Quadratic fields with infinite Hilbert 2-class field towers

by
Frank Gerth III (Austin, TX)

1. Introduction. Let K be a finite extension field of the rational number field \mathbb{Q}, and let C_{K} be the 2-class group of K (i.e., the Sylow 2-subgroup of the ideal class group of K) in the usual sense. Let K_{1} be the Hilbert 2 -class field of K (i.e., the maximal abelian unramified extension of K whose Galois group is a 2-group), and let K_{i} be the Hilbert 2-class field of K_{i-1} for $i \geq 2$. Then

$$
K \subset K_{1} \subset \ldots \subset K_{i} \subset \ldots
$$

is the Hilbert 2-class field tower of K. If $K_{i} \neq K_{i-1}$ for all i, then the Hilbert 2-class field tower is said to be infinite.

Next we define the 2-class rank and the 4-class rank of K. Let $C_{K}^{i}=$ $\left\{a^{i}: a \in C_{K}\right\}$. We define the 2 -class rank r_{K} by

$$
\begin{equation*}
r_{K}=\operatorname{rank} C_{K}=\operatorname{dim}_{\mathbb{F}_{2}}\left(C_{K} / C_{K}^{2}\right) \tag{1}
\end{equation*}
$$

where \mathbb{F}_{2} is the finite field with two elements, and we are viewing the elementary abelian 2 -group C_{K} / C_{K}^{2} as a vector space over \mathbb{F}_{2}. We define the 4-class rank s_{K} by

$$
\begin{equation*}
s_{K}=\operatorname{rank} C_{K}^{2}=\operatorname{dim}_{\mathbb{F}_{2}}\left(C_{K}^{2} / C_{K}^{4}\right) \tag{2}
\end{equation*}
$$

We note that $0 \leq s_{K} \leq r_{K}$.
Now suppose K is an imaginary quadratic extension of \mathbb{Q}. It is known (cf. [1, p. 233]) that the Hilbert 2-class field tower of K is infinite if $r_{K} \geq 5$. We shall prove some results for the cases where $r_{K}=3$ or 4 . For nonnegative integers r and s, square-free positive integers m, and positive real numbers x, we define

$$
\begin{aligned}
V_{r} & =\left\{K=\mathbb{Q}(\sqrt{-m}): \text { the } 2 \text {-class rank } r_{K}=r\right\} \\
V_{r ; x} & =\left\{K=\mathbb{Q}(\sqrt{-m}) \in V_{r}: m \leq x\right\} \\
V_{r, s ; x} & =\left\{K \in V_{r ; x}: \text { the 4-class rank } s_{K}=s\right\}, \\
V_{r, s ; x}^{*} & =\left\{K \in V_{r, s ; x}: \text { the Hilbert 2-class field tower of } K \text { is infinite }\right\} .
\end{aligned}
$$

[^0]Then we define a density

$$
\begin{equation*}
\delta_{r, s}^{*}=\liminf _{x \rightarrow \infty} \frac{\left|V_{r, s ; x}^{*}\right|}{\left|V_{r ; x}\right|} \tag{3}
\end{equation*}
$$

where $|V|$ denotes the cardinality of a finite set V. We shall prove the following theorem in Section 2 of this paper.

Theorem 1. For imaginary quadratic fields let $\delta_{r, s}^{*}$ be defined by (3). Then $\delta_{3, s}^{*}>0$ for $1 \leq s \leq 3$ and $\delta_{4, s}^{*}>0$ for $0 \leq s \leq 4$.

Remark. Thus a positive proportion of the imaginary quadratic fields with 2 -class rank equal to 3 have infinite Hilbert 2 -class field towers and 4 -class rank equal to s for each value $s=1,2$, and 3 . Similarly, a positive proportion of the imaginary quadratic fields with 2 -class rank equal to 4 have infinite Hilbert 2-class field towers and 4 -class rank equal to s for each value $s=0,1,2,3$, and 4 .

Remark. An essential part of the proof of Theorem 1 depends on Corollary 3 in a paper of Hajir [6]. In fact, Theorem 1 can be viewed as a generalization of ideas introduced in [6].

Now suppose K is a real quadratic extension of \mathbb{Q}. From [1, p. 233] the Hilbert 2-class field tower of K is infinite if $r_{K} \geq 6$. We shall prove some results for the cases where $r_{K}=4$ or 5 . For nonnegative integers r and s, square-free integers $m>1$, and positive real numbers x, we define

$$
\begin{aligned}
W_{r} & =\left\{K=\mathbb{Q}(\sqrt{m}): \text { the 2-class rank } r_{K}=r\right\}, \\
W_{r ; x} & =\left\{K=\mathbb{Q}(\sqrt{m}) \in W_{r}: m \leq x\right\}, \\
W_{r, s ; x} & =\left\{K \in W_{r ; x}: \text { the } 4 \text {-class rank } s_{K}=s\right\}, \\
W_{r, s ; x}^{*} & =\left\{K \in W_{r, s ; x}: \text { the Hilbert 2-class field tower of } K \text { is infinite }\right\},
\end{aligned}
$$

and

$$
\begin{equation*}
\varepsilon_{r, s}^{*}=\liminf _{x \rightarrow \infty} \frac{\left|W_{r, s ; x}^{*}\right|}{\left|W_{r ; x}\right|} . \tag{4}
\end{equation*}
$$

We shall prove the following theorem in Section 3 of this paper.
Theorem 2. For real quadratic fields let $\varepsilon_{r, s}^{*}$ be defined by (4). Then $\varepsilon_{4, s}^{*}>0$ for $0 \leq s \leq 4$ and $\varepsilon_{5, s}^{*}>0$ for $0 \leq s \leq 5$.

Remark. So a positive proportion of the real quadratic fields with 2 class rank equal to 4 have infinite Hilbert 2 -class field towers and 4 -class rank equal to s for each value $s=0,1,2,3$, and 4 . Similarly, a positive proportion of the real quadratic fields with 2-class rank equal to 5 have infinite Hilbert 2-class field towers and 4 -class rank equal to s for each value $s=0,1,2,3,4$, and 5 .
2. Proof of Theorem 1. Let K be an imaginary quadratic field in which exactly t finite primes are ramified, where t is a positive integer. From genus theory we know that the 2 -class rank r_{K} equals $t-1$. With $t=r+1$, we see that the set $V_{r ; x}$ in this paper is the same as the set $A_{t ; x}$ in [4]. So from equation (2.5) in [4],

$$
\begin{equation*}
\left|V_{r ; x}\right| \sim \frac{1}{2} \cdot \frac{1}{r!} \cdot \frac{x(\log \log x)^{r}}{\log x} \quad(\text { as } x \rightarrow \infty) \tag{5}
\end{equation*}
$$

Now suppose $K=\mathbb{Q}\left(\sqrt{-p_{1} \ldots p_{t}}\right)$, where $p_{1}<\ldots<p_{t}$ are primes with $p_{i} \equiv 1(\bmod 4)$ for $1 \leq i \leq t-1$ and $p_{t} \equiv 3(\bmod 4)$. From equations (2.6) and (2.7) in [4], the 4-class rank s_{K} satisfies

$$
\begin{equation*}
s_{K}=t-1-\operatorname{rank} M_{K} \tag{6}
\end{equation*}
$$

where M_{K} is a $t \times t$ matrix over \mathbb{F}_{2} whose entries $a_{i j}$ are defined by Legendre symbols as follows:

$$
(-1)^{a_{i j}}= \begin{cases}\left(\frac{P_{j}}{p_{i}}\right) & \text { if } i \neq j \tag{7}\\ \left(\frac{\bar{P}_{j}}{p_{i}}\right) & \text { if } i=j\end{cases}
$$

with $P_{j}=p_{j}$ if $p_{j} \equiv 1(\bmod 4), P_{j}=-p_{j}$ if $p_{j} \equiv 3(\bmod 4)$, and \bar{P}_{j} $=-p_{1} \ldots p_{t} / P_{j}$. From quadratic reciprocity and properties of Legendre symbols, the matrix M_{K} is completely determined by the set of values $\left\{\left(\frac{p_{j}}{p_{i}}\right)\right.$ for $\left.1 \leq i<j \leq t\right\}$. For positive real numbers x, let

$$
\begin{aligned}
S(K, t ; x)= & \left\{\mathbb{Q}\left(\sqrt{-p_{1}^{\prime} \ldots p_{t}^{\prime}}\right) \text { with primes } p_{1}^{\prime}<\ldots<p_{t}^{\prime}\right. \\
& p_{i}^{\prime} \equiv p_{i}(\bmod 4) \text { for } 1 \leq i \leq t \\
& \left.\left(\frac{p_{j}^{\prime}}{p_{i}^{\prime}}\right)=\left(\frac{p_{j}}{p_{i}}\right) \text { for } 1 \leq i<j \leq t, \text { and } p_{1}^{\prime} \ldots p_{t}^{\prime} \leq x\right\}
\end{aligned}
$$

From equation (2.12) in [4],

$$
\begin{equation*}
|S(K, t ; x)| \sim 2^{-\left(t^{2}+t\right) / 2} \cdot \frac{1}{(t-1)!} \cdot \frac{x(\log \log x)^{t-1}}{\log x} \quad(\text { as } x \rightarrow \infty) \tag{8}
\end{equation*}
$$

The proof of this formula depends on character sum estimates similar to those used in Section 4 of [3] and Section 5 of [5]. Alternatively, one can use the analytic machinery developed in [2]. Note that from (5) and with $t=r+1$ in (8), we get

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{|S(K, r+1 ; x)|}{\left|V_{r ; x}\right|}=2^{-\left(r^{2}+3 r\right) / 2}>0 \tag{9}
\end{equation*}
$$

The fact that this limit is positive will be a key part of the proof of Theorem 1. However, first we need the following lemma, which follows from Corollary 3 in [6].

Lemma 1. Suppose $K=\mathbb{Q}\left(\sqrt{-p_{1} \ldots p_{t}}\right)$ with p_{1}, \ldots, p_{t} distinct primes and $t \geq 4$. Also suppose $p_{1} \equiv p_{2} \equiv 1(\bmod 4)$ and $\left(\frac{p_{j}}{p_{i}}\right)=1$ for $i=1,2$ and $j=3,4$. Then the Hilbert 2-class field tower of K is infinite.

Proof. Let $F=\mathbb{Q}\left(\sqrt{p_{1}}, \sqrt{p_{2}}\right)$. Since $p_{1} \equiv p_{2} \equiv 1(\bmod 4)$ and $\left(\frac{p_{j}}{p_{i}}\right)=1$ for $i=1,2$ and $j=3,4, p_{3}$ and p_{4} split completely in the totally real degree 4 extension F of \mathbb{Q}. Then by Corollary 3 in [6], $E=F K$ has infinite Hilbert 2-class field tower. Since E is contained in the Hilbert 2-class field of K, the Hilbert 2-class field tower of K is infinite.

Now consider $K=\mathbb{Q}\left(\sqrt{-p_{1} p_{2} p_{3} p_{4}}\right)$ with primes $p_{1}<p_{2}<p_{3}<p_{4}$ such that $p_{i} \equiv 1(\bmod 4)$ for $1 \leq i \leq 3$ and $p_{4} \equiv 3(\bmod 4)$. Then the 2-class rank r_{K} equals 3 .

Case $s=1$: Suppose $\left(\frac{p_{j}}{p_{i}}\right)=1$ for $i=1,2$ and $j=3,4 ;\left(\frac{p_{2}}{p_{1}}\right)=-1$; $\left(\frac{p_{4}}{p_{3}}\right)=-1$. From Lemma 1, K has an infinite Hilbert 2-class field tower, and from (7) one can check that rank $M_{K}=2$. Then the 4 -class rank s_{K} is 1 from (6). Furthermore every field in the set $S(K, 4 ; x)$ has an infinite Hilbert 2 -class field tower and 4 -class rank equal to 1 . So $S(K, 4 ; x) \subset V_{3,1 ; x}^{*}$, and then equations (3) and (9) imply $\delta_{3,1}^{*}>0$.

CASE $s=2$: Suppose $\left(\frac{p_{j}}{p_{i}}\right)=1$ for $i=1,2$ and $j=3,4 ;\left(\frac{p_{2}}{p_{1}}\right)=-1$; $\left(\frac{p_{4}}{p_{3}}\right)=1$. Then a similar analysis shows $S(K, 4 ; x) \subset V_{3,2 ; x}^{*}$, and then $\delta_{3,2}^{*}>0$.

CASE $s=3$: Suppose $\left(\frac{p_{j}}{p_{i}}\right)=1$ for $1 \leq i<j \leq 4$. Then $S(K, 4 ; x) \subset$ $V_{3,3 ; x}^{*}$, and $\delta_{3,3}^{*}>0$.

Now consider $K=\mathbb{Q}\left(\sqrt{-p_{1} p_{2} p_{3} p_{4} p_{5}}\right)$ with primes $p_{1}<p_{2}<p_{3}<p_{4}<p_{5}$ such that $p_{i} \equiv 1(\bmod 4)$ for $1 \leq i \leq 4$ and $p_{5} \equiv 3(\bmod 4)$. Then the 2-class rank r_{K} equals 4 .

CASE $s=0$: Suppose $\left(\frac{p_{j}}{p_{i}}\right)=1$ for $1 \leq i<j \leq 4$ and $\left(\frac{p_{5}}{p_{i}}\right)=-1$ for $1 \leq i \leq 4$. Then $S(K, 5 ; x) \subset V_{4,0 ; x}^{*}$, and $\delta_{4,0}^{*}>0$.

CASES $1 \leq s \leq 3$: If $s=1,2$, or 3 , suppose $\left(\frac{p_{j}}{p_{i}}\right)=1$ for $1 \leq i<j \leq 4$; $\left(\frac{p_{5}}{p_{i}}\right)=1$ for $1 \leq i \leq s ;\left(\frac{p_{5}}{p_{i}}\right)=-1$ for $s+1 \leq i \leq 4$. Then $S(K, 5 ; x) \subset V_{4, s ; x}^{*}$ and $\delta_{4, s}^{*}>0$.

CASE $s=4$: Suppose $\left(\frac{p_{j}}{p_{i}}\right)=1$ for $1 \leq i<j \leq 5$. Then $S(K, 5 ; x) \subset$ $V_{4,4 ; x}^{*}$, and $\delta_{4,4}^{*}>0$.

Thus the proof of Theorem 1 is complete.

Remark. It is known that $V_{3,3 ; x}^{*}=V_{3,3 ; x}$ and $V_{4, s ; x}^{*}=V_{4, s ; x}$ for $s=3,4$ (see [6] and [7]). One could use these facts to give an alternative proof that $\delta_{3,3}^{*}>0, \delta_{4,3}^{*}>0$, and $\delta_{4,4}^{*}>0$.
3. Proof of Theorem 2. Let $K=\mathbb{Q}(\sqrt{m})$, where $m>1$ is a squarefree integer. Let r_{K} be the 2-class rank of K, and let t be the number of primes that ramify in K / \mathbb{Q}. It is well known that

$$
r_{K}= \begin{cases}t-1 & \text { if no prime dividing } m \tag{10}\\ \text { is congruent to } 3(\bmod 4), \\ t-2 & \text { if at least one prime dividing } m \\ & \text { is congruent to } 3(\bmod 4) .\end{cases}
$$

For nonnegative integers r and positive real numbers x, we let

$$
\begin{align*}
Y_{r ; x}= & \left\{k=\mathbb{Q}(\sqrt{m}): m=p_{1} \ldots p_{r+2} \leq x\right. \tag{11}\\
& \text { with odd primes } p_{1}<\ldots<p_{r+2} \\
& \text { and with a positive even number of } \left.p_{i} \equiv 3(\bmod 4)\right\} .
\end{align*}
$$

If N_{x} is the number of square-free positive integers $m \leq x$ with $r+2$ prime factors, then

$$
N_{x} \sim \frac{1}{(r+1)!} \cdot \frac{x(\log \log x)^{r+1}}{\log x} \quad(\text { as } x \rightarrow \infty)
$$

(see [8, Theorem 437]). If $N_{\mathrm{e}, x}$ is the number of square-free positive integers $m \leq x$ with $r+2$ prime factors and an even number of these primes congruent to $3(\bmod 4)$, then $N_{\mathrm{e}, x} \sim \frac{1}{2} N_{x}$. In $Y_{r ; x}$, we are excluding the set

$$
\left\{m=p_{1} \ldots p_{r+2} \leq x \text { with each } p_{i} \equiv 1(\bmod 4)\right\},
$$

which has cardinality asymptotic to $2^{-(r+2)} N_{x}$. We are also excluding the set

$$
\left\{m=p_{1} \ldots p_{r+2} \leq x \text { with } 2 \mid m\right\},
$$

which has cardinality $o\left(N_{x}\right)$. So

$$
\begin{equation*}
\left|Y_{r ; x}\right| \sim\left(\frac{1}{2}-\frac{1}{2^{r+2}}\right) \cdot \frac{1}{(r+1)!} \cdot \frac{x(\log \log x)^{r+1}}{\log x} \quad(\text { as } x \rightarrow \infty) . \tag{12}
\end{equation*}
$$

Now recall that $W_{r ; x}=\left\{K=\mathbb{Q}(\sqrt{m}): 2\right.$-class rank r_{K} equals r and $m \leq x\}$. We note that

$$
\left|W_{r ; x}\right| \sim\left|Y_{r ; x}\right| \quad(\text { as } x \rightarrow \infty)
$$

since $Y_{r ; x} \subset W_{r ; x}$ and the set of elements of $W_{r ; x}$ that are not in $Y_{r ; x}$ has cardinality $o\left(\left|Y_{r ; x}\right|\right)$. Then for nonnegative integers s, we define

$$
Y_{r, s ; x}^{*}=\left\{K \in Y_{r ; x}: \text { the } 4 \text {-class rank } s_{K}=s,\right. \text { and the }
$$ Hilbert 2-class field tower of K is infinite .

Then from (4) and the above discussion, we get

$$
\begin{equation*}
\varepsilon_{r, s}^{*}=\liminf _{x \rightarrow \infty} \frac{\left|Y_{r, s ; x}^{*}\right|}{\left|Y_{r ; x}\right|} \tag{13}
\end{equation*}
$$

Now suppose $K=\mathbb{Q}\left(\sqrt{p_{1} \ldots p_{t}}\right)$, where $p_{1}<\ldots<p_{t}$ are primes with $p_{i} \equiv 1(\bmod 4)$ for $1 \leq i \leq t-2$ and $p_{t-1} \equiv p_{t} \equiv 3(\bmod 4)$. Then the 2-class rank r_{K} is $t-2$. For the 4 -class rank, we shall use results from Section 5 of [4]. However, first we remark that the 2-class groups considered in Section 5 of [4] are the narrow 2 -class groups. For the field K that we are considering, the narrow 2 -class rank is $t-1$ rather than $t-2$, but the narrow 4 -class rank and the usual 4-class rank are the same. Hence from equations (5.5) and (5.6) in [4], the 4-class rank s_{K} satisfies

$$
\begin{equation*}
s_{K}=t-1-\operatorname{rank} M_{K} \tag{14}
\end{equation*}
$$

where M_{K} is the $t \times t$ matrix over \mathbb{F}_{2} whose entries $a_{i j}$ satisfy

$$
(-1)^{a_{i j}}= \begin{cases}\left(\frac{P_{j}}{p_{i}}\right) & \text { if } i \neq j \tag{15}\\ \left(\frac{\bar{P}_{j}}{p_{i}}\right) & \text { if } i=j\end{cases}
$$

with $P_{j}=p_{j}$ if $p_{j} \equiv 1(\bmod 4), P_{j}=-p_{j}$ if $p_{j} \equiv 3(\bmod 4)$, and $\bar{P}_{j}=$ $p_{1} \ldots p_{t} / P_{j}$. Note that rank $M_{K} \geq 1$ since either $\left(\frac{P_{t-1}}{p_{t}}\right)=-1$ or $\left(\frac{P_{t}}{p_{t-1}}\right)=$ -1 by quadratic reciprocity since $p_{t-1} \equiv p_{t} \equiv 3(\bmod 4)$. So $s_{K} \leq t-2$. Furthermore, from quadratic reciprocity and properties of Legendre symbols, the matrix M_{K} is completely determined by the set of values $\left\{\left(\frac{p_{j}}{p_{i}}\right)\right.$ for $1 \leq i<j \leq t\}$. For positive real numbers x, let

$$
\begin{aligned}
S^{\prime}(K, t ; x)= & \left\{\mathbb{Q}\left(\sqrt{p_{1}^{\prime} \ldots p_{t}^{\prime}}\right) \text { with primes } p_{1}^{\prime}<\ldots<p_{t}^{\prime}\right. \\
& p_{i}^{\prime} \equiv p_{i}(\bmod 4) \text { for } 1 \leq i \leq t \\
& \left.\left(\frac{p_{j}^{\prime}}{p_{i}^{\prime}}\right)=\left(\frac{p_{j}}{p_{i}}\right) \text { for } 1 \leq i<j \leq t, \text { and } p_{1}^{\prime} \ldots p_{t}^{\prime} \leq x\right\}
\end{aligned}
$$

Then analogously to (8) we have

$$
\begin{equation*}
\left|S^{\prime}(K, t ; x)\right| \sim 2^{-\left(t^{2}+t\right) / 2} \cdot \frac{1}{(t-1)!} \cdot \frac{x(\log \log x)^{t-1}}{\log x} \quad(\text { as } x \rightarrow \infty) \tag{16}
\end{equation*}
$$

From (12) and (16) with $t=r+2$, we get

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{\left|S^{\prime}(K, r+2 ; x)\right|}{\left|Y_{r ; x}\right|}=2^{-(r+1)(r+2) / 2} \cdot\left(2^{r+1}-1\right)^{-1}>0 \tag{17}
\end{equation*}
$$

Now we prove a lemma analogous to Lemma 1.

Lemma 2. Suppose $K=\mathbb{Q}\left(\sqrt{p_{1} \ldots p_{t}}\right)$ with distinct primes p_{1}, \ldots, p_{t} and $t \geq 6$. Also suppose $p_{1} \equiv p_{2} \equiv 1(\bmod 4)$ and $\left(\frac{p_{j}}{p_{i}}\right)=1$ for $i=1,2$ and $j=3,4,5$. Then the Hilbert 2 -class field tower of K is infinite.

Proof. Since $\left(\frac{p_{j}}{p_{i}}\right)=1$ for $i=1,2$ and $j=3,4,5$, we see that p_{3}, p_{4}, and p_{5} split completely in $F=\mathbb{Q}\left(\sqrt{p_{1}}, \sqrt{p_{2}}\right)$. Also p_{6} splits in at least one of the subfields $\mathbb{Q}\left(\sqrt{p_{1}}\right), \mathbb{Q}\left(\sqrt{p_{2}}\right), \mathbb{Q}\left(\sqrt{p_{1} p_{2}}\right)$ of F. Let $L=F\left(\sqrt{p_{3} \ldots p_{t}}\right)$. Then there are at least 14 ramified primes in L / F. Let E_{F} be the group of units in the ring of algebraic integers in F, and let $E_{F}^{2}=\left\{u^{2}: u \in E_{F}\right\}$. Since $\operatorname{dim}_{\mathbb{F}_{2}}\left(E_{F} / E_{F}^{2}\right)=4$, from genus theory the 2-class rank r_{L} satisfies

$$
r_{L} \geq 14-1-4=9
$$

From [1, p. 233], L has an infinite Hilbert 2-class field tower if $r_{L} \geq 2+$ $2 \sqrt{\gamma_{L}+1}$, where γ_{L} is the number of infinite primes of L. Since $\gamma_{L}=8$, we get $r_{L} \geq 9>2+2 \sqrt{8+1}$, and thus L does have an infinite Hilbert 2-class field tower. Since L is contained in the Hilbert 2-class field of K, we conclude that K has an infinite Hilbert 2-class field tower.

Now consider $K=\mathbb{Q}\left(\sqrt{p_{1} \ldots p_{6}}\right)$ with primes $p_{1}<\ldots<p_{6}$ such that $p_{i} \equiv 1(\bmod 4)$ for $1 \leq i \leq 4$ and $p_{5} \equiv p_{6} \equiv 3(\bmod 4)$. Then the $2-$ class rank r_{K} equals 4. Analogously to the procedure we used in proving Theorem 1, we list conditions on Legendre symbols that imply that the 4-class rank s_{K} equals s for a given value of s (by (14) and (15)) and so that K has an infinite Hilbert 2-class field tower (by Lemma 2). Then we get $S^{\prime}(K, 6 ; x) \subset Y_{4, s ; x}^{*}$, and using (13) and (17), we get $\varepsilon_{4, s}^{*}>0$.

CASE $s=0$: Suppose $\left(\frac{p_{j}}{p_{i}}\right)=1$ for $1 \leq i<j \leq 5 ;\left(\frac{p_{6}}{p_{i}}\right)=-1$ for $1 \leq i \leq 5$.

CASES $1 \leq s \leq 4$: For $s=1,2,3$, or 4 , suppose $\left(\frac{p_{j}}{p_{i}}\right)=1$ for $1 \leq i<j$ $\leq 5 ;\left(\frac{p_{6}}{p_{i}}\right)=1$ for $1 \leq i \leq s ;\left(\frac{p_{6}}{p_{i}}\right)=-1$ for $s+1 \leq i \leq 5$.

Next consider $K=\mathbb{Q}\left(\sqrt{p_{1} \ldots p_{7}}\right)$ with primes $p_{1}<\ldots<p_{7}$ such that $p_{i} \equiv 1(\bmod 4)$ for $1 \leq i \leq 5$ and $p_{6} \equiv p_{7} \equiv 3(\bmod 4)$. Then the 2-class rank r_{K} equals 5 . We will get $S^{\prime}(K, 7 ; x) \subset Y_{5, s ; x}^{*}$ and $\varepsilon_{5, s}^{*}>0$ if we choose the primes as follows:

CASE $s=0$: Suppose $\left(\frac{p_{j}}{p_{i}}\right)=1$ for $1 \leq i<j \leq 6 ;\left(\frac{p_{7}}{p_{i}}\right)=-1$ for $1 \leq i \leq 6$.

CASES $1 \leq s \leq 5$: If $s=1,2,3,4$, or 5 , suppose $\left(\frac{p_{j}}{p_{i}}\right)=1$ for $1 \leq i<$ $j \leq 6 ;\left(\frac{p_{7}}{p_{i}}\right)=1$ for $1 \leq i \leq s ;\left(\frac{p_{7}}{p_{i}}\right)=-1$ for $s+1 \leq i \leq 6$.

Then the proof of Theorem 2 is complete.
Remark. It is known that $W_{4,4 ; x}^{*}=W_{4,4 ; x}$ and $W_{5, s ; x}^{*}=W_{5, s ; x}$ for $s=4,5$ (see [9]). One could use these facts to give an alternative proof that $\varepsilon_{4,4}^{*}>0, \varepsilon_{5,4}^{*}>0$, and $\varepsilon_{5,5}^{*}>0$.

References

[1] J. W. S. Cassels and A. Fröhlich, Algebraic Number Theory, Academic Press, London, 1986.
[2] J. Cremona and R. Odoni, Some density results for negative Pell equations: an application of graph theory, J. London Math. Soc. 39 (1989), 16-28.
[3] F. Gerth, Counting certain number fields with prescribed ℓ-class numbers, J. Reine Angew. Math. 337 (1982), 195-207.
[4] -, The 4-class ranks of quadratic fields, Invent. Math. 77 (1984), 489-515.
[5] -, Densities for ranks of certain parts of p-class groups, Proc. Amer. Math. Soc. 99 (1987), 1-8.
[6] F. Hajir, On a theorem of Koch, Pacific J. Math. 176 (1996), 15-18.
[7] -, Correction to "On a theorem of Koch", ibid. 196 (2000), 507-508.
[8] G. Hardy and E. Wright, An Introduction to the Theory of Numbers, 4th ed., Oxford Univ. Press, London, 1965.
[9] C. Maire, Un raffinement du théorème de Golod-Safarevic, Nagoya Math. J. 150 (1998), 1-11.

Department of Mathematics
The University of Texas at Austin
Austin, TX 78712-1082, U.S.A.
E-mail: gerth@math.utexas.edu

[^0]: 2000 Mathematics Subject Classification: 11R29, 11R37, 11R45.

