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1. Introduction. Let K be a finite extension field of the rational num-
ber field Q, and let Cx be the 2-class group of K (i.e., the Sylow 2-subgroup
of the ideal class group of K) in the usual sense. Let K7 be the Hilbert 2-class
field of K (i.e., the maximal abelian unramified extension of K whose Galois
group is a 2-group), and let K; be the Hilbert 2-class field of K;_; for i > 2.
Then

KCcCK,C...CcK;C...

is the Hilbert 2-class field tower of K. If K; # K;_; for all i, then the Hilbert
2-class field tower is said to be infinite.

Next we define the 2-class rank and the 4-class rank of K. Let C§ =
{a': a € Ckx}. We define the 2-class rank rx by
(1) ri = rank C = dimg, (Cx /C%)

where 5 is the finite field with two elements, and we are viewing the ele-
mentary abelian 2-group C/C% as a vector space over Fa. We define the
4-class rank sk by

(2) s = rank C% = dimg, (C%/C%).

We note that 0 < sg < rg.

Now suppose K is an imaginary quadratic extension of Q. It is known
(cf. [1, p. 233]) that the Hilbert 2-class field tower of K is infinite if rx > 5.
We shall prove some results for the cases where rx = 3 or 4. For nonnegative
integers r and s, square-free positive integers m, and positive real numbers
x, we define

V, = {K = Q(v/—m) : the 2-class rank rx = r},
VT;II{K:Q(M) eV,.:m <z},
Visiz = {K € V.., : the 4-class rank sg = s},
Vo ={K €V, s, : the Hilbert 2-class field tower of K is infinite}.

r,8;T
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Then we define a density

| 7’*8'$|
3 0 o = liminf —=
®) =y

where |V| denotes the cardinality of a finite set V. We shall prove the fol-
lowing theorem in Section 2 of this paper.

THEOREM 1. For imaginary quadratic fields let 6y ; be defined by (3).
Then5§7s>0f0r1§s§3 and 5Z’S>0f07’0§5§4.

REMARK. Thus a positive proportion of the imaginary quadratic fields
with 2-class rank equal to 3 have infinite Hilbert 2-class field towers and
4-class rank equal to s for each value s = 1, 2, and 3. Similarly, a positive
proportion of the imaginary quadratic fields with 2-class rank equal to 4
have infinite Hilbert 2-class field towers and 4-class rank equal to s for each
value s =0, 1, 2, 3, and 4.

REMARK. An essential part of the proof of Theorem 1 depends on Corol-
lary 3 in a paper of Hajir [6]. In fact, Theorem 1 can be viewed as a gener-
alization of ideas introduced in [6].

Now suppose K is a real quadratic extension of Q. From [1, p. 233] the
Hilbert 2-class field tower of K is infinite if rx > 6. We shall prove some
results for the cases where rx = 4 or 5. For nonnegative integers r and s,
square-free integers m > 1, and positive real numbers x, we define

W, = {K = Q(v/m) : the 2-class rank 7x = r},

Wr;m = {K:Q<\/ﬁ) S WT tm SJ)},

Wy s.w = {IK € W, : the 4-class rank sx = s},

Wy, ={K €W, s, : the Hilbert 2-class field tower of K is infinite},

r,8;T

and

i
* I 3 199
@ o =it G T

We shall prove the following theorem in Section 3 of this paper.

THEOREM 2. For real quadratic fields let € be defined by (4). Then
€1s >0 for0<s<4dande;,>0jfor0<s<5.

REMARK. So a positive proportion of the real quadratic fields with 2-
class rank equal to 4 have infinite Hilbert 2-class field towers and 4-class
rank equal to s for each value s = 0, 1, 2, 3, and 4. Similarly, a positive
proportion of the real quadratic fields with 2-class rank equal to 5 have
infinite Hilbert 2-class field towers and 4-class rank equal to s for each value
s=0,1, 2, 3, 4, and 5.
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2. Proof of Theorem 1. Let K be an imaginary quadratic field in
which exactly t finite primes are ramified, where ¢ is a positive integer.
From genus theory we know that the 2-class rank rx equals ¢ — 1. With

=7 + 1, we see that the set V,.., in this paper is the same as the set Ay,
in [4]. So from equation (2.5) in [4],
1 z(loglogx)”

1
(5) \Vr;x’“’;ﬁ‘w (as ¥ — o0).

Now suppose K = Q(y/—p1 ...pt ), where p; < ... < p; are primes with
pi =1 (mod4) for 1 <i<t—1and p, =3 (mod4). From equations (2.6)
and (2.7) in [4], the 4-class rank sk satisfies

(6) sk =t—1—rank Mg

where My is a t x t matrix over o whose entries a;; are defined by Legendre

symbols as follows:
PA
() itizs
pi

P.
(—J> if i =j,
pi

with P; = p; if p; = 1 (mod4), P; = —p; if p; = 3 (mod4), and P;
= —pi...p/Pj. From quadratic reciprocity and properties of Legendre
symbols, the matrix Mg is completely determined by the set of values
{(I;—J) forl1 <i<j< t}. For positive real numbers x, let

7) (1) =

S(K,t;z) = {Q(\/—p’1 ...p}) with primes p| < ... < p},

p; = pi (mod4) for 1 <i <t
P; pj o
(—3) = <—J> for 1 <i<j<t, andp’l...pfgﬁar}.
D; Di
From equation (2.12) in [4],
1 z(loglogx)t~—1
(t—1)! log x
The proof of this formula depends on character sum estimates similar to
those used in Section 4 of [3] and Section 5 of [5]. Alternatively, one can

use the analytic machinery developed in [2]. Note that from (5) and with
t=r+11in (8), we get

8)  |S(K, t;z)| ~ 27 H+D/2.

(as x — 00).

(9) i SETFLO]_ o-(2range o

T—oo ’Vm&|
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The fact that this limit is positive will be a key part of the proof of The-
orem 1. However, first we need the following lemma, which follows from
Corollary 3 in [6].

LEMMA 1. Suppose K = Q(\/—p1 ...pt) with p1,...,p: distinct primes
and t > 4. Also suppose p1 = pa =1 (mod4) and (%) =1fori=1,2 and
j =3,4. Then the Hilbert 2-class field tower of K 1is infinite.

Proof. Let F = Q(\/_l,\/_) Since p; = p2 =1 (mod4) and ( ) =1
for i = 1,2 and j = 3,4, ps and p4 split completely in the totally real
degree 4 extension F' of Q. Then by Corollary 3 in [6], E = F'K has infinite
Hilbert 2-class field tower. Since F is contained in the Hilbert 2-class field
of K, the Hilbert 2-class field tower of K is infinite.

Now consider K = Q(y/—p1p2p3ps ) with primes p; < pa < p3 < p4 such
that p; =1 (mod4) for 1 < i < 3 and py = 3 (mod4). Then the 2-class rank

ri equals 3.

CASE s = 1: Suppose (%) =1for¢=1,2 and j = 3,4; (g—f) = —1;
(g—;‘) = —1. From Lemma 1, K has an infinite Hilbert 2-class field tower,
and from (7) one can check that rank My = 2. Then the 4-class rank sx is 1

from (6). Furthermore every field in the set S(K,4;x) has an infinite Hilbert
2-class field tower and 4-class rank equal to 1. So S(K,4;x) C V5'y.,, and
then equations (3) and (9) imply d3 ; > 0.

CASE s = 2: Suppose (%) =1fori=1,2and j = 3,4; (p—2) = —1;
(p3 )=1. Then a similar analysis shows S(K, 4;z) C V5'y.,, and then 43 5 >0.

CASE s = 3: Suppose (%) =1forl1 <i<j <4 Then S(K,4;z) C
V3*,3;x, and 5§’3 > 0.

Now consider K = Q(y/—p1p2pspaps ) with primes p1 < ps <p3 < ps <ps
such that p; =1 (mod4) for 1 <i <4 and p5 = 3 (mod 4). Then the 2-class

rank rx equals 4.

CASE s = 0: Suppose (%) =1lforl <7< j<4and (%) = —1 for
1 <i<4. Then S(K,5;x) C V)., and 5 > 0.

CAseEs 1 <s<3: If s=1, 2, or 3, suppose (%):1f0r1§i<j§4;
(%) =1forl<i<s; (%) = —1for s+1 <i <4. Then S(K,5;x) C V[,
and d0j ; > 0.

CASE s = 4: Suppose (%) =1for1 <i<j <5 Then S(K,5;z) C
Vi4.z, and 67 4 > 0.

Thus the proof of Theorem 1 is complete.
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REMARK. It is known that V5’ = V33, and V), = Vi 5, for s = 3,4
(see [6] and [7]). One could use these facts to give an alternative proof that
0353 >0,055>0,and d5 4 > 0.

3. Proof of Theorem 2. Let K = Q(y/m ), where m > 1 is a square-
free integer. Let rx be the 2-class rank of K, and let ¢ be the number of
primes that ramify in K/Q. It is well known that

t —1 if no prime dividing m
is congruent to 3 (mod4),
if at least one prime dividing m
is congruent to 3 (mod4).

(10) TK — t—2

For nonnegative integers r and positive real numbers z, we let
(11) Y ={k=Q(m):m=pi...pp2 <
with odd primes p; < ... < pri2
and with a positive even number of p; = 3 (mod 4)}.
If N, is the number of square-free positive integers m < x with r + 2 prime
factors, then
1 az(loglogz)™*
(r+1)! log x
(see [8, Theorem 437]). If N, , is the number of square-free positive integers

m < x with 742 prime factors and an even number of these primes congruent
to 3 (mod4), then Ne , ~ %NI. In Y,.,, we are excluding the set

N, ~

(as x — o0)

{m =p1...pry2 <z with each p; =1 (mod4)},

which has cardinality asymptotic to 2= "T2 N,. We are also excluding the
set
{m=p1...pryo <z with 2|m},

which has cardinality o(NN,). So

1 1 1 z(loglog )" 1
(12) Yl ~ | 5 — r+2 )’ I

2 2 (r+1)! log z

Now recall that W,., = {K = Q(y/m) : 2-class rank rg equals r and
m < x}. We note that

(as x — 00).

|Wr;x‘ ~ ‘Yr;m| (as r — OO)

since Y,.,, C W, and the set of elements of W,., that are not in Y,., has
cardinality o(|Y..|). Then for nonnegative integers s, we define

Y., = {K €Y, : the 4-class rank sg = s, and the
Hilbert 2-class field tower of K is infinite}.
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Then from (4) and the above discussion, we get

Y* .
(13) ef .= liminf| sl

s .
T—00 |Yr;a:|

Now suppose K = Q(y/p1-..p¢ ), Where p; < ... < p; are primes with
pi =1 (mod4) for 1 <i<t—2andp;—1 =p; =3 (mod4). Then the 2-class
rank rg is t — 2. For the 4-class rank, we shall use results from Section 5 of
[4]. However, first we remark that the 2-class groups considered in Section 5
of [4] are the narrow 2-class groups. For the field K that we are considering,
the narrow 2-class rank is ¢ — 1 rather than ¢t — 2, but the narrow 4-class
rank and the usual 4-class rank are the same. Hence from equations (5.5)
and (5.6) in [4], the 4-class rank sk satisfies

(14) sg =t—1—rank Mg

where Mg is the t x ¢t matrix over Fo whose entries a;; satisfy

(5> it 4,
Di
P.
(—J> if i = j,
Di

with P; = p; if p; = 1 (mod4), P; = —p; if p; = 3 (mod4), and P; =
p1-..pt/Pj. Note that rank Mg > 1 since either (%) =—1or (pf—_tl) =
—1 by quadratic reciprocity since p;—1 = p; = 3 (mod4). So sxg < t — 2.
Furthermore, from quadratic reciprocity and properties of Legendre sym-
bols, the matrix Mg is completely determined by the set of values {(z—J)

(15) (1) =

forl1 <i<j< t}. For positive real numbers x, let

S'(K,t;z) = {Q(\/p’1 ...p}) with primes p} < ... < p},

P, = p; (mod4) for 1 <i<t,
pj D o

(—f) = (—J> for 1 <i<j<t andp)...p, g:c}.
b; Di

Then analogously to (8) we have

1 z(loglog x)t~1
(t—1)! log z

From (12) and (16) with t = r + 2, we get

(16) |S'(K, t;2)| ~ 2~ E+D/2. (as z — 00).

/ .
(17) lim [S(K, 7+ 22)] — 9= (r+1)(r+2)/2 2+~ 1)~ > 0.

reo Ysal

Now we prove a lemma analogous to Lemma 1.
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LEMMA 2. Suppose K = Q(\/p1...p:) with distinct primes pi,...,p;
and t > 6. Also suppose p1 = pa = 1 (mod4) and (%) =1 fori=1,2 and
j=3,4,5. Then the Hilbert 2-class field tower of K is infinite.

Proof. Since (%) =1fori=1,2 and j = 3,4, 5, we see that p3, ps, and
ps split completely in F' = Q(,/p1, /P2 ). Also pg splits in at least one of the
subfields Q(,/p1 ), Q(\/p2), Q(/P1pz) of F. Let L = F(/p3-..p;). Then
there are at least 14 ramified primes in L/F. Let EFr be the group of units
in the ring of algebraic integers in F, and let E% = {u? : u € Ep}. Since
dimy, (Er/E%) = 4, from genus theory the 2-class rank ry, satisfies

rp >14—-1-4=09.

From [1, p. 233], L has an infinite Hilbert 2-class field tower if r;, > 2 +
2v/~vr + 1, where «, is the number of infinite primes of L. Since v, = 8,
we get r, > 9 > 2+ 24/8+ 1, and thus L does have an infinite Hilbert
2-class field tower. Since L is contained in the Hilbert 2-class field of K, we
conclude that K has an infinite Hilbert 2-class field tower.

Now consider K = Q(/p1-..ps) with primes p; < ... < pg such that
pi = 1 (mod4) for 1 < i < 4 and ps = ps = 3 (mod4). Then the 2-
class rankrx equals 4. Analogously to the procedure we used in proving
Theorem 1, we list conditions on Legendre symbols that imply that the
4-class rank sy equals s for a given value of s (by (14) and (15)) and so
that K has an infinite Hilbert 2-class field tower (by Lemma 2). Then we
get S'(K,6;z) C Y[, ,, and using (13) and (17), we get €3 ; > 0.

CASE s = 0: Suppose (%) =1forl <i<j<bh (%) = —1 for
1< <5

CASES 1 < s < 4: For s = 1, 2, 3, or 4, suppose (2—7) =1lfor1<i<j
<5 (B2)=1lfor1<i<s; () =—1fors+1<i<5.

Next consider K = Q(\/p1 ---p7 ) with primes p; < ... < p7 such that
p; =1 (mod4) for 1 < i <5 and pg = pr = 3 (mod4). Then the 2-class
rank rx equals 5. We will get S"(K,7;z) C Y5, and €5 ; > 0 if we choose
the primes as follows:

CASE s = 0: Suppose (%) =1lforl <i<j<6; (%) = —1 for
1< <6.

Cases 1 < s <5: If s=1,2, 3,4, or 5, suppose (%) =1forl1<i<
j<6; (B)=1for1<i<s; (5)=—1fors+1<i<6.

Then the proof of Theorem 2 is complete.

REMARK. It is known that Wise = Waaa and W5eo = Wssi for
s =4,5 (see [9]). One could use these facts to give an alternative proof that
€34 >0,e5,>0,and 55 > 0.
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