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An infinite family of totally real number fields

by

Humio Ichimura (Yokohama) and Fuminori Kawamoto (Tokyo)

1. Introduction. This is a continuation of [7]. Let F be a totally real
number field of degree n (≥ 2) and ιi (1 ≤ i ≤ n) all real embeddings
of F . We denote by li the real prime of F corresponding to ιi and put
l0 = l0(F ) := l1l2 . . . ln. For l | l0, F (l) denotes the ray class field of F mod l.
In particular, F (1) is the Hilbert class field of F . Let K/F be a subextension
of F (l)/F and G its Galois group. We denote by oF and oK the rings of
integers in F and K, respectively. If there exists some x in oK such that
{s(x)}s∈G is a free oF -basis of oK , then we say that the tamely ramified
abelian extension K/F has a normal integral basis (abbreviated NIB). Such
an element x is called a generator of NIB of K/F . We ask whether K/F has
an NIB. For this, we consider a subgroup of an elementary abelian 2-group
o×F /o

×2
F :

N l = N l(F )

:= {[η] ∈ o×F /o
×2
F | η ∈ o×F , η ≡ 1 mod 4, ιi(η) > 0 for all li | l0l−1}.

Here, for a ring R, R× denotes the group of units in R and [η] is the residue
class of η. We denote by Z the ring of all rational integers and put F2 :=
Z/2Z. Then we can regard N l as a vector space over F2 with dimension ≤ n.
Furthermore, we put

Ll := F ({√η | [η] ∈ N l}).
By Kummer theory, Ll is a subfield of F (l) and Ll/F is an elementary
abelian 2-extension of degree 2dimN l

, where dimV is the dimension of an F2-
vector space V . In [7], we proved the following theorem, using Brinkhuis [2,
Corollary 2.10] (or [3, Corollary 2.1]) and Childs [4, Theorem B].

Theorem 1. Let F be a totally real number field and l | l0.
(i) The extension Ll/F is the maximal subextension of F (l)/F which

has an NIB. Furthermore, if {[η1], . . . , [ηr]} is an F2-basis of N l with ηi ≡
1 mod 4, then x :=

∏r
i=1((1 +

√
ηi)/2) is a generator of NIB of Ll/F .
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(ii) Let K/F be a subextension of F (l)/F . Then K/F has an NIB if and
only if K ⊂ Ll. If the condition is satisfied , then TrLl/K(x) is a generator
of NIB of K/F . In particular , F (l)/F has an NIB if and only if hF =
|N l|[F (l) : F (1)]−1. Here, TrLl/K is the trace map from Ll to K and hF
denotes the class number of F .

In view of this theorem, the F2-vector space N l is naturally of interest.
In [7], we determined an F2-basis of N l for all real quadratic fields and
all cyclic cubic fields. The main purpose of this article is to determine an
F2-basis of N l and a generator x of NIB of the abelian extension Ll/F for a
certain family of totally real number fields F which are defined by Eisenstein
polynomials

f(X) =
n∏

i=1

(X − ai)− 2.

Here, ai’s are integers satisfying 8 | ai and some other conditions. (These
types of polynomials are also dealt with in [5].) We state the main result
(Proposition 3) in Section 2, and show it in Section 3. Applying Proposition 3
and Theorem 1, we examine whether F (l)/F has an NIB in (Proposition 6
of) Section 4. The final section is of supplementary nature. First, we show
that the above mentioned family of totally real number fields of degree n
contains infinite ones (Proposition 7). Next, we give an assertion (Proposi-
tion 9) on Galois extensions of prime power degree. As its consequence, we
see that when n = 3, the cubic fields in this article are not cyclic ones which
are dealt with in [7].

Acknowledgments. The second author expresses his appreciation to
Yoshitaka Odai for suggesting Proposition 9.

2. Main result. We introduce a family of totally real number fields of
Eisenstein type. Let n ≥ 2 be a positive integer and take n− 1 odd primes
pi (2 ≤ i ≤ n) such that

pi ≡ 5 mod 8, pi - (2n− 1).(2.1)

Furthermore, let a1, . . . , an be integers which satisfy the conditions (2.2)–
(2.5):

1 ≤ i < j ≤ n ⇒ aj − ai > 2 n
√

2,(2.2)

and for each i (1 ≤ i ≤ n),

ai ≡ 0 mod 8,(2.3)

ai ≡ −1 mod pi if i 6= 1,(2.4)

ai ≡ 0 mod pj for all j (2 ≤ j ≤ n, j 6= i).(2.5)
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Then we put

f(X) :=
n∏

i=1

(X − ai)− 2.

Since f(X) ≡ Xn − 2 mod 4 by (2.3), f(X) is an Eisenstein polynomial
for 2. Let θ be a root of f(X), and define

F := Q(θ),(2.6)

where Q denotes the field of all rational numbers. As we shall show at the
end of this section, (2.2) and the intermediate value theorem imply that
f(X) has n distinct real roots θi (1 ≤ i ≤ n) satisfying the following: when
n is even,

θ1 < a1 < a2 < θ2 < θ3 < . . . < θn−2 < θn−1 < an−1 < an < θn;(2.7)

when n is odd,

a1 < θ1 < θ2 < a2 < a3 < . . . < θn−2 < θn−1 < an−1 < an < θn.(2.8)

In particular, F is totally real. Also, 2 is totally ramified in F : 2oF = pn. As
ai (1 ≤ i ≤ n) is even, we have ordp(θ) = 1 < ordp(ai), so that ordp(θ − ai)
= 1; also, we have

∏n
i=1(θ − ai) = 2 since f(θ) = 0. Hence, p = (θ − ai)oF

for all i (1 ≤ i ≤ n). Therefore,

εi :=
θ − ai
θ − a1

(2.9)

(2 ≤ i ≤ n) are elements of o×F , and (2.3) implies that εi ≡ 1 mod 4. By
(2.1), (2.4) and (2.5), Lemma 2 follows from the same argument as in the
proof of [5, Lemma].

Lemma 2. Under the above setting , {[−1], [εi] | 2 ≤ i ≤ n} is an F2-basis
of o×F /o

×2
F .

For each i (1 ≤ i ≤ n), we define a real embedding ιi of F by putting
ιi(θ) := θi. Let li be the real prime of F corresponding to ιi. We have
l0 = l1l2 . . . ln. For l | l0, we define a group El by

El := {[η] ∈ o×F /o
×2
F | η ∈ o×F , ιi(η) > 0 for all li | l0l−1},

which we also regard as a vector space over F2. The vector space N l is a
subspace of El. We determine F2-bases of N l and of El, respectively, in
Proposition 3 which we show in the next section.

Definition 2.1. Let l | l0. When n is even (resp. odd), we define

S = Sl := {k | 1 ≤ k ≤ (n− 2)/2 (resp. (n− 1)/2),

i = 2k or 2k + 1 (resp. 2k − 1 or 2k) with some li | l0l−1}
and put σ = σl := |S|. We write S = {k1, . . . , kσ} with k1 < . . . < kσ.
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Proposition 3. Let F be a totally real number field as in (2.6) of degree
n and εi (2 ≤ i ≤ n) units of F as in (2.9). Let l | l0. Then, under the
notation of Definition 2.1, we have dimN l = n− 1− σl. Furthermore, the
following hold (when n = 2, we put k0 := 0 and ε1 := 1):

(i) Suppose that n is even, and put

A0: = {[εi] | 2 ≤ i ≤ 2k1},
B0: = {[εiε2ks+1 ] | 1 ≤ s ≤ σ − 1, 2ks + 1 ≤ i ≤ 2ks+1 − 1},
C0: = {[−εi] | 2kσ + 1 ≤ i ≤ n},
D0: = {[εiεn] | 2kσ + 1 ≤ i ≤ n− 1}.

If l1ln | l, then A0 ∪ B0 ∪ C0 (resp. A0 ∪ B0 ∪ D0) is an F2-basis of El

(resp. N l). In particular , dimEl = n − σl. If l1ln - l, then El = N l, and
A0 ∪B0 ∪D0 is an F2-basis of N l.

(ii) Suppose that n is odd , and put

A1: = {[εi] | 2 ≤ i ≤ 2k1 − 1},
B1: = {[εiε2ks+1−1] | 1 ≤ s ≤ σ − 1, 2ks ≤ i ≤ 2ks+1 − 2},
C1: = {[−εi] | 2kσ ≤ i ≤ n},
D1: = {[εiεn] | 2kσ ≤ i ≤ n− 1}.

If ln | l, then A1∪B1∪C1 (resp. A1∪B1∪D1) is an F2-basis of El (resp. N l).
In particular , dimEl = n− σl. If ln - l, then El = N l, and A1 ∪B1 ∪D1 is
an F2-basis of N l.

Since εi ≡ 1 mod 4 for all i, Theorem 1(i) and Proposition 3 yield:

Corollary 4. Let the assumption and notation be as in Proposition 3.
Then an element x of the following form is a generator of NIB of Ll/F :
when n is even,

x =
2k1∏

i=2

(
1 +

√
εi

2

) σ−1∏

s=1

2ks+1−1∏

i=2ks+1

(
1 +

√
εiε2ks+1

2

) n−1∏

i=2kσ+1

(
1 +

√
εiεn

2

)
;

when n is odd ,

x =
2k1−1∏

i=2

(
1 +

√
εi

2

) σ−1∏

s=1

2ks+1−2∏

i=2ks

(
1 +

√
εiε2ks+1−1

2

) n−1∏

i=2kσ

(
1 +

√
εiεn

2

)
.

Example 2.2. When n is even and 1 ≤ k ≤ (n − 2)/2, we list dimN l

for some l in Table I.
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Table I

l σl dimN l

l0 0 n− 1

l0l−1
1 l−1

n 0 n− 1

l2l3l4 . . . l2k+1 (n− 2)/2− k n/2 + k

l2l4l6 . . . l2k (n− 2)/2 n/2

l1ln (n− 2)/2 n/2

1 (n− 2)/2 n/2

Example 2.3. When n (≥ 3) is odd and 1 ≤ k ≤ (n − 1)/2, we list
dimN l for some l in Table II.

Table II

l σl dimN l

l0 0 n− 1

l0l−1
n 0 n− 1

l1l2l3 . . . l2k (n− 1)/2− k (n− 1)/2 + k

l1l3l5 . . . l2k−1 (n− 1)/2 (n− 1)/2

ln (n− 1)/2 (n− 1)/2

1 (n− 1)/2 (n− 1)/2

In order to prove (2.8), we assume that n is odd, and let 1 ≤ i ≤ n. Then
f(ai) = −2 < 0. If i is odd, since n− i is even, (2.2) implies that

f(ai + n
√

2) =
i∏

j=1

(ai − aj + n
√

2)
n∏

j=i+1

(aj − ai − n
√

2)− 2

>
n
√

2(3 n
√

2)i−1 · (n
√

2)n−i − 2 ≥ (n
√

2)n − 2 = 0.

Hence, the intermediate value theorem shows that f(X) has a real root in
the open interval (ai, ai + n

√
2). If i is even, since n − (i − 1) is even, the

same argument implies that f(ai − n
√

2) > 0. Consequently, f(X) has a
real root in (ai− n

√
2, ai). This implies the condition (2.8), and similarly we

obtain (2.7).

3. Proof of Proposition 3. In this section we prove Proposition 3.
Let 2 ≤ i ≤ n. Then we claim the following: when n is even and 1 ≤ k ≤
(n− 2)/2,

ι1(εi) > 0, ιn(εi) > 0; ι2k(εi) > 0, ι2k+1(εi) > 0 if i ≤ 2k;

ι2k(εi) < 0, ι2k+1(εi) < 0 if i ≥ 2k + 1;
(3.1)
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when n is odd and 1 ≤ k ≤ (n− 1)/2,

ιn(εi) > 0; ι2k−1(εi) > 0, ι2k(εi) > 0 if i ≤ 2k − 1;

ι2k−1(εi) < 0, ι2k(εi) < 0 if i ≥ 2k.
(3.2)

These are shown as follows. For each j (1 ≤ j ≤ n), we have ιj(εi) =
(θj − ai)/(θj − a1). Assume that n is even and 1 ≤ k ≤ (n − 2)/2. Since
θ1 < a1 < a2 ≤ ai by (2.7), we obtain ι1(εi) > 0; also, a1 < ai < θn implies
that ιn(εi) > 0. Furthermore, we have

a2k < θ2k < θ2k+1 < a2k+1 < a2k+2

from (2.7). Hence, if i ≤ 2k (resp., i > 2k), as a1 < θ2k, we have ι2k(εi) > 0
and ι2k+1(εi) > 0 (resp., ι2k(εi) < 0 and ι2k+1(εi) < 0). Thus (3.1) holds.
Similarly, (3.2) follows from (2.8).

Lemma 2 shows that

N l0 =
n∏

i=2

〈[εi]〉 and o×F /o
×2
F = 〈[−1]〉 × N l0 ,(3.3)

because εi ≡ 1 mod 4 (2 ≤ i ≤ n) and −1 6≡ 1 mod 4. In the remainder of
the proof, we let [η] ∈ o×F /o

×2
F , and write [η] = [−1]e1

∏n
i=2[εi]ei with some

e1, ei in {0, 1}. It follows immediately from (3.3) that

[η] ∈ N l (⊂ N l0) ⇒ e1 = 0.(3.4)

If 1 ≤ j ≤ n, then [ιj(η)] = [−1]e1
∏n
i=2[ιj(εi)]ei . We prove only the asser-

tion (i) of Proposition 3, since the same argument implies (ii). By (3.1), if
j = 2k or 2k + 1, then

ιj(η) > 0 ⇔ e1 +
n∑

i=2k+1

ei ≡ 0 mod 2.

It follows from this and the definition of Sl that

[η] ∈ El ⇔ e1 +
n∑

i=2ks+1

ei ≡ 0 mod 2 for all s (1 ≤ s ≤ σ)(3.5)

⇔
2ks+1∑

i=2ks+1

ei ≡ 0 mod 2 for all s (1 ≤ s ≤ σ − 1),

and e1 +
n∑

i=2kσ+1

ei ≡ 0 mod 2.

First, assume that l1ln | l, and [η] ∈ El (resp., ∈ N l). Then (3.5) and (3.4)
imply that e2ks+1 ≡

∑2ks+1−1
i=2ks+1 ei for all s (1 ≤ s ≤ σ − 1), and e1 ≡
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∑n
i=2kσ+1 ei mod 2 (resp., en ≡

∑n−1
i=2kσ+1 ei mod 2). Hence,

[η] =
2k1∏

i=2

[εi]ei
σ−1∏

s=1

2ks+1−1∏

i=2ks+1

[εiε2ks+1 ]ei ×
n∏

i=2kσ+1

[−εi]ei

(resp. ×
n−1∏

i=2kσ+1

[εiεn]ei).

Also, all elements of A0 ∪B0 ∪C0 (resp. A0 ∪B0 ∪D0) are in El (resp. N l)
by (3.5), and are linearly independent over F2 by (3.3). Therefore this set
constitutes an F2-basis of El (resp. N l). So,

dimEl = (2k1 − 1) +
σ−1∑

s=1

(2ks+1 − 2ks − 1) + (n− 2kσ) = n− σ.

Similarly, we have dimN l = n− 1− σ.
Next, assume that l1ln - l and [η] ∈ El. Then ι1(η) > 0 or ιn(η) > 0;

therefore we have e1 = 0 by (3.1). Hence, (3.3) implies that El = N l.
By the same argument as above, A0 ∪ B0 ∪ D0 is an F2-basis of N l. This
proves (i).

4. NIB of F (l)/F . In this section, using Proposition 3, we examine
whether F (l)/F has an NIB. We assume that F is a totally real number
field as in (2.6) of degree n, and li (1 ≤ i ≤ n) is the real prime of F
corresponding to the real embedding ιi, defined in Section 2. For l | l0, let
%l denote the number of distinct prime divisors of l. Then the Galois group
Gal(F (l)/F (1)) is an elementary abelian 2-group, which is also regarded as
a vector space over F2. We have

δl := dim Gal(F (l)/F (1)) = dimEl0l−1 − %l0l−1(4.1)

(cf. [7, Section 3]).

Lemma 5. Let l | l0.

(i) When n is even, if l | l0l−1
1 l−1

n then δl = %l − σl0l−1
, and otherwise

δl = %l − σl0l−1 − 1.
(ii) When n is odd , if l | l0l−1

n then δl = %l − σl0l−1
, and otherwise δl =

%l − σl0l−1 − 1.

Proof. Using Proposition 3, we can calculate δl from (4.1). If l | l0l−1
1 l−1

n ,
since l1ln | l0l−1, we have δl = (n−σl0l−1

)−%l0l−1 = %l−σl0l−1
. If l - l0l−1

1 l−1
n ,

then δl = (n− 1− σl0l−1
)− %l0l−1 = %l− σl0l−1 − 1. Hence we obtain (i); the

proof of (ii) is similar.

Proposition 6. We have 2-rank Gal(F (1)/F ) ≥ [n/2], where [α] de-
notes the largest integer not exceeding a real number α. Furthermore, let
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l | l0. Then:

(i) When “n is even and l1ln - l”, or n is odd , we have: F (l)/F has an
NIB if and only if hF = 2[n/2].

(ii) When n is even and l1ln | l, F (l)/F has no NIB.

Proof. Since L1 is a subfield of F (1), we have

2-rank Gal(F (1)/F ) ≥ 2-rank Gal(L1/F ) = dimN 1.

Examples 2.2 and 2.3 imply that dimN 1 = [n/2]. Therefore we obtain
2-rank Gal(F (1)/F ) ≥ [n/2]. If we write |N l|[F (l) : F (1)]−1 = 2el with
some integer el, then Proposition 3 yields

el = n− 1− (σl + δl).(4.2)

As before, let S = Sl and σ = σl. For brevity, put S′ := Sl0l−1
, σ′ := |S′|,

and t := |S ∩ S′|. To show Proposition 6, we first write %l and %l0l−1 in
terms of σ, σ′, t (and next calculate el). For this, the following remark is
useful. When n is even, we see from the definition of S and S ′ that (I) if
k ∈ S ∩ S′ then either “l2k | l0l−1 and l2k+1 | l”, or “l2k+1 | l0l−1 and l2k | l”,
and that (II) if k ∈ S − (S ∩ S ′) (resp., ∈ S′ − (S ∩ S′)), then l2kl2k+1 | l0l−1

(resp., l2kl2k+1 | l). A similar assertion holds for n odd.

(A) The case where n is even. When l - l0l−1
1 l−1

n , we put u := |{1, n} ∩
{i; li | l}|. If l | l0l−1

1 l−1
n (resp., l - l0l−1

1 l−1
n ), by the above remark, we have

%l0l−1 = t+2(σ−t)+2 and %l = t+2(σ′−t) (resp., %l0l−1 = t+2(σ−t)+2−u
and %l = t + 2(σ′ − t) + u). Consequently, %l0l−1 − %l = 2(σ − σ′) + 2
(resp., %l0l−1 − %l = 2(σ− σ′) + 2− 2u). On the other hand, we clearly have
%l0l−1 + %l = n. Therefore, we obtain

(n− 2)/2 (resp. n/2 + u− 1) = %l + σ − σ′.(4.3)

By (4.2) and Lemma 5(i), we obtain el = n − 1 − (σ + %l − σ′) (resp.,
= n−(σ+%l−σ′)). Hence, (4.3) implies that el = n/2 (resp., = n/2−(u−1)).
Since u = 1 or 2, if l1ln - l (resp., l1ln | l) then el = n/2 (resp., = n/2− 1).

(B) The case where n is odd. If l | l0l−1
n (resp., l - l0l−1

n ), by the above
remark, we have %l0l−1 = t + 2(σ − t) + 1 and %l = t + 2(σ′ − t) (resp.,
%l0l−1 = t+ 2(σ − t) and %l = t+ 2(σ′ − t) + 1); consequently, %l0l−1 − %l =
2(σ − σ′) + 1 (resp., %l0l−1 − %l = 2(σ − σ′)− 1); therefore,

(n− 1)/2 (resp. (n+ 1)/2) = %l + σ − σ′.(4.4)

By (4.2) and Lemma 5(ii), we obtain el = n − 1 − (σ + %l − σ′) (resp.,
= n− (σ + %l − σ′)). Hence, (4.4) implies that el = (n− 1)/2.

Theorem 1(ii) shows that F (l)/F has an NIB if and only if hF = 2el .
When “n is even and l1ln - l”, or n is odd, (A) and (B) imply that el = [n/2].
Hence the assertion (i) holds. When n is even and l1ln | l, since 2[n/2] |hF , it
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follows from (A) that

2el = 2n/2−1 < 2[n/2] ≤ hF .
Hence F (l)/F has no NIB. This proves our proposition.

Assume that hF = 2[n/2]. When n is even, Proposition 6 implies that
F (l)/F has an NIB if and only if l1ln - l. Also, when n is odd, F (l)/F has
an NIB for all l | l0. On the other hand, if hF 6= 2[n/2] then F (l)/F has no
NIB for all l | l0. Thus the existence of NIB of F (l)/F is determined by the
condition on the class number hF and an integral divisor l.

Remark 4.1. Suppose that n = 2. Let ε (> 1) be the fundamental unit
of F and g the order of ε mod 4 in (oF/4oF )×. By Lemma 2, we see that
the index (o×F : 〈−1〉 × 〈ε2〉) is odd, where the unit ε2 is defined in (2.9).
This implies that g is odd and ε is totally positive. Hence, Proposition 6 for
n = 2 also follows from [7, Corollaries 11 and 12].

Example 4.2. Let ClF be the ideal class group of F . For a positive
integer m, we denote by Cm a cyclic group of order m. We consider a real
quadratic field F which is defined by a polynomial of the form f(X) =
X(X − a2) − 2, where a2 is an integer such that a2 ≡ 0 mod 8 and a2 ≡
−1 mod p2, p2 being a prime with p2 ≡ 5 mod 8. For all fields F in Table
III, by using PARI [1], we see that F (1)/F has a relative integral basis,
that is, oF (1) has a free oF -basis; we can also obtain the same result by
using KASH [8] (cf. [7, Section 5]). But, as hF 6= 2, F (1)/F has no NIB by
Proposition 6.

Table III

p2 a2 ClF hF

5 224 C2 × C2 4

5 424 C6 6

5 54744 C2 × C2 4

5 138944 C2 × C2 4

5 156624 C2 × C2 4

13 168 C6 6

13 13896 C6 6

29 11512 C2 × C2 4

157 23392 C2 × C2 4

5. Supplements. In this section we prove Propositions 7 and 9.

Proposition 7. For each positive integer n ≥ 2, there exist infinitely
many totally real number fields F as in (2.6) of degree n.

For the proof, we need:
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Lemma 8. Let n ≥ 2 be a positive integer and β ∈ Z, β 6= 0. Then there
exist infinitely many primes l that satisfy the following two conditions:

(i) l -βn(n− 1).
(ii) There is some a(l) in Z such that ordl(d(ga)) = 1 for all integers a

with a ≡ a(l) mod l2, where we put ga(X) := Xn − aXn−1 − β and denote
by d(ga) the discriminant of ga(X).

Proof. Let ζn be a primitive nth root of unity, and put

K := Q( n
√
−β(n− 1)) and N := K(ζn).

Since N/Q is Galois, by the Dirichlet density theorem, there exist infinitely
many primes l such that l -βn(n− 1) and l is completely decomposed in N .
Take such a prime l and let L be a prime ideal of oK lying above l. Since l
is a prime element of L, we have

oK/L2 = {(a0 + a1l) mod L2 | a0, a1 ∈ Z/lZ}.
Therefore there is some b in Z such that

b ≡ n
√
−β(n− 1)

n

n− 1
mod L2.(5.1)

Since l -βn(n− 1), we have l - b. Put a(l) := b+ l. Let a be an integer with
a ≡ a(l) mod l2 and put g(X) := Xn−aXn−1−β. By Swan [9, Theorem 2],
we have

d(g) = (−1)n(n−1)/2(−β)n−2{(−1)n−1(n− 1)n−1(−a)n − nnβ}(5.2)

= (−1)(n+2)(n−1)/2βn−2{(n− 1)n−1an + nnβ}.
As the definition of a and (5.1) imply that

an ≡ a(l)n ≡ bn + nbn−1l ≡ −β(n− 1)(n/(n− 1))n + nbn−1l mod l2,

we obtain (n−1)n−1an+nnβ ≡ n(n−1)n−1bn−1l mod l2. Hence, (5.2) yields

d(g) ≡ (−1)(n+2)(n−1)/2βn−2n(n− 1)n−1bn−1l mod l2.

As l -βn(n− 1)b, we have ordl(d(g)) = 1. This proves our lemma.

Proof of Proposition 7. Let F1, . . . , Ft be finitely many distinct fields as
in (2.6). It follows from Lemma 8 for β = 2 that there exist some odd prime
l and some a(l) in Z such that ordl(d(g)) = 1 and l is unramified in each
Fi (1 ≤ i ≤ t), where we put g(X) := Xn − a(l)Xn−1 − 2. Take n − 1 odd
primes pi (2 ≤ i ≤ n) with pi 6= l satisfying (2.1), and let a1, . . . , an be
integers which satisfy (2.2)–(2.5),

a1 ≡ a(l) mod l2, and ai ≡ 0 mod l2 for all i (2 ≤ i ≤ n).(5.3)

Then we define a field F as in (2.6). Since (5.3) implies that f(X) ≡
g(X) mod l2, we have ordl(d(f)) = 1. If dF is the absolute discriminant
of F , then d(f) = dF · (oF : Z[θ])2. Hence, l | dF . Therefore, l is ramified in
F , and F 6= F1, . . . , Ft.
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When the degree n is a power of odd prime, Proposition 9 implies that
a field F as in (2.6) is not Galois over Q, because 2 is (totally) ramified in
F . In particular, when n = 3, we see that F is not a cyclic cubic field.

Proposition 9. Let F/Q be a Galois extension of prime power degree,
say lt. Suppose that p is a prime such that p 6= l and p 6≡ 1 mod l. Then p
is unramified in F . In particular , if l is odd then 2 is unramified in F .

Proof. Let G := Gal(F/Q) and p a prime ideal of oF lying above p. For
each non-negative integer m, we put

Gm := {s ∈ G | s(x) ≡ x mod pm+1 for all x in oF }.
Then it is known that |G0/G1| | (Np − 1), and |Gm/Gm+1| |Np for each
m ≥ 1 (cf. Iwasawa [6, Proposition 2.19]), where Np is the absolute norm of
p. As p 6= l, we obtain Gm = {1} for all m ≥ 1. Hence, |G0| | (Np− 1). Let
f be the residue degree of p in F/Q: Np = pf . Since F/Q is Galois, both
f and |G0| divide lt. By Fermat’s little theorem, we obtain Np ≡ p mod l.
Then, since the assumption implies that l - (Np−1), we have l - |G0|. Hence,
G0 = {1}, therefore p is unramified in F . This proves our proposition.

References

[1] C. Batut, K. Belabas, D. Bernardi, H. Cohen and M. Olivier, GP/PARI calculator,
Version 2.0.17 (beta).

[2] J. Brinkhuis, Unramified abelian extensions of CM-fields and their Galois module
structure, Bull. London Math. Soc. 24 (1992), 236–242.

[3] —, On the Galois module structure over CM-fields, Manuscripta Math. 75 (1992),
333–347.

[4] L. Childs, The group of unramified Kummer extensions of prime degree, Proc. London
Math. Soc. 35 (1977), 407–422.

[5] H. Ichimura, A note on unramified quadratic extensions over algebraic number fields,
Proc. Japan Acad. Ser. A 76 (2000), 78–81.

[6] K. Iwasawa, Local Class Field Theory , Oxford Univ. Press, 1986.
[7] F. Kawamoto and Y. Odai, Normal integral bases of ∞-ramified abelian extensions

of totally real number fields, Abh. Math. Sem. Univ. Hamburg, to appear.
[8] M. Pohst, KANT/KASH calculator, Version 2.2.
[9] R. Swan, Factorization of polynomials over finite fields, Pacific J. Math. 12 (1962),

1099–1106.

Department of Mathematics
Yokohama City University
22-2, Seto, Kanazawa-ku
Yokohama, 236-0027, Japan
E-mail: ichimura@yokohama-cu.ac.jp

Department of Mathematics
Faculty of Science, Gakushuin University

1-5-1 Mejiro Toshima-ku
Tokyo 171-8588, Japan

E-mail: fuminori.kawamoto@gakushuin.ac.jp

Received on 23.8.2001
and in revised form on 11.3.2002 (4095)


