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1. Introduction. Let K be a finite extension field of the rational num-
ber field Q, and let CK be the 2-class group of K (i.e., the Sylow 2-subgroup
of the ideal class group of K) in the usual sense. Let K1 be the Hilbert 2-class
field of K (i.e., the maximal abelian unramified extension of K whose Galois
group is a 2-group), and let Ki be the Hilbert 2-class field of Ki−1 for i ≥ 2.
Then

K ⊂ K1 ⊂ . . . ⊂ Ki ⊂ . . .
is the Hilbert 2-class field tower of K. If Ki 6= Ki−1 for all i, then the Hilbert
2-class field tower is said to be infinite.

Next we define the 2-class rank and the 4-class rank of K. Let C iK =
{ai : a ∈ CK}. We define the 2-class rank rK by

(1) rK = rankCK = dimF2(CK/C2
K)

where F2 is the finite field with two elements, and we are viewing the ele-
mentary abelian 2-group CK/C

2
K as a vector space over F2. We define the

4-class rank sK by

(2) sK = rankC2
K = dimF2(C2

K/C
4
K).

We note that 0 ≤ sK ≤ rK .
Now suppose K is an imaginary quadratic extension of Q. It is known

(cf. [1, p. 233]) that the Hilbert 2-class field tower of K is infinite if rK ≥ 5.
We shall prove some results for the cases where rK = 3 or 4. For nonnegative
integers r and s, square-free positive integers m, and positive real numbers
x, we define

Vr = {K = Q(
√
−m ) : the 2-class rank rK = r},

Vr;x = {K = Q(
√
−m ) ∈ Vr : m ≤ x},

Vr,s;x = {K ∈ Vr;x : the 4-class rank sK = s},
V ∗r,s;x = {K ∈ Vr,s;x : the Hilbert 2-class field tower of K is infinite}.
2000 Mathematics Subject Classification: 11R29, 11R37, 11R45.

[151]



152 F. Gerth III

Then we define a density

(3) δ∗r,s = lim inf
x→∞

|V ∗r,s;x|
|Vr;x|

where |V | denotes the cardinality of a finite set V . We shall prove the fol-
lowing theorem in Section 2 of this paper.

Theorem 1. For imaginary quadratic fields let δ∗r,s be defined by (3).
Then δ∗3,s > 0 for 1 ≤ s ≤ 3 and δ∗4,s > 0 for 0 ≤ s ≤ 4.

Remark. Thus a positive proportion of the imaginary quadratic fields
with 2-class rank equal to 3 have infinite Hilbert 2-class field towers and
4-class rank equal to s for each value s = 1, 2, and 3. Similarly, a positive
proportion of the imaginary quadratic fields with 2-class rank equal to 4
have infinite Hilbert 2-class field towers and 4-class rank equal to s for each
value s = 0, 1, 2, 3, and 4.

Remark. An essential part of the proof of Theorem 1 depends on Corol-
lary 3 in a paper of Hajir [6]. In fact, Theorem 1 can be viewed as a gener-
alization of ideas introduced in [6].

Now suppose K is a real quadratic extension of Q. From [1, p. 233] the
Hilbert 2-class field tower of K is infinite if rK ≥ 6. We shall prove some
results for the cases where rK = 4 or 5. For nonnegative integers r and s,
square-free integers m > 1, and positive real numbers x, we define

Wr = {K = Q(
√
m ) : the 2-class rank rK = r},

Wr;x = {K = Q(
√
m ) ∈Wr : m ≤ x},

Wr,s;x = {K ∈Wr;x : the 4-class rank sK = s},
W ∗r,s;x = {K ∈Wr,s;x : the Hilbert 2-class field tower of K is infinite},

and

(4) ε∗r,s = lim inf
x→∞

|W ∗r,s;x|
|Wr;x|

.

We shall prove the following theorem in Section 3 of this paper.

Theorem 2. For real quadratic fields let ε∗r,s be defined by (4). Then
ε∗4,s > 0 for 0 ≤ s ≤ 4 and ε∗5,s > 0 for 0 ≤ s ≤ 5.

Remark. So a positive proportion of the real quadratic fields with 2-
class rank equal to 4 have infinite Hilbert 2-class field towers and 4-class
rank equal to s for each value s = 0, 1, 2, 3, and 4. Similarly, a positive
proportion of the real quadratic fields with 2-class rank equal to 5 have
infinite Hilbert 2-class field towers and 4-class rank equal to s for each value
s = 0, 1, 2, 3, 4, and 5.
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2. Proof of Theorem 1. Let K be an imaginary quadratic field in
which exactly t finite primes are ramified, where t is a positive integer.
From genus theory we know that the 2-class rank rK equals t − 1. With
t = r + 1, we see that the set Vr;x in this paper is the same as the set At;x
in [4]. So from equation (2.5) in [4],

(5) |Vr;x| ∼
1
2
· 1
r!
· x(log log x)r

log x
(as x→∞).

Now suppose K = Q(
√−p1 . . . pt ), where p1 < . . . < pt are primes with

pi ≡ 1 (mod 4) for 1 ≤ i ≤ t − 1 and pt ≡ 3 (mod 4). From equations (2.6)
and (2.7) in [4], the 4-class rank sK satisfies

(6) sK = t− 1− rankMK

where MK is a t×t matrix over F2 whose entries aij are defined by Legendre
symbols as follows:

(7) (−1)aij =





(
Pj
pi

)
if i 6= j,

(
P j
pi

)
if i = j,

with Pj = pj if pj ≡ 1 (mod 4), Pj = −pj if pj ≡ 3 (mod 4), and P j
= −p1 . . . pt/Pj . From quadratic reciprocity and properties of Legendre
symbols, the matrix MK is completely determined by the set of values{(pj

pi

)
for 1 ≤ i < j ≤ t

}
. For positive real numbers x, let

S(K, t;x) =
{
Q(
√
−p′1 . . . p′t ) with primes p′1 < . . . < p′t,

p′i ≡ pi (mod 4) for 1 ≤ i ≤ t,
(
p′j
p′i

)
=
(
pj
pi

)
for 1 ≤ i < j ≤ t, and p′1 . . . p

′
t ≤ x

}
.

From equation (2.12) in [4],

(8) |S(K, t;x)| ∼ 2−(t2+t)/2 · 1
(t− 1)!

· x(log log x)t−1

log x
(as x→∞).

The proof of this formula depends on character sum estimates similar to
those used in Section 4 of [3] and Section 5 of [5]. Alternatively, one can
use the analytic machinery developed in [2]. Note that from (5) and with
t = r + 1 in (8), we get

(9) lim
x→∞

|S(K, r + 1;x)|
|Vr;x|

= 2−(r2+3r)/2 > 0.
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The fact that this limit is positive will be a key part of the proof of The-
orem 1. However, first we need the following lemma, which follows from
Corollary 3 in [6].

Lemma 1. Suppose K = Q(
√−p1 . . . pt ) with p1, . . . , pt distinct primes

and t ≥ 4. Also suppose p1 ≡ p2 ≡ 1 (mod 4) and
(pj
pi

)
= 1 for i = 1, 2 and

j = 3, 4. Then the Hilbert 2-class field tower of K is infinite.

Proof. Let F = Q(
√
p1,
√
p2 ). Since p1 ≡ p2 ≡ 1 (mod 4) and

(pj
pi

)
= 1

for i = 1, 2 and j = 3, 4, p3 and p4 split completely in the totally real
degree 4 extension F of Q. Then by Corollary 3 in [6], E = FK has infinite
Hilbert 2-class field tower. Since E is contained in the Hilbert 2-class field
of K, the Hilbert 2-class field tower of K is infinite.

Now consider K = Q(
√−p1p2p3p4 ) with primes p1 < p2 < p3 < p4 such

that pi ≡ 1 (mod 4) for 1 ≤ i ≤ 3 and p4 ≡ 3 (mod 4). Then the 2-class rank
rK equals 3.

Case s = 1: Suppose
(pj
pi

)
= 1 for i = 1, 2 and j = 3, 4;

(
p2
p1

)
= −1;(

p4
p3

)
= −1. From Lemma 1, K has an infinite Hilbert 2-class field tower,

and from (7) one can check that rankMK = 2. Then the 4-class rank sK is 1
from (6). Furthermore every field in the set S(K, 4;x) has an infinite Hilbert
2-class field tower and 4-class rank equal to 1. So S(K, 4;x) ⊂ V ∗3,1;x, and
then equations (3) and (9) imply δ∗3,1 > 0.

Case s = 2: Suppose
(pj
pi

)
= 1 for i = 1, 2 and j = 3, 4;

(
p2
p1

)
= −1;(

p4
p3

)
=1. Then a similar analysis shows S(K, 4;x) ⊂ V ∗3,2;x, and then δ∗3,2>0.

Case s = 3: Suppose
(pj
pi

)
= 1 for 1 ≤ i < j ≤ 4. Then S(K, 4;x) ⊂

V ∗3,3;x, and δ∗3,3 > 0.

Now consider K = Q(
√−p1p2p3p4p5 ) with primes p1 <p2 <p3 <p4 <p5

such that pi ≡ 1 (mod 4) for 1 ≤ i ≤ 4 and p5 ≡ 3 (mod 4). Then the 2-class
rank rK equals 4.

Case s = 0: Suppose
(pj
pi

)
= 1 for 1 ≤ i < j ≤ 4 and

(
p5
pi

)
= −1 for

1 ≤ i ≤ 4. Then S(K, 5;x) ⊂ V ∗4,0;x, and δ∗4,0 > 0.

Cases 1 ≤ s ≤ 3: If s = 1, 2, or 3, suppose
(pj
pi

)
= 1 for 1 ≤ i < j ≤ 4;(

p5
pi

)
= 1 for 1 ≤ i ≤ s;

(
p5
pi

)
= −1 for s+1 ≤ i ≤ 4. Then S(K, 5;x) ⊂ V ∗4,s;x

and δ∗4,s > 0.

Case s = 4: Suppose
(pj
pi

)
= 1 for 1 ≤ i < j ≤ 5. Then S(K, 5;x) ⊂

V ∗4,4;x, and δ∗4,4 > 0.

Thus the proof of Theorem 1 is complete.
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Remark. It is known that V ∗3,3;x = V3,3;x and V ∗4,s;x = V4,s;x for s = 3, 4
(see [6] and [7]). One could use these facts to give an alternative proof that
δ∗3,3 > 0, δ∗4,3 > 0, and δ∗4,4 > 0.

3. Proof of Theorem 2. Let K = Q(
√
m ), where m > 1 is a square-

free integer. Let rK be the 2-class rank of K, and let t be the number of
primes that ramify in K/Q. It is well known that

(10) rK =





t− 1 if no prime dividing m
is congruent to 3 (mod 4),

t− 2 if at least one prime dividing m
is congruent to 3 (mod 4).

For nonnegative integers r and positive real numbers x, we let

Yr;x = {k = Q(
√
m ) : m = p1 . . . pr+2 ≤ x(11)

with odd primes p1 < . . . < pr+2

and with a positive even number of pi ≡ 3 (mod 4)}.
If Nx is the number of square-free positive integers m ≤ x with r+ 2 prime
factors, then

Nx ∼
1

(r + 1)!
· x(log log x)r+1

log x
(as x→∞)

(see [8, Theorem 437]). If Ne,x is the number of square-free positive integers
m ≤ x with r+2 prime factors and an even number of these primes congruent
to 3 (mod 4), then Ne,x ∼ 1

2Nx. In Yr;x, we are excluding the set

{m = p1 . . . pr+2 ≤ x with each pi ≡ 1 (mod 4)},
which has cardinality asymptotic to 2−(r+2)Nx. We are also excluding the
set

{m = p1 . . . pr+2 ≤ x with 2 |m},
which has cardinality o(Nx). So

(12) |Yr;x| ∼
(

1
2
− 1

2r+2

)
· 1

(r + 1)!
· x(log log x)r+1

log x
(as x→∞).

Now recall that Wr;x = {K = Q(
√
m ) : 2-class rank rK equals r and

m ≤ x}. We note that

|Wr;x| ∼ |Yr;x| (as x→∞)

since Yr;x ⊂ Wr;x and the set of elements of Wr;x that are not in Yr;x has
cardinality o(|Yr;x|). Then for nonnegative integers s, we define

Y ∗r,s;x = {K ∈ Yr;x : the 4-class rank sK = s, and the

Hilbert 2-class field tower of K is infinite}.
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Then from (4) and the above discussion, we get

(13) ε∗r,s = lim inf
x→∞

|Y ∗r,s;x|
|Yr;x|

.

Now suppose K = Q(
√
p1 . . . pt ), where p1 < . . . < pt are primes with

pi ≡ 1 (mod 4) for 1 ≤ i ≤ t−2 and pt−1 ≡ pt ≡ 3 (mod 4). Then the 2-class
rank rK is t− 2. For the 4-class rank, we shall use results from Section 5 of
[4]. However, first we remark that the 2-class groups considered in Section 5
of [4] are the narrow 2-class groups. For the field K that we are considering,
the narrow 2-class rank is t − 1 rather than t − 2, but the narrow 4-class
rank and the usual 4-class rank are the same. Hence from equations (5.5)
and (5.6) in [4], the 4-class rank sK satisfies

(14) sK = t− 1− rankMK

where MK is the t× t matrix over F2 whose entries aij satisfy

(15) (−1)aij =





(
Pj
pi

)
if i 6= j,

(
P j
pi

)
if i = j,

with Pj = pj if pj ≡ 1 (mod 4), Pj = −pj if pj ≡ 3 (mod 4), and P j =
p1 . . . pt/Pj . Note that rankMK ≥ 1 since either

(Pt−1

pt

)
= −1 or

(
Pt
pt−1

)
=

−1 by quadratic reciprocity since pt−1 ≡ pt ≡ 3 (mod 4). So sK ≤ t − 2.
Furthermore, from quadratic reciprocity and properties of Legendre sym-
bols, the matrix MK is completely determined by the set of values

{(pj
pi

)

for 1 ≤ i < j ≤ t
}

. For positive real numbers x, let

S′(K, t;x) =
{
Q(
√
p′1 . . . p

′
t ) with primes p′1 < . . . < p′t,

p′i ≡ pi (mod 4) for 1 ≤ i ≤ t,
(
p′j
p′i

)
=
(
pj
pi

)
for 1 ≤ i < j ≤ t, and p′1 . . . p

′
t ≤ x

}
.

Then analogously to (8) we have

(16) |S′(K, t;x)| ∼ 2−(t2+t)/2 · 1
(t− 1)!

· x(log log x)t−1

log x
(as x→∞).

From (12) and (16) with t = r + 2, we get

(17) lim
x→∞

|S′(K, r + 2;x)|
|Yr;x|

= 2−(r+1)(r+2)/2 · (2r+1 − 1)−1 > 0.

Now we prove a lemma analogous to Lemma 1.
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Lemma 2. Suppose K = Q(
√
p1 . . . pt ) with distinct primes p1, . . . , pt

and t ≥ 6. Also suppose p1 ≡ p2 ≡ 1 (mod 4) and
(pj
pi

)
= 1 for i = 1, 2 and

j = 3, 4, 5. Then the Hilbert 2-class field tower of K is infinite.

Proof. Since
( pj
pi

)
= 1 for i = 1, 2 and j = 3, 4, 5, we see that p3, p4, and

p5 split completely in F = Q(
√
p1,
√
p2 ). Also p6 splits in at least one of the

subfields Q(
√
p1 ), Q(

√
p2 ), Q(

√
p1p2 ) of F . Let L = F (

√
p3 . . . pt ). Then

there are at least 14 ramified primes in L/F . Let EF be the group of units
in the ring of algebraic integers in F , and let E2

F = {u2 : u ∈ EF }. Since
dimF2(EF /E2

F ) = 4, from genus theory the 2-class rank rL satisfies

rL ≥ 14− 1− 4 = 9.

From [1, p. 233], L has an infinite Hilbert 2-class field tower if rL ≥ 2 +
2
√
γL + 1, where γL is the number of infinite primes of L. Since γL = 8,

we get rL ≥ 9 > 2 + 2
√

8 + 1, and thus L does have an infinite Hilbert
2-class field tower. Since L is contained in the Hilbert 2-class field of K, we
conclude that K has an infinite Hilbert 2-class field tower.

Now consider K = Q(
√
p1 . . . p6 ) with primes p1 < . . . < p6 such that

pi ≡ 1 (mod 4) for 1 ≤ i ≤ 4 and p5 ≡ p6 ≡ 3 (mod 4). Then the 2-
class rank rK equals 4. Analogously to the procedure we used in proving
Theorem 1, we list conditions on Legendre symbols that imply that the
4-class rank sK equals s for a given value of s (by (14) and (15)) and so
that K has an infinite Hilbert 2-class field tower (by Lemma 2). Then we
get S′(K, 6;x) ⊂ Y ∗4,s;x, and using (13) and (17), we get ε∗4,s > 0.

Case s = 0: Suppose
(pj
pi

)
= 1 for 1 ≤ i < j ≤ 5;

(
p6
pi

)
= −1 for

1 ≤ i ≤ 5.

Cases 1 ≤ s ≤ 4: For s = 1, 2, 3, or 4, suppose
(pj
pi

)
= 1 for 1 ≤ i < j

≤ 5;
(
p6
pi

)
= 1 for 1 ≤ i ≤ s;

(
p6
pi

)
= −1 for s+ 1 ≤ i ≤ 5.

Next consider K = Q(
√
p1 . . . p7 ) with primes p1 < . . . < p7 such that

pi ≡ 1 (mod 4) for 1 ≤ i ≤ 5 and p6 ≡ p7 ≡ 3 (mod 4). Then the 2-class
rank rK equals 5. We will get S′(K, 7;x) ⊂ Y ∗5,s;x and ε∗5,s > 0 if we choose
the primes as follows:

Case s = 0: Suppose
(pj
pi

)
= 1 for 1 ≤ i < j ≤ 6;

(
p7
pi

)
= −1 for

1 ≤ i ≤ 6.

Cases 1 ≤ s ≤ 5: If s = 1, 2, 3, 4, or 5, suppose
(pj
pi

)
= 1 for 1 ≤ i <

j ≤ 6;
(
p7
pi

)
= 1 for 1 ≤ i ≤ s;

(
p7
pi

)
= −1 for s+ 1 ≤ i ≤ 6.

Then the proof of Theorem 2 is complete.

Remark. It is known that W ∗4,4;x = W4,4;x and W ∗5,s;x = W5,s;x for
s = 4, 5 (see [9]). One could use these facts to give an alternative proof that
ε∗4,4 > 0, ε∗5,4 > 0, and ε∗5,5 > 0.
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[9] C. Maire, Un raffinement du théorème de Golod–Safarevic, Nagoya Math. J. 150

(1998), 1–11.

Department of Mathematics
The University of Texas at Austin
Austin, TX 78712-1082, U.S.A.
E-mail: gerth@math.utexas.edu

Received on 15.6.2001
and in revised form on 15.3.2002 (4052)


