 ∩ · · · ∩ Ipm−1 ⊆ Ipm, then

I · (p1 ∩ · · · ∩ pm−1) ⊆ Ip1 ∩ · · · ∩ Ipm−1 ⊆ Ipm,
i.e. p1∩· · ·∩pm−1 ⊆ pm. Since p1, . . . , pm−1 are pairwise distinct (so relatively
prime) maximal ideals,

p1 · · · pm−1 = p1 ∩ · · · ∩ pm−1 ⊆ pm.

Hence pi = pm for some i ∈ {1, . . . ,m− 1}, which is impossible.

Choose an element

y ∈ (Ip1 ∩ · · · ∩ Ipm−1) \ Ipm.
Because I is an ideal, x + y ∈ I. There exists i ∈ {1, . . . ,m} such that
x+ y ∈ Ipi.

If i ∈ {1, . . . ,m− 1}, then x ∈ Ipi. This contradicts (2.3). If i = m, then
y ∈ Ipm. This is also impossible.

Theorem 2.9. Let K be a global field and R < K be a Dedekind domain.
Moreover, let O < R be an order, f be the conductor of O and g ∈ E(R)∩O.
Then 〈g〉 ∈ im(φ ◦ ϕ) if and only if there exists h ∈ O such that

hK̇2 = gK̇2 and hR+ f = R.

Proof. (⇒) From Lemma 2.1 it follows that there exists an ideal J of O
and an element k ∈ K̇ such that

J2 = gk2O.
Since k = k1/k2 for some k1, k2 ∈ O \ {0},

I2 = gk21O,(2.4)

where I = Jk2 is an invertible ideal of O.

From [GHK, proof of Proposition 4(ii)] it follows that there are only
finitely many maximal ideals in O which are not relatively prime to f. Let
p1, . . . , pm be all the pairwise distinct maximal ideals of O such that

pi + f 6= O for each i ∈ {1, . . . ,m}.
There exists an element

x ∈ I \ (Ip1 ∪ · · · ∪ Ipm).(2.5)

Obviously x 6= 0 and xO ⊆ I. Moreover, xI−1 ⊆ O is an invertible ideal
of O.
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Notice that xI−1 + f = O. Indeed, otherwise by Proposition 2.3 there
exists a primary ideal q�O such that

q + f 6= O and xI−1 ⊆ q.

But q ⊆ rad q and Lemma 2.5 shows that rad q is a maximal ideal in O such
that rad q + f 6= O. Therefore

xI−1 ⊆ q ⊆ rad q = pi

for some i ∈ {1, . . . ,m}. Hence xO ⊆ Ipi, i.e. x ∈ Ipi. This contradicts
(2.5).

Proposition 2.3 implies that the ideal xI−1 has a unique representation
as a product of powers of maximal ideals of O relatively prime to f.

Since x2 ∈ I2, by (2.4) there exists a nonzero h ∈ O such that

x2 = gk21h.(2.6)

Of course hK̇2 = gK̇2. We show that hO + f = O. Indeed, otherwise by
Proposition 2.3 there exists a primary ideal q1 �O such that

q1 + f 6= O and hO ⊆ q1.

Therefore by (2.6),
x2O = gk21O · hO ⊆ I2q1,

i.e. (xI−1)2 ⊆ q1. But the ideal (xI−1)2 is a product of powers of maximal
ideals of O relatively prime to f, so

(xI−1)2 + f = O.
Hence q1 + f = O, a contradiction.

Thus, hO + f = O, so hR+ f = R.
(⇐) By assumption, hK̇2 = gK̇2, so h ∈ E(R)∩O and 〈g〉 = 〈h〉 in the

Witt ring WK. Corollary 2.7 yields hO + f = O, so 〈g〉 = 〈h〉 ∈ im(φ ◦ ϕ),
by Theorem 2.4.

Corollary 2.10. Let f = Qr1
1 · · ·Qrn

n , r1, . . . , rn ∈ N, be the representa-
tion of the conductor f of the order O as a product of powers of pairwise dis-
tinct maximal ideals of the Dedekind domain R. Moreover, let g ∈ E(R)∩O.
Then 〈g〉 ∈ im(φ ◦ϕ) if and only if there exists h ∈ O such that hK̇2 = gK̇2

and the ideal hR has a unique representation as a product of powers of
pairwise distinct maximal ideals P /∈ {Q1, . . . ,Qn}.

3. Quadratic number fields. As an example we examine the surjec-
tivity of the natural homomorphism ϕ : WO → WR in the case when K is
some quadratic number field and R = RK is the ring of algebraic integers
of K.

Let K = Q(
√
D), where D is a square-free integer. Assume p1, . . . , ps are

all the pairwise distinct prime divisors of the discriminant of the field K (if
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D ≡ 3 (mod 4), then we assume p1 = 2). From [Cz1, pp. 110, 116–117] it
follows that in the case when K is a nonreal field (D < 0) the set

{〈1〉, 〈p1〉, . . . , 〈ps−1〉} when D 6= −1,

{〈1〉, 〈2〉} when D = −1,

generates the group φ(WRK).
Assume K is a real field (D > 0). Then K has two real infinite primes

∞1,∞2. From [Cz1, pp. 114, 117–119] it follows that the set

{〈1〉, 〈p1〉, . . . , 〈ps−1〉}
is contained in the set of generators of the group φ(WRK).

Let NK/Q(K̇) denote the norm group of the extension K/Q. If −1 ∈
NK/Q(K̇), then there exists b ∈ E(RK) that is positive at ∞1 and negative
at∞2 (cf. [Cz2, proof of Proposition 3.2]). Moreover, the class 〈b〉 belongs to
the set of generators of the group φ(WRK). In particular, if D 6≡ 1 (mod 8),
then the set

{〈1〉, 〈p1〉, . . . , 〈ps−1〉, 〈b〉}
generates φ(WRK) (cf. [Cz1, pp. 114, 117]).

Let K = Q(
√
D) be any quadratic number field. It is known that

RK =

{
Z[
√
D] when D 6≡ 1 (mod 4),

Z[(1 +
√
D)/2] when D ≡ 1 (mod 4).

Moreover, O < RK is an order if and only if there exists m ∈ N such that

O =

{
Z[m
√
D] when D 6≡ 1 (mod 4),

Z[m(1 +
√
D)/2] when D ≡ 1 (mod 4)

(cf. [BC, p. 151]). The conductor f of O is then the principal ideal generated
by m, f = mRK .

Proposition 3.1. Let K=Q(
√
D) be a quadratic number field, O<RK

be an order and f = mRK be its conductor. Let p ∈ E(RK) be a prime
number satisfying one of the following two conditions:

(i) p - m,
(ii) p |m and p |D.

Then 〈p〉 ∈ im(φ ◦ ϕ).

Proof. (i) Since gcd(p,m) = 1, there exist x, y ∈ Z such that

px+my = 1.

In particular pRK + f = RK , so 〈p〉 ∈ im(φ ◦ ϕ).
(ii) Assume m = pr · m′ for some r,m′ ∈ N and p - m′. Consider the

element
z := pr+1 ·m+m′ ·m

√
D ∈ O.
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Then

z2 = pm2 ·
[(
p2r+1 +m′2 · D

p

)
+ 2m

√
D

]
= pm2 · h.

Moreover, h ∈ O and hK̇2 = pK̇2. Since p - m′ and D is a square-free
integer, it is easy to observe that

gcd

(
p2r+1,m′2 · D

p

)
= 1.

Hence

p2r+1RK +m′2 · D
p
RK = RK .

We show that hRK + f = RK . Indeed, otherwise there exists a maximal
ideal Q in the representation of the conductor f = mRK which is also in
the representation of the ideal hRK . Then hRK ⊆ Q, i.e. h ∈ Q. But
2m
√
D ∈ f ⊆ Q, so

p2r+1 +m′2 · D
p
∈ Q.(3.1)

Because pr ·m′ = m ∈ Q, either p ∈ Q or m′ ∈ Q. In both cases, by (3.1),

p2r+1 ∈ Q and m′2 · D
p
∈ Q.

Therefore

RK = p2r+1RK +m′2 · D
p
RK ⊆ Q,

which is impossible.
Finally, from Theorem 2.9 it follows that 〈p〉 ∈ im(φ ◦ ϕ).

Observe that every prime divisor pi, i ∈ {1, . . . , s}, of the discriminant
of the field K = Q(

√
D) is a divisor of the integer D (except for p1 = 2 in

the case when D ≡ 3 (mod 4)).

Corollary 3.2. Let K = Q(
√
D) be a nonreal quadratic number field

with D 6≡ 3 (mod 4). Moreover, let O be an order. Then the natural homo-
morphism ϕ : WO →WRK is surjective.

Corollary 3.3. Let K = Q(
√
D) be a nonreal quadratic number field

with D ≡ 3 (mod 4). Moreover, let O = Z[m
√
D] be an order such that

2 - m. Then the natural homomorphism ϕ : WO →WRK is surjective.

Proposition 3.4. Let K = Q(
√
D) be any quadratic number field with

D ≡ 3 (mod 4). If O = Z[m
√
D] is an order such that 2 |m, then

〈p1〉 = 〈2〉 /∈ im(φ ◦ ϕ).

Proof. First assume m = 2. Denote O1 := Z[2
√
D] and suppose that

〈2〉 ∈ im(φ ◦ ϕ1), where ϕ1 : WO1 →WRK is the natural homomorphism.
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In the same way as in (2.4), from Lemma 2.1 it follows that there exists
an ideal I of O1 and an element k1 ∈ O1 \ {0} such that

I2 = 2k21O1.

Multiplying the above equality by the principal ideal of O1 generated by the
element conjugate to k21, we obtain

T 2 = 2n2O1

for some ideal T of O1 and n ∈ N. We will show that this is impossible.

Assume 2 - n. Then for every x+ 2y
√
D ∈ T , where x, y ∈ Z, we have

2 | (x+ 2y
√
D)2.

Hence 2 |x, so in particular the rational part of every element of the ideal
T 2 is divisible by 4. But 2n2 ∈ T 2 ∩ N and 2 - n, a contradiction.

Assume n = 2r · n′ for some r, n′ ∈ N and 2 - n′. Then

T 2 = 22r+1 · n′2O1.(3.2)

Since 2r + 1 ≥ 3, for every x+ 2y
√
D ∈ T we have

23 | (x+ 2y
√
D)2 in O1 = Z[2

√
D].

Hence

23 | (x2 + 4y2D) and 22 |xy.
By assumption, D ≡ 3 (mod 4), so 2 |x and 2 | y. Therefore

2 | (x+ 2y
√
D) in O1.

There exists an ideal T1 of O1 such that

T = 2O1 · T1,
i.e. by (3.2),

T 2
1 = 22r−1 · n′2O1,

where 2r − 1 ≥ 1.

Repeating this procedure until 2r− 1 = 1, we prove that there exists an
ideal T ′ of O1 such that

T ′2 = 2n′2O1.

But 2 - n′, so this is impossible.

To sum up, we have shown that if O1 = Z[2
√
D], then 〈2〉 /∈ im(φ ◦ ϕ1).

Assume that O = Z[m
√
D] is any order such that 2 |m. Suppose that

〈2〉 ∈ im(φ ◦ ϕ). By Theorem 2.9 there exists h ∈ O such that

hK̇2 = 2K̇2 and hRK +mRK = RK .

But

Z[m
√
D] ⊆ Z[2

√
D] = O1,
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so h ∈ O1. Moreover,

RK = hRK +mRK ⊆ hRK + 2RK , i.e. hRK + 2RK = RK .

Using again Theorem 2.9 we get 〈2〉 ∈ im(φ ◦ ϕ1), a contradiction. Thus,
〈2〉 /∈ im(φ ◦ ϕ).

Corollary 3.5. Let K = Q(
√
D) with D ≡ 3 (mod 4). Moreover, let

O = Z[m
√
D] be an order such that 2 |m. Then ϕ : WO → WRK is not

surjective.

Now assume K = Q(
√
D) is a real field with −1 ∈ NK/Q(K̇). If p1, . . . , ps

are all the pairwise distinct prime divisors of the discriminant of K, then
the condition −1 ∈ NK/Q(K̇) can be replaced by pi ≡ 1, 2 (mod 4) for
i = 1, . . . , s.

We give a necessary and sufficient condition for 〈b〉 ∈ im(φ ◦ ϕ), where
b ∈ E(RK) ∩ O is positive at ∞1 and negative at ∞2.

In elementary number theory the following fact is known.

Proposition 3.6. Let c = 2rq1 · · · ql, where r ∈ N ∪ {0} and q1, . . . , ql
are odd prime numbers. Then the equation X2 + Y 2 = c has a solution
(x, y) ∈ Z × Z with gcd(x, y, c) = 1 if and only if r ∈ {0, 1} and qi ≡ 1
(mod 4) for every i ∈ {1, . . . , l}.

Proposition 3.7. Let K = Q(
√
D) be a real quadratic number field

with D ≡ 1 (mod 4) and −1 ∈ NK/Q(K̇). Let O = Z[m(1 +
√
D)/2] be an

order with m = 2rq1 · · · ql, where r ∈ N ∪ {0} and q1, . . . , ql are odd prime
numbers. Moreover, let b ∈ E(RK)∩O be positive at∞1 and negative at∞2.
Then 〈b〉 ∈ im(φ ◦ ϕ) if and only if r ∈ {0, 1} and qi ≡ 1 (mod 4) for every
i ∈ {1, . . . , l}.

Proof. (⇒) By Theorem 2.9 there exists h = x + ym(1 +
√
D)/2 ∈ O

such that
hK̇2 = bK̇2 and hRK + f = RK .

Because NK/Q(h) < 0 and h ∈ E(RK) ∩ O, we have

NK/Q(h) = −t2 for some t ∈ N.
Observe that

−t2 = NK/Q(h) = hh = x2 +m ·
[
xy +

y2

4
m(1−D)

]
,

where h denotes the element conjugate to h. Since D ≡ 1 (mod 4),

a := xy +
y2

4
m(1−D) ∈ Z.

Hence

x2 + t2 = −ma, where −ma ∈ N.(3.3)



362 B. Rothkegel

We assume gcd(x2, t2, a) is a square-free integer (if n2 | gcd(x2, t2, a) for some
n ∈ N, then we divide (3.3) by n2).

Suppose either r > 1, or qi ≡ 3 (mod 4) for some i ∈ {1, . . . , l}. By Propo-
sition 3.6 there exists a prime number p such that p |x, p | t and p2 |ma. Since
gcd(x2, t2, a) is a square-free integer, p |m. Hence p | (x+ym(1 +

√
D)/2) in

the ring RK , i.e.
hRK + f = hRK +mRK 6= RK ,

a contradiction.
(⇐) Let

m1 :=

{
m when 2 - m,

m/2 when 2 |m.

Obviously m1 ≡ 1 (mod 2).
Since D ≡ 1 (mod 4) and −1 ∈ NK/Q(K̇), every prime divisor of D is

congruent to 1 modulo 4. By Proposition 3.6 there exist x, y ∈ Z such that

x2 + y2 = m2
1D and gcd(x, y,m2

1D) = 1.

We assume y ≡ 1 (mod 2).
Consider

g := x+m1

√
D =

{
(x−m) + 2m(1 +

√
D)/2 when 2 - m,

(x−m1) +m(1 +
√
D)/2 when 2 |m.

Observe that g ∈ O and

NK/Q(g) = gg = x2 −m2
1D = −y2.

Moreover, gcd(NK/Q(g),m) = 1, so

gRK + f = gRK +mRK = RK .

We show that g ∈ E(RK).
If g ∈ U(RK), then g ∈ E(RK). Assume g /∈ U(RK). Let P be a maximal

ideal in the decomposition of the ideal gRK . The ideal P lies over some prime
number p.

(a) If p ramifies in K (pRK = P2), then p |D. Moreover, p |NK/Q(g), so

gcd(x, y,m2
1D) > 1, a contradiction.

(b) If p remains prime in K (pRK = P), then p | g in RK . It is easy
to observe that p | 2m and p |NK/Q(g). If p |m1, then gcd(x, y,m2

1D) > 1,
which is not the case. If p = 2, then 2 | y, which is not the case either.

(c) Hence p splits in K, pRK = PP. Observe that the ideal P does not
belong to the decomposition of the ideal gRK . Otherwise, p | g in RK , which
is a contradiction. The ideal P belongs only to the decomposition of the
ideal gRK . Because

gRK · gRK = (yRK)2,

we have ordP g = ordP g ≡ 0 (mod 2). Finally, g ∈ E(RK) ∩ O.
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Theorem 2.9 implies that

〈g〉 ∈ im(φ ◦ ϕ).(3.4)

Since NK/Q(g) = −y2, from [Cz2, Proposition 3.2, p. 36] it follows that

bK̇2 = ±gpr11 · · · p
rs−1

s−1 K̇
2,

where p1 . . . , ps−1 are pairwise distinct prime divisors of the discriminant of
the field K and ri ∈ {0, 1}, i = 1, . . . , s− 1. Hence

〈b〉 = ±〈g〉〈pr11 〉 · · · 〈p
rs−1

s−1 〉
in the Witt ring WK. By (3.4) and Proposition 3.1, 〈b〉 ∈ im(φ ◦ ϕ).

Corollary 3.8. Let K = Q(
√
D) be a real quadratic number field with

D ≡ 5 (mod 8) and −1 ∈ NK/Q(K̇). Moreover, let O = Z[m(1 +
√
D)/2]

be an order with m = 2rq1 · · · ql, where r ∈ {0, 1} and q1, . . . , ql are odd
prime numbers such that qi ≡ 1 (mod 4) for every i ∈ {1, . . . , l}. Then
ϕ : WO →WRK is surjective.

Proof. This follows from statements on page 358 and Propositions 3.1
and 3.7.

Corollary 3.9. Let K = Q(
√
D) be a real quadratic number field with

D ≡ 1 (mod 4) and −1 ∈ NK/Q(K̇). Moreover, let O = Z[m(1 +
√
D)/2]

be an order with m = 2rq1 · · · ql, where r ∈ N ∪ {0} and q1, . . . , ql are odd
prime numbers. If either r > 1, or qi ≡ 3 (mod 4) for some i ∈ {1, . . . , l},
then ϕ : WO →WRK is not surjective.

Proposition 3.10. Let K = Q(
√
D) be a real quadratic number field

with 2 |D and −1 ∈ NK/Q(K̇). Let O = Z[m
√
D] be an order with m =

2rq1 · · · ql, where r ∈ N∪{0} and q1, . . . , ql are odd prime numbers. Moreover,
let b ∈ E(RK)∩O be positive at∞1 and negative at∞2. Then 〈b〉 ∈ im(φ◦ϕ)
if and only if r = 0 and qi ≡ 1 (mod 4) for every i ∈ {1, . . . , l}.

Proof. (⇒) Theorem 2.9 yields h = x+ ym
√
D ∈ O such that

hK̇2 = bK̇2 and hRK + f = RK .

As in the proof of the implication “⇒” of Proposition 3.7 we notice that
NK/Q(h) = −t2 for some t ∈ N. Hence

x2 + t2 = m2y2D.

We assume gcd(x, t, y) = 1.
If either r > 0, or qi ≡ 3 (mod 4) for some i ∈ {1, . . . , l}, then by Propo-

sition 3.6 there exists a prime number p such that p |x, p | t and p2 |m2D.
Since D is a square-free integer, p |m. Then p |h in RK , so

hRK + f = hRK +mRK 6= RK ,

a contradiction.



364 B. Rothkegel

(⇐) Since −1 ∈ NK/Q(K̇), every odd prime divisor of D is congruent
to 1 modulo 4. Proposition 3.6 gives x, y ∈ Z such that

x2 + y2 = m2D and gcd(x, y,m2D) = 1.

Consider g := x+m
√
D ∈ O. Obviously,

NK/Q(g) = x2 −m2D = −y2.
Moreover, gcd(NK/Q(g),m) = 1, so

gRK + f = gRK +mRK = RK .

As in the proof of the implication “⇐” of Proposition 3.7, we show that
g ∈ E(RK). Hence 〈g〉 ∈ im(φ ◦ ϕ) and finally,

〈b〉 = ±〈g〉〈pr11 〉 · · · 〈p
rs−1

s−1 〉 ∈ im(φ ◦ ϕ).

Corollary 3.11. Let K = Q(
√
D) be a real quadratic number field

with 2 |D and −1 ∈ NK/Q(K̇). Moreover, let O = Z[m
√
D] be an order with

m = 2rq1 · · · ql, where r ∈ N ∪ {0} and q1, . . . , ql are odd prime numbers.
Then ϕ : WO →WRK is surjective if and only if r = 0 and qi ≡ 1 (mod 4)
for every i ∈ {1, . . . , l}.

Proof. This follows from page 358 and Propositions 3.1 and 3.10.

4. Quadratic function fields. Assume F is a finite field of character-
istic 6= 2. Assume ε is a generator of the group Ḟ. Let F = F(X) be the
rational function field over F and ∞F be the prime of F with uniformizing
parameter 1/X.

Let D ∈ F[X] be a square-free polynomial of degree ≥ 1 and ad be the
leading coefficient of D. We assume ad is either 1 or ε. Let K = F (

√
D).

Theorem 4.1 ([R, Proposition 14.6]).

(i) If degD ≡ 1 (mod 2), then ∞F ramifies in K.
(ii) If degD ≡ 0 (mod 2) and ad = 1, then ∞F splits in K.

(iii) If degD ≡ 0 (mod 2) and ad = ε, then ∞F is prime in K.

The field K is said to be real if ∞F splits in K, and nonreal otherwise.

Throughout this section we assume that S is the set of primes of K
which lie over ∞F . Let

DK(S) = {g ∈ E(RK(S)) : (−1, g)P = 1 for every P ∈ S},
where (·, ·)P denotes the P-adic Hilbert symbol. Let uK(S) denote the
2-rank of the group E(RK(S))/DK(S) (cf. [Cz3, p. 607], [RC, p. 196]).

Assume p1, . . . , ps ∈ F[X] are all the pairwise distinct monic irreducible
polynomials which divide D. From [RC, Proposition 6.2] it follows that
ε ∈ NK/F (K̇) if and only if each pi has even degree. If ε ∈ NK/F (K̇), then
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there exists b ∈ E(RK(S)) such that NK/F (b) ∈ εḞ 2 (cf. [RC, Lemma 1.12]).
By [RC, p. 208] and [Cz3, Theorem 4.2] the set of classes

{〈1〉, 〈ε〉, 〈p1〉, . . . , 〈ps−1〉, 〈b〉} when ε ∈ NK/F (K̇),

{〈1〉, 〈ε〉, 〈p1〉, . . . , 〈ps−1〉} when ε /∈ NK/F (K̇),
(4.1)

is contained in the set of generators of the group φ(WRK(S)). In particular,
if K is either a nonreal field, or a real field and uK(S) 6= 0, then the set
(4.1) generates φ(WRK(S)).

It is known that

RK(S) = F[X][
√
D].

Moreover, O < RK(S) is an order if and only if there exists 0 6= m ∈ F[X]
such that

O = F[X][m
√
D]

(cf. [R, p. 248, Proposition 17.6]). The conductor f of O is the principal ideal
generated by m, f = mRK(S).

Proposition 4.2. Let K = F (
√
D) be a quadratic function field, let

O < RK(S) be an order and let f = mRK(S) be its conductor. Suppose
that p ∈ E(RK(S))∩ F[X] is an irreducible polynomial satisfying one of the
following two conditions:

(i) p - m,
(ii) p |m and p |D.

Then 〈p〉 ∈ im(φ ◦ ϕ).

Proof. This is proved similarly to Proposition 3.1.

The element ε is invertible in O. Hence

〈ε〉 ∈ im(φ ◦ ϕ).(4.2)

Corollary 4.3. Let K = F (
√
D) be a nonreal quadratic function field

with ε /∈ NK/F (K̇). Moreover, let O < RK(S) be an order. Then the natural
homomorphism ϕ : WO →WRK(S) is surjective.

Corollary 4.4. Let K = F (
√
D) be a real quadratic function field with

ε /∈ NK/F (K̇) and uK(S) 6= 0. Moreover, let O < RK(S) be an order. Then
ϕ : WO →WRK(S) is surjective.

Assume ε ∈ NK/F (K̇). We give a necessary and sufficient condition for
〈b〉 ∈ im(φ ◦ ϕ).

Lemma 4.5. Let c = q1 · · · ql, where q1, . . . , ql ∈ F[X] are irreducible.
Then the equation X2 − εY 2 = c has a solution (x, y) ∈ F[X] × F[X] with
gcd(x, y, c) ∼ 1 if and only if deg qi ≡ 0 (mod 2) for every i ∈ {1, . . . , l}.
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Proof. (⇒) Suppose deg qi ≡ 1 (mod 2) for some i ∈ {1, . . . , l}. Ob-
viously, x2 − εy2 ≡ 0 (mod qi). Because gcd(x, y, c) ∼ 1, we have y 6≡ 0
(mod qi). Then (x/y)2 ≡ ε (mod qi), i.e. ε is a square modulo qi. This is
impossible (cf. [R, Propositions 3.1 3), 3.2]).

(⇐) We use induction on l. Fix i∈{1, . . . , l}. Because deg qi≡0 (mod 2),
we have

(ε, qi)qi = 1 and (ε, qi)∞F = 1.

For every prime p /∈ {qi,∞F } of the field F the elements ε, qi are p-adic
units, so (ε, qi)p = 1. From the local-global principle it follows that the
form 〈ε, qi〉 represents 1 over the field F . It is easy to observe that the form
〈1,−ε〉 represents qi over F . By [P, 2.2 Theorem, Chapter 1] the form 〈1,−ε〉
represents qi over the ring F[X]. Hence there exist zi, ti ∈ F[X] such that
z2i − εt2i = qi. Obviously, gcd(zi, ti, qi) ∼ 1.

Consider the equation X2 − εY 2 = q1 · · · qlql+1. By the induction as-
sumption there exist x, y ∈ F[X] such that

x2 − εy2 = q1 · · · ql and gcd(x, y, q1 · · · ql) ∼ 1.

Observe that

(zl+1x+ εtl+1y)2 − ε(zl+1y + tl+1x)2 = q1 · · · qlql+1,

(zl+1x− εtl+1y)2 − ε(zl+1y − tl+1x)2 = q1 · · · qlql+1.

Using elementary arguments we prove that either

gcd(zl+1x+ εtl+1y, zl+1y + tl+1x, q1 · · · qlql+1) ∼ 1, or

gcd(zl+1x− εtl+1y, zl+1y − tl+1x, q1 · · · qlql+1) ∼ 1.

Proposition 4.6. Let K = F (
√
D) be a quadratic function field with

ε ∈ NK/F (K̇). Let O = F[X][m
√
D] be an order with m = q1 · · · ql, where

q1, . . . , ql ∈ F[X] are irreducible polynomials. Moreover, let b∈E(RK(S))∩O
with NK/F (b) ∈ εḞ 2. Then 〈b〉 ∈ im(φ ◦ϕ) if and only if deg qi ≡ 0 (mod 2)
for every i ∈ {1, . . . , l}.

Proof. Using Lemma 4.5 we prove the implication “⇒” similarly to “⇒”
of Proposition 3.10.

(⇐) Since ε ∈ NK/F (K̇), every monic irreducible polynomial which di-
vides D has even degree. Lemma 4.5 yields x, y ∈ F[X] such that

x2 − εy2 = m2D and gcd(x, y,m2D) ∼ 1.

Consider g := x+m
√
D ∈ O. Similarly to the proofs of “⇐” of Propositions

3.7 and 3.10 we show that

〈g〉 ∈ im(φ ◦ ϕ).(4.3)

Since NK/F (g) = εy2, from [RC, p. 208] it follows that

bK̇2 = gεrpr11 · · · p
rs−1

s−1 K̇
2,
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where p1, . . . , ps−1 ∈ F[X] are pairwise distinct monic irreducible polynomi-
als which divide D, and r, ri ∈ {0, 1}, i = 1, . . . , s− 1. Hence

〈b〉 = 〈g〉〈εr〉〈pr11 〉 · · · 〈p
rs−1

s−1 〉
in WK. By (4.2), (4.3) and Proposition 4.2, 〈b〉 ∈ im(φ ◦ ϕ).

Corollary 4.7. Let K = F (
√
D) be a nonreal quadratic function field

with ε ∈ NK/F (K̇). Moreover, let O = F[X][m
√
D] be an order with m =

q1 · · · ql, where q1, . . . , ql ∈ F[X] are irreducible polynomials such that
deg qi ≡ 0 (mod 2) for every i ∈ {1, . . . , l}. Then the natural homomor-
phism ϕ : WO →WRK(S) is surjective.

Corollary 4.8. Let K = F (
√
D) be a real quadratic function field with

ε ∈ NK/F (K̇) and uK(S) 6= 0. Moreover, let O = F[X][m
√
D] be an order

with m = q1 · · · ql, where q1, . . . , ql ∈ F[X] are irreducible polynomials such
that deg qi ≡ 0 (mod 2) for every i ∈ {1, . . . , l}. Then ϕ : WO → WRK(S)
is surjective.

Corollaries 4.7 and 4.8 follow from statements on page 365, (4.2) and
Propositions 4.2 and 4.6.

Corollary 4.9. Let K = F (
√
D) with ε ∈ NK/F (K̇). Moreover, let

O = F[X][m
√
D] be an order with m = q1 · · · ql, where q1, . . . , ql ∈ F[X] are

irreducible polynomials. If deg qi ≡ 1 (mod 2) for some i ∈ {1, . . . , l}, then
ϕ : WO →WRK(S) is not surjective.

5. Forms of rank ≥ 1. Let K be a global field and R < K be a
Dedekind domain. Now we generalize Theorem 2.4.

Lemma 5.1. Let O < R be an order, f be its conductor and P be a
maximal ideal of R such that P+ f = R. Then the localisation of the ring R
at the ideal P is equal to the localisation of O at the maximal ideal P ∩ O,

RP = OP∩O.

Proof. “⊇” This inclusion is obvious.

“⊆” Let x/y ∈ RP. Then x, y ∈ R and y /∈ P. Because P + f = R, we
have f * P. Choose an element z ∈ f \P. Then zx, zy ∈ O and

x

y
=
zx

zy
∈ OP∩O.

Indeed, if zy ∈ P∩O, then zy ∈ P, i.e. either z ∈ P or y ∈ P, which is not
the case.

Corollary 5.2. Let M be an R-module and P be a maximal ideal of
R such that P + f = R. Then the localisation of the module M at the ideal
P is equal to the localisation of M over the order O at the maximal ideal
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P ∩ O �O:

MP = MP∩O.

Lemma 5.3. Let O < R be an order and M1, . . . ,Ms ⊆ K l be O-modules,
l ∈ N. Moreover, let p be a maximal ideal of O. Then

(M1)p ∩ · · · ∩ (Ms)p = (M1 ∩ · · · ∩Ms)p.

Proof. The inclusion ⊇ is obvious.

“⊆” Let x ∈ (M1)p ∩ · · · ∩ (Ms)p. Then

x =
m1

y1
= · · · = ms

ys

for some m1 ∈ M1, . . . ,ms ∈ Ms and y1, . . . , ys ∈ O \ p. Multiplying the
above equalities of vectors by y1 · · · ys we get the existence of elements
z1, . . . , zs ∈ O \ p such that

z1m1 = · · · = zsms ∈M1 ∩ · · · ∩Ms.

Hence

x =
m1

y1
=
z1m1

z1y1
∈ (M1 ∩ · · · ∩Ms)p.

Let α : K l×K l → K be a bilinear form. Assume that α has a nonsingular
diagonal matrix

A =


a1 · · · 0
...

. . .
...

0 · · · al


in the canonical basis of K l, i.e. 〈a1, . . . , al〉 ∈WK. Moreover, assume that
〈a1, . . . , al〉 ∈ φ(WR), ai ∈ O and aiR + f = R for every i ∈ {1, . . . , l}. We
will generalize Theorem 2.4 to the form 〈a1, . . . , al〉.

Observe that

ordP ai = 0 for every i ∈ {1, . . . , l}
for all but a finite number of maximal ideals P�R.

(I) Fix such an P�R. Consider the free module
⊕l

i=1w
P
i RP ⊆ K l over

the ring RP, where

wP
1 = (1, 0, . . . , 0), . . . , wP

l = (0, . . . , 0, 1).

Consider the restriction of α to
⊕l

i=1w
P
i RP ×

⊕l
i=1w

P
i RP. Then the form

α :
⊕l

i=1w
P
i RP×

⊕l
i=1w

P
i RP→RP has matrix A in the basis (wP

1 , . . . , w
P
l ).

Since ordP ai = 0 for every i ∈ {1, . . . , l},
detA = a1 · · · al ∈ U(RP).

Thus α is nonsingular over the ring RP.
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(II) Let P�R be a maximal ideal R such that

ordP ai > 0 for some i ∈ {1, . . . , l}.
The localisation RP is a P-adic valuation ring. If KP denotes the residue
class field, then from [MH, (3.3) Corollary] it follows that 〈a1, . . . , al〉
belongs to the kernel of the second residue homomorphism of Witt groups
∂P : WK → WKP. By [MH, proof of (3.1) Theorem] there exists a free

module (RP-lattice)
⊕l

i=1w
P
i RP ⊆ K l over RP such that the form

α :
⊕l

i=1w
P
i RP ×

⊕l
i=1w

P
i RP → RP is nonsingular.

Denote by Pf the set of all maximal ideals P of R such that P + f = R.
Let p1, . . . , pm be all the pairwise distinct maximal ideals of O such that

pj + f 6= O for every j ∈ {1, . . . ,m}.
Let

M :=
⋂

P∈Pf

( l⊕
i=1

wP
i RP

)
∩

m⋂
j=1

Olpj ,

where for every P ∈ Pf the vectors wP
1 , . . . , w

P
l are as in (I) and (II). It is

easy to observe that M is an O-module.

Proposition 5.4. Let a1, . . . , al ∈ O and suppose aiR+ f = R for every
i ∈ {1, . . . , l}. Under the assumptions and notation of pages 368 and 369,

(i) MP∩O =
⊕l

i=1w
P
i RP for every P ∈ Pf,

(ii) Mpj = Olpj for every j ∈ {1, . . . ,m}.

Proof. (i) Fix P0 ∈ Pf. It is easy to observe that

M ⊆
l⊕

i=1

wP0
i RP0 .

From Lemma 5.1 it follows that RP0 = OP0∩O. Therefore

MP0∩O ⊆
l⊕

i=1

wP0
i RP0 .(5.1)

To show the opposite inclusion, let Q1, . . . ,Qn be all the pairwise distinct
maximal ideals of R such that

Qi + f 6= R for every i ∈ {1, . . . , n}
(these are all the maximal ideals in the decomposition of f). Consider the
module

N :=
⋂

P∈Pf

( l⊕
i=1

wP
i RP

)
∩

n⋂
i=1

RlQi
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over the ring R. Since

wP
1 = (1, 0, . . . , 0), . . . , wP

l = (0, . . . , 0, 1)

for all but a finite number of P ∈ Pf, from [O, 81:14], [MH, (3.2) Lemma] it
follows that

NP0 =

l⊕
i=1

wP0
i RP0 .

Hence in particular

l⊕
i=1

wP0
i RP0 ⊆

[ ⋂
P∈Pf

( l⊕
i=1

wP
i RP

)]
P0

.

Because by assumption P0 + f = R, Corollary 5.2 yields[ ⋂
P∈Pf

( l⊕
i=1

wP
i RP

)]
P0

=
[ ⋂
P∈Pf

( l⊕
i=1

wP
i RP

)]
P0∩O

,

i.e.
l⊕

i=1

wP0
i RP0 ⊆

[ ⋂
P∈Pf

( l⊕
i=1

wP
i RP

)]
P0∩O

.(5.2)

We will show that also
l⊕

i=1

wP0
i RP0 ⊆

m⋂
j=1

(Olpj )P0∩O.

Fix an ideal pj .
(I) Assume that P0 is an ideal such that

ordP0 ai = 0 for every i ∈ {1, . . . , l}.
Then

wP0
1 = (1, 0, . . . , 0), . . . , wP0

l = (0, . . . , 0, 1),

so wP0
1 , . . . , wP0

l ∈ O
l
pj . Hence

l⊕
i=1

wP0
i RP0 =

l⊕
i=1

wP0
i OP0∩O ⊆ (Olpj )P0∩O,

and finally
l⊕

i=1

wP0
i RP0 ⊆

m⋂
j=1

(Olpj )P0∩O.

(II) Assume that

ordP0 ai > 0 for some i ∈ {1, . . . , l}.
Fix such an element ai0 , i0 ∈ {1, . . . , l}.
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Since by assumption ai0R + f = R, observe that ai0 ∈ U(Opj ). Indeed,
it is enough to prove that ai0 /∈ pj . From Corollary 2.7 it follows that
ai0O + f = O. Therefore if ai0 ∈ pj , then

O = ai0O + f ⊆ pj + f 6= O,
which is impossible.

Let π ∈ RP0 with ordP0 π = 1. Then ai0 = πk · u for some k ∈ N and
u ∈ U(RP0).

Observe that
l⊕

i=1

wP0
i K = K l = (1, 0, . . . , 0)K ⊕ · · · ⊕ (0, . . . , 0, 1)K.(5.3)

For every vector wP0
i there exist x1, . . . , xl ∈ K such that

wP0
i = (1, 0, . . . , 0)x1 + · · ·+ (0, . . . , 0, 1)xl.

Fix xs, s ∈ {1, . . . , l}. Assume xs 6= 0. Then xs = πr · v for some r ∈ Z and
v ∈ U(RP0).

If r ≥ 0, then xs ∈ RP0 = OP0∩O, so

(0, . . . , 1
s
, . . . , 0)xs ∈ (Olpj )P0∩O.

If r < 0, then choose c ∈ N such that r ≥ −ck. Then

xs = πr · v = a−ci0 · π
r+ck · uc · v,

where a−ci0 ∈ Opj , π
r+ck · uc · v ∈ RP0 = OP0∩O, so again

(0, . . . , 1
s
, . . . , 0)xs ∈ (Olpj )P0∩O.

We get

wP0
i ∈ (Olpj )P0∩O.(5.4)

Hence
l⊕

i=1

wP0
i RP0 ⊆ (Olpj )P0∩O,

and finally
l⊕

i=1

wP0
i RP0 ⊆

m⋂
j=1

(Olpj )P0∩O.

From (I), (II) and (5.2) it follows that

l⊕
i=1

wP0
i RP0 ⊆

[ ⋂
P∈Pf

( l⊕
i=1

wP
i RP

)]
P0∩O

∩
m⋂
j=1

(Olpj )P0∩O.
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By Lemma 5.3,
l⊕

i=1

wP0
i RP0 ⊆MP0∩O.

(ii) Fix j0 ∈ {1, . . . ,m}. The inclusion Mpj0
⊆ Olpj0 is obvious. Observe

that

(1, 0, . . . , 0), . . . , (0, . . . , 0, 1) ∈
m⋂
j=1

Olpj .

Hence

Olpj0 ⊆
( m⋂
j=1

Olpj
)
pj0

.(5.5)

Denote by Pf1 and Pf2 the sets of maximal ideals P ∈ Pf such that

ordP ai = 0 for every i ∈ {1, . . . , l}

and of maximal ideals P ∈ Pf such that

ordP ai > 0 for some i ∈ {1, . . . , l},

respectively. Obviously Pf2 is a finite set.

Because for every P ∈ Pf1 we have

wP
1 = (1, 0, . . . , 0), . . . , wP

l = (0, . . . , 0, 1),

as in (5.5) we obtain

Olpj0 ⊆
( ⋂
P∈Pf1

l⊕
i=1

wP
i RP

)
pj0

.(5.6)

However, using (5.3) for P0 = P and applying similar arguments to those
for (5.4) we prove that

(1, 0, . . . , 0), . . . , (0, . . . , 0, 1) ∈
( l⊕
i=1

wP
i RP

)
pj0

for every P ∈ Pf2 , i.e.

Olpj0 ⊆
⋂

P∈Pf2

( l⊕
i=1

wP
i RP

)
pj0

.(5.7)

From (5.5)–(5.7) and Lemma 5.3 it follows that Olpj0 ⊆Mpj0
.
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Proposition 5.5. Let a1, . . . , al ∈ O and suppose that aiR + f = R for
every i ∈ {1, . . . , l}. Moreover, let

M =
⋂

P∈Pf

( l⊕
i=1

wP
i RP

)
∩

m⋂
j=1

Olpj

under the assumptions and notation of pages 368 and 369. Then the
O-module M is finitely generated and projective of rank l.

Proof. Fix a maximal ideal p of O. Assume p + f = O. There exists
a unique maximal ideal P ∈ Pf such that p = P ∩ O. Therefore from
Proposition 5.4 it follows that

Mp = MP∩O =

l⊕
i=1

wP
i RP.

Hence Mp is a free Op (= RP)-module of rank l.

Let p + f 6= O (i.e. p ∈ {p1, . . . , pm}). Again Proposition 5.4 yields
Mp = Olp, so Mp is a free Op-module of rank l.

To sum up, the localisation of the module M at every maximal ideal of
the order O is a free module of rank l. Therefore it suffices to prove that M
is finitely generated over O.

Observe that we have at most finitely many vectors wP
i such that

wP
i /∈ Ol. Every coordinate of a vector wP

i has the form

xPi /y
P
i for some xPi ∈ O, y

P
i ∈ O \ {0}.

Consider the following element z of the order O. If there does not exist a
vector wP

i such that wP
i /∈ Ol, then we take z = 1. Otherwise, let z be the

product of the denominators yPi of all vectors wP
i such that wP

i /∈ Ol. Then

zwP
i ∈ Ol for every P ∈ Pf. Moreover,

zM =
⋂

P∈Pf

( l⊕
i=1

zwP
i RP

)
∩

m⋂
j=1

zOlpj ⊆
⋂

P∈Pf

RlP ∩
m⋂
j=1

Olpj .

But RP = OP∩O for every P ∈ Pf, so

zM ⊆
⋂

P∈Pf

OlP∩O ∩
m⋂
j=1

Olpj .

Since {P ∩ O : P ∈ Pf}, p1, . . . , pm are all the pairwise distinct maximal
ideals of O (cf. [GHK, proof of Proposition 4(ii)]), it is easy to observe that⋂

P∈Pf

OlP∩O ∩
m⋂
j=1

Olpj = Ol.
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Hence zM ⊆ Ol is a submodule of the finitely generated O-module Ol. But
O is a noetherian domain, so zM is a finitely generated O-module. It suffices
to notice that M ∼= zM , i.e. M is finitely generated over O.

Theorem 5.6. Let K be a global field and R < K be a Dedekind domain.
Moreover, let O < R be an order, f be the conductor of O and suppose that
〈a1, . . . , al〉 ∈ φ(WR) with a1, . . . , al ∈ O. If

aiR+ f = R for every i ∈ {1, . . . , l},
then 〈a1, . . . , al〉 ∈ im(φ ◦ ϕ).

Proof. Let α : K l ×K l → K be a nonsingular bilinear form with matrix

A =


a1 · · · 0
...

. . .
...

0 · · · al


in the basis

B = ((1, 0, . . . , 0), . . . , (0, . . . , 0, 1))

of K l. Consider the finitely generated projective O-module M from Propo-
sition 5.5 and the restriction of α to M ×M , and fix a maximal ideal p
of O.

Assume p + f = O. Then there exists a unique maximal ideal P ∈ Pf of
R such that p = P ∩ O. We have

Mp = MP∩O =
l⊕

i=1

wP
i RP.

Moreover, RP = Op. From (I) and (II) on pages 368 and 369 it follows that
the localisation αp : Mp ×Mp → Op is nonsingular over Op.

Let p + f 6= O. Then Mp = Olp. Since aiR + f = R, we have ai ∈ U(Op)
for every i ∈ {1, . . . , l} (see proof of Proposition 5.4(i)). The localisation
αp : Mp ×Mp → Op has matrix A in the basis B of the free module Mp.
Hence αp is nonsingular over Op.

To sum up, the localisation of the form α at every maximal ideal p of O
is nonsingular. Hence by [B, (1.4) Proposition] the form α : M ×M → O is
nonsingular over O, so in particular 〈(M,α)〉 ∈WO.

It is easy to observe that

φ ◦ ϕ〈(M,α)〉 = 〈a1, . . . , al〉,
i.e. 〈a1, . . . , al〉 ∈ im(φ ◦ ϕ).

6. Forms 〈〈f, d〉〉, 〈z,−ez〉. Now we formulate some facts for integral
semilocal domains.
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Proposition 6.1. If P is an integral semilocal domain, then every ele-
ment of the Witt ring WP can be written in the form 〈a1, . . . , al〉 for some
a1, . . . , al ∈ U(P ).

Proof. Since P is an integral domain, every finitely generated projective
P -module is free (cf. [M, p. 26]). It suffices to use [M, 2.7 Corollary, p. 32].

Let P be an integral semilocal domain and K be its field of fractions.
Denote by I(K) the fundamental ideal of WK consisting of the Witt classes
of even dimensional forms over K. Denote by I2(P ) the subgroup of the
second power I2(K) of the ideal I(K) additively generated by the set

{〈〈a, b〉〉 ∈WK : a, b ∈ U(P )}.
We will write

〈a1, . . . , al〉 ≡ 〈b1, . . . , bk〉 mod I2(P )

if 〈a1, . . . , al〉 − 〈b1, . . . , bk〉 ∈ I2(P ).

Proposition 6.2. Let 〈a1, . . . , al〉 ∈ WP with a1, . . . , al ∈ U(P ) and l
odd. Moreover, let

a1 · · · alK̇2 =

{
K̇2 when l ≡ 3 (mod 4),

−K̇2 when l ≡ 1 (mod 4).

Then 〈1, a1, . . . , al〉 ∈ I2(P ).

Proof. We use induction on l. If l = 1, then a1K̇
2 = −K̇2, so 〈a1〉 = 〈−1〉

in WK. Therefore

〈1, a1〉 = 〈1,−1〉 = 〈1,−1, 1,−1〉 ∈ I2(P ).

Assume l = 3. Then a1a2a3K̇
2 = K̇2, i.e. a3K̇

2 = a1a2K̇
2. Hence

〈1, a1, a2, a3〉 = 〈1, a1, a2, a1a2〉 ∈ I2(P ).(6.1)

Let l = 5. Observe that

〈a1, a2, a3, a4〉 = 〈1, a1, a2, a1a2〉+ 〈1, a3, a4, a3a4〉(6.2)

− 〈1, 1, a1a2, a1a2〉+ 〈a1a2,−a3a4〉
in WK, so

〈1, a1, a2, a3, a4, a5〉 ≡ 〈1, a1a2,−a3a4, a5〉 mod I2(P ).

Since 〈a1a2,−a3a4, a5〉 ∈ WP and −a1a2a3a4a5K̇2 = K̇2, analogously to
(6.1) we get

〈1, a1a2,−a3a4, a5〉 ∈ I2(P ).

Hence 〈1, a1, a2, a3, a4, a5〉 ∈ I2(P ).
Assume l = 4k + 3 for some k ∈ N. Using (6.2) we obtain

〈a1, . . . , a4k〉 ≡ 〈b1, . . . , b2k〉 mod I2(P )
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for some b1, . . . , b2k ∈ U(P ). Therefore

〈1, a1, . . . , al〉 = 〈1, a1, . . . , a4k, a4k+1, a4k+2, a4k+3〉
≡ 〈1, b1, . . . , b2k, a4k+1, a4k+2, a4k+3〉 mod I2(P ).

Observe that

b1 · · · b2kK̇2 =

{
a1 · · · a4kK̇2 when k ≡ 0 (mod 2),

−a1 · · · a4kK̇2 when k ≡ 1 (mod 2).

Assume k = 2s for some s ∈ N. The form

〈b1, . . . , b2k, a4k+1, a4k+2, a4k+3〉 ∈WP

has rank 4s + 3 < l. Its determinant over K is equal to a1 · · · alK̇2 = K̇2.
By the induction assumption,

〈1, b1, . . . , b2k, a4k+1, a4k+2, a4k+3〉 ∈ I2(P ),

i.e. 〈1, a1, . . . , al〉 ∈ I2(P ).
Assume k = 2s+ 1 for some s ∈ N ∪ {0}. The form

〈b1, . . . , b2k, a4k+1, a4k+2, a4k+3〉 ∈WP

has rank 4(s + 1) + 1 < l. Its determinant over K is −a1 · · · alK̇2 = −K̇2.
By the induction assumption,

〈1, b1, . . . , b2k, a4k+1, a4k+2, a4k+3〉 ∈ I2(P ),

i.e. 〈1, a1, . . . , al〉 ∈ I2(P ).
Analogously to the case l = 4k + 3 we prove that 〈1, a1, . . . , al〉 ∈ I2(P )

for l = 4k + 1, k ∈ N.

Let K be a global field and R < K be a Dedekind domain. Moreover,
let O < R be an order and f be its conductor. Let P =

⋃m
i=1 pi, where

p1, . . . , pm are all the pairwise distinct maximal ideals of O such that

pi + f 6= O for every i ∈ {1, . . . ,m}.
Denote by OP the localisation of the order O at the set O\P. The ring OP
is an integral semilocal domain.

Lemma 6.3. If a ∈ O is nonzero, then

a ∈ U(OP) ⇔ aR+ f = R.

Proof. (⇐) It suffices to observe that a /∈ pi for every i ∈ {1, . . . ,m}
(see proof of Proposition 5.4(i)).

(⇒) Suppose aR + f 6= R. Then there exists a maximal ideal Q in the
decomposition of f such that aR ⊆ Q (cf. [GHK, p. 93]). Hence

a ∈ Q ∩ O = pi for some i ∈ {1, . . . ,m}
(cf. [GHK, proof of Proposition 4(ii)]). This is impossible.
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Corollary 6.4. The group I2(OP) is additively generated by the Pfister
forms 〈〈a, b〉〉 ∈WK such that a, b ∈ O and aR+ f = R, bR+ f = R.

Proof. Let 〈〈c, d〉〉 ∈ WK and c, d ∈ U(OP). Then c = x1/y1, d = x2/y2
for some x1, x2, y1, y2 ∈ O \ P. Moreover, we have a := x1y1 ∈ O ∩ U(OP),
b := x2y2 ∈ O ∩ U(OP) and 〈〈c, d〉〉 = 〈〈a, b〉〉 in WK.

Theorem 6.5. Let K be a global field, R < K be a Dedekind domain
and O < R be an order. Moreover, let 〈a1, . . . , al〉 ∈ φ(WR) with l odd and

a1 · · · alK̇2 =

{
K̇2 when l ≡ 3 (mod 4),

−K̇2 when l ≡ 1 (mod 4).

Then

〈a1, . . . , al〉 ∈ im(φ ◦ ϕ) ⇔ 〈1, a1, . . . , al〉 ∈ I2(OP).

Proof. (⇐) From Corollary 6.4 it follows that

〈1, a1, . . . , al〉 = 〈1, b1, c1, b1c1〉+ · · ·+ 〈1, bk, ck, bkck〉 ∈ φ(WR)

for some b1, c1, . . . , bk, ck ∈ O such that

biR+ f = R, ciR+ f = R for every i ∈ {1, . . . , k}.
Since none of the maximal ideals in the decomposition of f belongs to the
decompositions of the ideals biR, ciR, none of them belongs to the decom-
position of biciR. Therefore

biciR+ f = R for every i ∈ {1, . . . , k}.
By Theorem 5.6,

〈1, a1, . . . , al〉 = 〈1, b1, c1, b1c1〉+ · · ·+ 〈1, bk, ck, bkck〉 ∈ im(φ ◦ ϕ), i.e.

〈a1, . . . , al〉 = −〈1〉+ 〈1, a1, . . . , al〉 ∈ im(φ ◦ ϕ).

(⇒) Let ϕ1 : WOP → WK be the natural homomorphism. Because
〈a1, . . . , al〉 ∈ im(φ ◦ ϕ), also 〈a1, . . . , al〉 ∈ imϕ1. By Proposition 6.1 there
exist b1, . . . , bk ∈ U(OP) such that

ϕ1(〈b1, . . . , bk〉) = 〈a1, . . . , al〉.
Then 〈b1, . . . , bk〉 = 〈a1, . . . , al〉 in WK. Moreover, k ≡ l (mod 2), i.e. k is
odd. Comparing the discriminants of these forms we get

(−1)
1
2
k(k−1)b1 · · · bkK̇2 = (−1)

1
2
l(l−1)a1 · · · alK̇2.

Therefore

b1 · · · bkK̇2 =

{
K̇2 when k ≡ 3 (mod 4),

−K̇2 when k ≡ 1 (mod 4).

By Proposition 6.2,

〈1, a1, . . . , al〉 = 〈1, b1, . . . , bk〉 ∈ I2(OP).
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Corollary 6.6. Let 〈〈f, d〉〉 ∈ φ(WR). Then

〈〈f, d〉〉 ∈ im(φ ◦ ϕ) ⇔ 〈〈f, d〉〉 ∈ I2(OP).

Proof. Notice that 〈〈f, d〉〉 ∈ im(φ ◦ ϕ)⇔ 〈f, d, fd〉 ∈ im(φ ◦ ϕ).

Let P2 denote the set of all dyadic primes of the field K.

Corollary 6.7. Let K be a global field with charK 6= 2, S be a Hasse
set on K and O < RK(S) be an order. Moreover, let f be the conductor of O
and 〈〈f, d〉〉 ∈ φ(WRK(S)). If there exist f ′, d′ ∈ O with the properties that
f ′RK(S) + f = RK(S), d′RK(S) + f = RK(S) and

(i) (−f ′,−d′)P = (−f,−d)P for every P ∈ P2 ∪ S,
(ii) (−f ′,−d′)P = 1 for every P /∈ P2 ∪ S,

then 〈〈f, d〉〉 ∈ im(φ ◦ ϕ).

Proof. Let P ∈ S be a real prime of K. Denote by signP the signature
determined by P. From (i) it follows that

signP〈〈f ′, d′〉〉 = signP〈〈f, d〉〉.

Assume P ∈ P2 ∪ S is a finite prime. Denote by hP the P-adic Hasse–Witt
invariant. Also from (i) it follows that

hP〈〈f ′, d′〉〉 = (−f ′,−d′)P = (−f,−d)P = hP〈〈f, d〉〉.

If P /∈ P2 ∪ S, then (−f,−d)P = 1 (cf. [Cz3, Lemma 3.4]), so by (ii),

hP〈〈f ′, d′〉〉 = hP〈〈f, d〉〉.

Finally, 〈〈f ′, d′〉〉 ∼= 〈〈f, d〉〉 over the P-adic completion KP of the field K for
every prime P of K. By the local-global principle, 〈〈f ′, d′〉〉 ∼= 〈〈f, d〉〉 over K.
Hence 〈〈f ′, d′〉〉 = 〈〈f, d〉〉 in WK.

From Corollary 6.4 it follows that 〈〈f ′, d′〉〉 ∈ I2(OP). By Corollary 6.6,

〈〈f, d〉〉 = 〈〈f ′, d′〉〉 ∈ im(φ ◦ ϕ).

Theorem 6.5 also has the following corollaries for the form 〈z,−ez〉,
e ∈ E(R) ∩ O.

Corollary 6.8. Let K be any global field, R < K be a Dedekind domain
and O < R be an order. Moreover, let f be the conductor of O and 〈z,−ez〉 ∈
φ(WR) with e ∈ E(R)∩O. Then 〈z,−ez〉 ∈ im(φ◦ϕ) if and only if 〈〈−e, z〉〉 ∈
I2(OP) and there exists e′ ∈ O such that

e′K̇2 = eK̇2 and e′R+ f = R.

Proof. By assumption, e ∈ E(R), so 〈e〉 ∈ φ(WR). Hence

〈−e, z,−ez〉 = −〈e〉+ 〈z,−ez〉 ∈ φ(WR).
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(⇐) Since 〈1,−e, z,−ez〉 ∈ I2(OP), from Theorem 6.5 it follows that
〈−e, z,−ez〉 ∈ im(φ ◦ ϕ). But 〈e〉 ∈ im(φ ◦ ϕ) (see Theorem 2.9), so

〈z,−ez〉 = 〈e〉+ 〈−e, z,−ez〉 ∈ im(φ ◦ ϕ).

(⇒) Since 〈z,−ez〉 ∈ im(φ ◦ ϕ), by Lemma 2.1 there exists an ideal J
of O and an element k ∈ K̇ such that

J2 = ek2O.
For the fractional ideal I = Jk−1 we have

I2 = eO.
By Proposition 2.2,

(6.3) 〈e〉 ∈ im(φ ◦ ϕ).

Hence
〈−e, z,−ez〉 = −〈e〉+ 〈z,−ez〉 ∈ im(φ ◦ ϕ).

By Theorem 6.5,
〈〈−e, z〉〉 ∈ I2(OP).

The second part of the conclusion follows from (6.3) and Theorem 2.9.

Corollary 6.9. Let K be a global field with charK 6= 2, S be a Hasse
set on K and O < RK(S) be an order. Moreover, let f be the conductor of O
and 〈z,−ez〉 ∈ φ(WRK(S)) with e ∈ E(RK(S))∩O. If there exist e′, z′ ∈ O
such that e′K̇2 = eK̇2, e′RK(S) + f = RK(S), z′RK(S) + f = RK(S) and

(i) (e,−z′)P = (e,−z)P for every P ∈ P2 ∪ S,
(ii) (e,−z′)P = 1 for every P /∈ P2 ∪ S,

then 〈z,−ez〉 ∈ im(φ ◦ ϕ).

Proof. Analogously to the proof of Corollary 6.7 we show that

〈〈−e, z〉〉 = 〈〈−e, z′〉〉
in WK. Because e′K̇2 = eK̇2,

〈〈−e, z〉〉 = 〈〈−e, z′〉〉 = 〈〈−e′, z′〉〉.
From Corollary 6.4 it follows that

〈〈−e, z〉〉 = 〈〈−e′, z′〉〉 ∈ I2(OP).

By Corollary 6.8, 〈z,−ez〉 ∈ im(φ ◦ ϕ).

Example 6.10. Let K = Q(
√

3). There is one dyadic prime P0 in K,
so P2 = {P0}. The ring RK of algebraic integers of K is the ring RK(S) of
S-integers of K, where S consists of the two infinite primes ∞1, ∞2 of K.
Assume

√
3 is positive at ∞1 and negative at ∞2. Since −1 /∈ NK/Q(K̇),

from [Cz1, p. 114, 118] it follows that the set

{〈1〉, 〈2〉, 〈z,−ez〉}
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generates the group φ(WRK), where e = −1 and z ∈ K is such that

(−1, z)P0 = −1, (−1, z)∞1 = −1, (−1, z)∞2 = 1

(cf. [Cz1, p. 113]). Observe that

(−1,−z)P0 = (−1,−1)P0(−1, z)P0 = −1,

(−1,−z)∞1 = (−1,−1)∞1(−1, z)∞1 = 1,

(−1,−z)∞2 = (−1,−1)∞2(−1, z)∞2 = −1.

Consider the element a := 1−
√

3 ∈ RK = Z[
√

3]. For n ∈ N let

an = xn + yn
√

3, xn, yn ∈ Z.
Analogously to [C2, Lemma 2] one can prove that there are infinitely many
prime numbers dividing the sequence (y2n+1)

∞
n=1. Hence there are infinitely

many natural odd numbers m such that m divides (y2n+1). Choose such an
m and a number 2n+ 1 such that m | y2n+1.

Consider the order O = Z[m
√

3]. Obviously,

a2n+1 = x2n+1 + y2n+1

√
3 ∈ O.

Because
NK/Q(a2n+1) = NK/Q(1−

√
3)2n+1 = −22n+1,

we have gcd(NK/Q(a2n+1),m) = 1. Hence

a2n+1RK + f = a2n+1RK +mRK = RK .

Moreover,

(−1,−a2n+1)P0 = (−1, NK/Q(1−
√

3))2 = (−1,−2)2 = −1,

(−1,−a2n+1)∞1 = (−1,−1 +
√

3)∞1 = 1,

(−1,−a2n+1)∞2 = (−1,−1 +
√

3)∞2 = −1.

For every P /∈ P2 ∪ S the elements −1, −a2n+1 are P-adic units, so
(−1,−a2n+1)P = 1. By Corollary 6.9, 〈z,−ez〉 ∈ im(φ ◦ ϕ). Hence and
from Proposition 3.1 it follows that ϕ : WO →WRK is surjective.

We have obtained the following observation.
There are infinitely many natural odd numbers m such that the natural

homomorphism ϕ : WZ[m
√

3]→WRK is surjective.

7. Real quadratic global fields. Let K = Q(
√
D) be a quadratic

number field, where D ≡ 1 (mod 8) is a square-free positive integer. There
are two dyadic primes P1, P2 in K, so P2 = {P1,P2}. Analogously to
Example 6.10 the ring RK of algebraic integers of K is the ring RK(S) of
S-integers of K, where S consists of the two infinite primes ∞1, ∞2 of K.

Assume −1 ∈ NK/Q(K̇) and choose b ∈ E(RK) positive at ∞1 and
negative at ∞2. Let p1, . . . , ps be all the pairwise distinct prime divisors
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of D. From [Cz1, pp. 114, 118] it follows that the set

{〈1〉, 〈p1〉, . . . , 〈ps−1〉, 〈b〉, 〈〈f, d〉〉}
generates the group φ(WRK), where f, d ∈ K are such that −f is totally
positive and

(−f,−d)P1 = (−f,−d)P2 = −1

(cf. [Cz1, p. 109]).

Proposition 7.1. Let O = Z[m(1 +
√
D)/2] be an order such that every

odd prime divisor of m ∈ N is congruent to 1 modulo 4. Then

〈〈f, d〉〉 ∈ im(φ ◦ ϕ).

Proof. For an odd prime number p denote by
( ·
p

)
the Legendre symbol.

By [O, 65:17] there are infinitely many prime numbers p such that(
D

p

)
= −1 and

(
−1

p

)
= −1.

Fix such a p. From
(
D
p

)
= −1 it follows that p does not split in K. From(−1

p

)
= −1 it follows that p ≡ 3 (mod 4). Hence p - m, so

pRK + f = pRK +mRK = RK .

Let P be the prime of K which lies over p. Then (−1, p)P = 1. Because
p ≡ 3 (mod 4), we have (−1, p)2 = −1, i.e.

(−1, p)P1 = (−1, p)P2 = (−1, p)2 = −1.

Moreover,

(−1, p)∞1 = (−f,−d)∞1 = 1 and (−1, p)∞2 = (−f,−d)∞2 = 1.

For every prime r /∈ {P} ∪ P2 ∪ S of K the elements −1, p are r-adic units,
so (−1, p)r = 1. By Corollary 6.7, 〈〈f, d〉〉 ∈ im(φ ◦ ϕ).

Corollary 7.2. Let K = Q(
√
D) be a real quadratic number field with

D ≡ 1 (mod 4) and −1 ∈ NK/Q(K̇). Moreover, let O = Z[m(1 +
√
D)/2] be

an order with m = 2rq1 · · · ql, where r ∈ N∪{0} and q1, . . . , ql are odd prime
numbers. Then the natural homomorphism ϕ : WO →WRK is surjective if
and only if r ∈ {0, 1} and qi ≡ 1 (mod 4) for every i ∈ {1, . . . , l}.

Proof. This follows from Propositions 3.1, 3.7 and 7.1 and Corollaries
3.8 and 3.9.

Now assumeK = F (
√
D) is a real quadratic function field as in Section 4.

The set S consists of two primes ∞1, ∞2 of K which lie over the prime ∞F

of F = F(X) with uniformizing parameter 1/X. Assume uK(S) = 0.
Let ε be a generator of the group Ḟ. If ε ∈ NK/F (K̇), then choose

b ∈ E(RK(S)) such that NK/F (b) ∈ εḞ 2. Let p1, . . . , ps ∈ F[X] be all the
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pairwise distinct monic irreducible polynomials which divide D. By [RC,
p. 208] and [Cz3, Theorem 4.2] the set

{〈1〉, 〈ε〉, 〈p1〉, . . . , 〈ps−1〉, 〈b〉, 〈〈f, d〉〉} when ε ∈ NK/F (K̇),

{〈1〉, 〈ε〉, 〈p1〉, . . . , 〈ps−1〉, 〈〈f, d〉〉} when ε /∈ NK/F (K̇),

generates the group φ(WRK(S)), where f, d ∈ K are such that

(−f,−d)∞1 = (−f,−d)∞2 = −1

(cf. [Cz3, p. 611]).

Proposition 7.3. Assume ε ∈ NK/F (K̇). Let O = F[X][m
√
D] be an

order with m = q1 · · · ql, where q1, . . . , ql ∈ F[X] are irreducible polynomials
with deg qi ≡ 0 (mod 2) for every i ∈ {1, . . . , l}. Then 〈〈f, d〉〉 ∈ im(φ ◦ ϕ).

Proof. For an irreducible polynomial p ∈ F[X] denote by
( ·
p

)
the quad-

ratic residue symbol (cf. [R, p. 24]).

By [O, 65:17] there are infinitely many irreducible polynomials p ∈ F[X]
such that (

D

p

)
6= 1 and

(
ε

p

)
6= 1.

Fix such a p. From
(
D
p

)
6= 1 it follows that p does not split in K (cf. [R,

Proposition 10.5]. From
(
ε
p

)
6= 1 it follows that deg p ≡ 1 (mod 2) (cf. [R,

Proposition 3.2]). Hence p - m, so

pRK(S) + f = pRK(S) +mRK(S) = RK(S).

Let P be the prime of K which lies over p. Then (ε, p)P = 1. Because
deg p ≡ 1 (mod 2), we have (ε, p)∞F = −1, i.e.

(ε, p)∞1 = (ε, p)∞2 = (ε, p)∞F = −1.

For every prime r /∈ {P} ∪ S of K the elements ε, p are r-adic units, so
(ε, p)r = 1. By Corollary 6.7, 〈〈f, d〉〉 ∈ im(φ ◦ ϕ).

Corollary 7.4. Let K = F (
√
D) be a real quadratic function field

with ε ∈ NK/F (K̇). Moreover, let O = F[X][m
√
D] be an order such

that m = q1 · · · ql, where q1, . . . , ql ∈ F[X] are irreducible polynomials.
Then the homomorphism ϕ : WO → WRK(S) is surjective if and only if
deg qi ≡ 0 (mod 2) for every i ∈ {1, . . . , l}.

Proof. This follows from (4.2), Propositions 4.2, 4.6 and 7.3, and Corol-
laries 4.8 and 4.9.

Proposition 7.5. Let K = F (
√
D) be a real quadratic function field

with ε /∈ NK/F (K̇) and uK(S) = 0. Moreover, let O < RK(S) be an order.
Then 〈〈f, d〉〉 ∈ im(φ ◦ ϕ).
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Proof. From [RC, Proposition 6.2] it follows that there is an irreducible
divisor pi of the polynomial D such that deg pi ≡ 1 (mod 2). It is easy to
observe that pi ramifies in K.

Analogously to the proof of Proposition 7.3 we show that

(ε, pi)∞1 = (ε, pi)∞2 = −1

and (ε, pi)r = 1 for every prime r /∈ S of K.
Proposition 4.2 implies that 〈pi〉 ∈ im(φ ◦ ϕ). By Theorem 2.9 there

exists h ∈ O such that

hK̇2 = piK̇
2 and hRK(S) + f = RK(S).

Obviously,

(ε, h)∞1 = (ε, h)∞2 = −1

and (ε, h)r = 1 for every prime r /∈ S of K. Now Corollary 6.7 implies that
〈〈f, d〉〉 ∈ im(φ ◦ ϕ).

Corollary 7.6. Let K = F (
√
D) be a real quadratic function field with

ε /∈ NK/F (K̇). Moreover, let O < RK(S) be an order. Then the homomor-
phism ϕ : WO →WRK(S) is surjective.

Proof. This follows from (4.2), Propositions 4.2 and 7.5, and Corollary
4.4.
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