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The large sieve inequality in the form

∑

q≤Q
q

q∑

a=1

∣∣∣∣
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n≡a (mod q)

an −
1
q
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∣∣∣∣
2

< (N +Q2)
∑

n≤N
|an|2

is essentially optimal. However, in several applications many of the an van-
ish, and one might expect better estimates then. In fact, such estimates were
given by P. D. T. A. Elliott [1]. He showed the following estimate:

Theorem 1. Let N and Q be integers, ap be complex numbers for all
primes p ≤ N . Then we have the estimate

∑

q≤Q
(q − 1)

∑

(a,q)=1
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∑

p≤N
p≡a (mod q)

ap −
q

ϕ(q)
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ap
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2

�ε

(
N

logN
+Q54/11+ε

)∑

p≤N
|ap|2.

Under GRH, Q54/11 may be replaced by Q4+ε. In analogy to the large
sieve, he conjectured that one may replace this term by Q2+ε.

Using a completely different approach, Y. Motohashi [4] showed that
∑

q≤Q

∑∗

χ (mod q)

|π(x, χ)|2 ≤ (2 + o(1))x2

log x log(x/Q1/2)
(1)

for x > Q5+ε, where π(x, χ) =
∑

p≤x χ(p). He also conjectured that Q5+ε

may be replaced by Q2+ε.
Here we will combine the large sieve principle with Selberg’s sieve to

prove the conjecture of Elliott and give a version of (1) valid for x > Q2+ε.
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I would like to thank D. R. Heath-Brown for his help with Proposition 9
which allowed me to reduce the exponent to 2+ε, and the referee for pointing
out some mistakes.

Theorem 2. Let N and Q be integers with N > Q2+ε, ap be complex
numbers for any prime p ≤ N , and let 2 ≤ R ≤

√
N be an integer. Then

∑

q≤Q

∑∗

χ (mod q)

∣∣∣
∑

p≤N
apχ(p)
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2
�ε

N

logN

∑

p≤N
|ap|2.

As this estimate is the analogue of the large sieve estimate, we can give
analogues of Halász-type inequalities, too. As there are a variety of different
large value estimates, the same is true for these bounds. However, since the
optimal estimate depends on the particular application, we only mention
the following:

Theorem 3. Let q be an integer. Let C be a set of characters (mod q),
and ap be complex numbers for any prime p ≤ N . Then for k = 2, 3 or , if q
is cubefree, for any integer k ≥ 2, we have the estimates
∑

χ∈C

∣∣∣
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2
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(

N
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+ ck,εN
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and ∑

χ∈C
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2
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N

logR
+R2|C|√q log q
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p≤N
|ap|2.

If C is a set of characters to moduli q ≤ Q, the same bounds apply with q
replaced by Q2, where k can be chosen arbitrarily if all occurring values of
q are cubefree, and k = 2, 3 otherwise.

From this we conclude immediately

Corollary 4. For x > Q2+ε we have the estimate
∑

q≤Q

∑∗

χ (mod q)

|π(x, χ)|2 ≤ Cε
x2

log2 x
.

Moreover , for x > Q3+ε this can be made completely explicit :
∑

q≤Q

∑∗

χ (mod q)

|π(x, χ)|2 ≤ (2 + o(1))x2

log x log(x/Q3)
.

We can also consider a single character:

Corollary 5. Let χ be a complex character. Then

|π(x, χ)| ≤
((

1 + φ/α

2− 2φ/α

)1/2

+ o(1)
)

x

log x
,

where α = log x/log q and φ = 1/4 if q is cubefree, and φ = 1/3 otherwise.
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Note that this estimate is nontrivial if x > q3/4 resp. x > q, depending
on whether q is cubefree or not. With a little more work, we obtain the
following statement.

Corollary 6. Let D,x,Q be parameters with x > Q1+εD2. Let N be
the number of moduli q ≤ Q such that there is some primitive character χ
of order d ≤ D and some dth root of unity ζ such that there is no prime
p ≤ x with χ(p) = ζ. Then N �ε D.

This was proven by Elliott with D = 3 under the condition x > Q54/11+ε.

We begin the proof of our theorems with the following two sieve princi-
ples.

Lemma 7 (Bombieri). Let V, (·, ·) be an inner product space, vi ∈ V .
Then for any Φ ∈ V we have

∑

i

|(Φ, vi)|2 ≤ ‖Φ‖2 max
i

∑

j

|(vi, vj)|.

This is Lemma 1.5 of [3].

Lemma 8 (Selberg). Let R,N be integers such that R2 < N . Then there
is a function g which has the following properties:

1. g(1) = 1, |g(n)| ≤ 1 for n ≤ R, g(n) = 0 for n > R.
2.
∑

n≤N ((1 ∗ g)(n))2 ≤ N/logR+R2.

This is the usual formulation of Selberg’s sieve when used to count the
set of primes ≤ N (see e.g. [2, Chapter 3, especially Theorem 3.3]). In what
follows, we will denote by g the function given by Lemma 8 and set f =
(1 ∗ g)2. We will have to bound character sums involving f ; these computa-
tions are summarized in the following proposition.

Proposition 9. Let χ (mod q) be a character , R,N, f and g as in
Lemma 8, and define S =

∑
n≤N f(n)χ(n).

1. If χ is principal , we have |S| < N/logR+R2.
2. Assume that χ is nonprincipal. Then for any fixed A we have the

estimate
∞∑

ν=1

f(ν)χ(ν)e− log2(ν/N) �ε,A R
2q1/2

(
N

R2q

)−A
.

3. If χ is nonprincipal , we have the bounds |S| ≤ R2√q log q and |S| ≤
ck,εR

2/kN1−1/kq(k+1)/(4k2)+ε for k = 2, 3, or , if q is cubefree, for k ≥ 2
arbitrary.

Proof. The first assertion is already contained in Lemma 8.
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Assume now that χ is nonprincipal. Then
∣∣∣
∑

n≤N
f(n)χ(n)

∣∣∣ =
∣∣∣
∑

n≤N

(∑

d|n
g(d)

)2
χ(n)

∣∣∣

=
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d1,d2≤R
g(d1)g(d2)χ([d1, d2])

∑

n≤N/[d1,d2]

χ(n)
∣∣∣

≤
∑

d1,d2≤N
|g(d1)g(d2)| ·

∣∣∣
∑

n≤N/[d1,d2]

χ(n)
∣∣∣

≤
∑

d1,d2≤R

∣∣∣
∑

n≤N/[d1,d2]

χ(n)
∣∣∣.

The inner sum can be estimated using either the Pólya–Vinogradov in-
equality or Burgess estimates, leading to |S| ≤ R2√q log q, resp. |S| ≤
ck,εR

2/kN1−1/kq(k+1)/(4k2)+ε; thus we obtain the third statement.
To prove the second statement, we begin as above to obtain the inequality
∣∣∣
∞∑

n=1

f(n)χ(n)e− log2(n/N)
∣∣∣ ≤

∑

d1,d2≤R

∣∣∣
∞∑

n=1

χ(n)e− log2([d1,d2]n/N)
∣∣∣.

Write d = [d1, d2]. Using the Mellin transform
1

2
√
π i

�

(2)

x−ses
2/4 ds = e− log2 x,

the inner sum can be expressed as
∞∑

n=1

χ(n)e− log2(dn/N) =
1

2
√
π i

�

(2)

L(s, χ)es
2/4(N/d)s ds.

Now we shift the path of integration to the line <s = −A with A > 0.
Denote by χ1 the primitive character inducing χ. Then

L(s, χ) =
∏

p|q2
(1− χ1(p)p−s)L(s, χ1).

For A > 2, the first factor is � qA2 , whereas using the functional equation
the L-series can be estimated to be � (q1(|t| + 2))A+1/2, hence the right
hand side is

�A q
1/2
(
N

dq

)−A
≤ q1/2

(
N

R2q

)−A
.

Hence the whole sum can be bounded by c(A)R2q1/2(N/(R2q))−A.
To prove Theorem 2, we follow the lines of the proof of the large sieve

resp. the Halász inequality; however, we apply Lemma 7 to a different eu-
clidean space. Consider the subspace V < l∞ consisting of all bounded
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sequences (an) such that an = 0 whenever f(n) = 0, where f is defined as
in Lemma 8. On this space define a product as

〈(an), (bn)〉 :=
∞∑

n=1

f(n)e− log2(n/N)anbn.

Now we apply Lemma 7 to this space and the set of vectors Φ = (ân), where
âp = ape

log2(p/N), for prime numbers p in the range R2 < p ≤ N , and ân = 0
otherwise, and vi = (χ̂(n)), where similarly χ̂(n) = χ(n), if f(n) 6= 0, and 0
otherwise. Now the inequality reads as

∑

q≤Q

∑

χ (mod q)

∣∣∣
∑

R2<p≤N
apχ(p)

∣∣∣
2

≤ max
χ

( ∞∑

n=1

f(n)e− log2(n/N) +
∑

χ′ 6=χ

∣∣∣
∑

n≤N
f(n)e− log2(n/N)χχ′(n)

∣∣∣
)

×
∑

p≤N
|ap|2e2 log2(p/N)

where the maximum is taken over all characters with moduli at most Q.
From Lemma 8 it follows that the first term inside the brackets is� N/logR
provided that R < N1/3, say. For the second term, let χ be a character
(mod q) and χ′ a character (mod q′). Then χχ′ is a character (mod [q, q′]). By
Proposition 9, each term in the outer sum can be bounded by c(A)R2[q, q′]1/2

× (N/(R2[q, q′]))−A, hence the whole sum is ≤ c(A)Q3R2(N/(R2Q2))−A.
Since by assumption N > Q2+ε, we can choose R = Qε/4, A = 6/ε + 1 to
bound this by some constant depending only on ε. Thus we get the estimate

∑

q≤Q

∑

χ (mod q)

∣∣∣
∑

R2<p≤N
apχ(p)

∣∣∣
2
�
(

N

ε logN
+ Cε

)∑

p≤N
|ap|2.

The range n ≤ R2 can be estimated using the usual large sieve inequality,
which gives (R2 + Q2)

∑
p≤N |ap|2, which is negligible. Hence Theorem 2 is

proven.

The proof of Theorem 3 is similar, but simpler. First, assume that all
characters in C are characters to a single modulus q. We consider the vector
space V < CN consisting of the sequences (an)Nn=1 with an = 0 for all n with
f(n) = 0 and the scalar product 〈(an), (bn)〉 :=

∑
n≤N f(n)anbn. Applying

Lemma 7 as above, we obtain the estimate

∑

χ∈C

∣∣∣
∑

p≤N
apχ(p)

∣∣∣
2
≤
(

N

logR
+R2 + (|C| − 1)∆(R,N, q)

) ∑

R≤p≤N
|ap|2
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where ∆(R,N, q) is the bound obtained by Proposition 9, i.e. ∆(R,N, q) ≤
R2√q log q, resp. ∆(R,N, q) < ck,εq

(k+1)/(4k2)+εN1−1/kR2/k. The term R2

can be neglected in comparison with ∆(R,N, q). This is obvious in the first
case. In the second case, we may assume that ∆(R,N, q) < N , since oth-
erwise Theorem 3 is an immediate consequence of the Cauchy–Schwarz in-
equality. This implies R < N 1/2q−(k+1)/(2k), which in turn implies

R2 < N1−1/kq−1−1/k < ∆(R,N, q).

Hence we obtain Theorem 3 for sets of characters belonging to a single
modulus.

The proof for the case that the characters belong to different moduli is
similar; note that [q1, q2] is cubefree if both q1 and q2 are cubefree.

In the range Q2+ε ≤ x < Q3+ε, Corollary 4 follows from Theorem 2
by choosing ap = 1 for all prime numbers p ≤ N , whereas in the range
x > Q3+ε it follows from Theorem 3. Similarly we obtain Corollary 5 from
Theorem 3. We choose C = {χ0, χ, χ} to obtain the estimate

|π(x)|2 + 2|π(x, χ)|2 ≤ x

log(ck,εx1/2q(k+1)/(8k)+ε)
π(x)

and choosing either k = 3 or k ↗ ∞ we obtain the result by solving for
|π(x, χ)|.

To prove Corollary 6, let P be the set of prime numbers p, such that
there is some character χ of order d as described in the corollary. For every
such p, choose such a character χ1 together with all its powers, and denote
the set of all these characters with C. Let ζ be a dth root of unity. We have

∑

χd=χ0
χ6=χ0

|π(x, χ)|2 = d

d∑

a=1

∣∣∣∣#{p ≤ x | χ1(p) = ζa} − 1
d
π(x, χ0)

∣∣∣∣
2

.

Since by assumption, one of the terms on the right hand side is large, the
right hand side is

� x2

d log2 x
≥ x

D log2 x
.

Now we have |C| ≤ D · |P|; thus we get

|P| x2

D log2 x
� x2

log x logR
+ xDR2|P|Q logQ.

If D2Q logQ < x1−ε, we can choose R = xε/4, and the second term on the
right hand side is still of lesser order than the left hand side. With this
choice the inequality can be simplified to |P| �ε D.
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Kiadó, Budapest, 1983, 157–164.

[2] H. Halberstam and H.-E. Richert, Sieve Methods, London Math. Soc. Monographs
4, Academic Press, 1974.

[3] H. L. Montgomery, Topics in Multiplicative Number Theory, Lecture Notes in Math.
227, Springer, 1971.

[4] Y. Motohashi, Large sieve extensions of the Brun–Titchmarsh theorem, in: Studies
in Pure Mathematics to the Memory of P. Turán, P. Erdős (ed.), Akadémiai Kiadó,
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