An infinite family of totally real number fields

by

HUMIO ICHIMURA (Yokohama) and FUMINORI KAWAMOTO (Tokyo)

1. Introduction. This is a continuation of [7]. Let F be a totally real number field of degree $n \ (\geq 2)$ and $\iota_i \ (1 \le i \le n)$ all real embeddings of F. We denote by \mathfrak{l}_i the real prime of F corresponding to ι_i and put $\mathfrak{l}_0 = \mathfrak{l}_0(F) := \mathfrak{l}_1 \mathfrak{l}_2 \ldots \mathfrak{l}_n$. For $\mathfrak{l} | \mathfrak{l}_0, F(\mathfrak{l})$ denotes the ray class field of F mod \mathfrak{l} . In particular, F(1) is the Hilbert class field of F. Let K/F be a subextension of $F(\mathfrak{l})/F$ and G its Galois group. We denote by \mathfrak{o}_F and \mathfrak{o}_K the rings of integers in F and K, respectively. If there exists some x in \mathfrak{o}_K such that $\{s(x)\}_{s\in G}$ is a free \mathfrak{o}_F -basis of \mathfrak{o}_K , then we say that the tamely ramified abelian extension K/F has a normal integral basis (abbreviated NIB). Such an element x is called a generator of NIB of K/F. We ask whether K/F has a NIB. For this, we consider a subgroup of an elementary abelian 2-group $\mathfrak{o}_F^{\times}/\mathfrak{o}_F^{\times 2}$:

$$\mathcal{N}^{\mathfrak{l}} = \mathcal{N}^{\mathfrak{l}}(F)$$

:= {[η] $\in \mathfrak{o}_{F}^{\times}/\mathfrak{o}_{F}^{\times 2} \mid \eta \in \mathfrak{o}_{F}^{\times}, \eta \equiv 1 \mod 4, \iota_{i}(\eta) > 0 \text{ for all } \mathfrak{l}_{i} \mid \mathfrak{l}_{0}\mathfrak{l}^{-1}$ }.

Here, for a ring R, R^{\times} denotes the group of units in R and $[\eta]$ is the residue class of η . We denote by \mathbb{Z} the ring of all rational integers and put $\mathbb{F}_2 := \mathbb{Z}/2\mathbb{Z}$. Then we can regard $\mathcal{N}^{\mathfrak{l}}$ as a vector space over \mathbb{F}_2 with dimension $\leq n$. Furthermore, we put

$$L^{\mathfrak{l}} := F(\{\sqrt{\eta} \mid [\eta] \in \mathcal{N}^{\mathfrak{l}}\}).$$

By Kummer theory, $L^{\mathfrak{l}}$ is a subfield of $F(\mathfrak{l})$ and $L^{\mathfrak{l}}/F$ is an elementary abelian 2-extension of degree $2^{\dim \mathcal{N}^{\mathfrak{l}}}$, where dim V is the dimension of an \mathbb{F}_{2} vector space V. In [7], we proved the following theorem, using Brinkhuis [2, Corollary 2.10] (or [3, Corollary 2.1]) and Childs [4, Theorem B].

THEOREM 1. Let F be a totally real number field and $\mathfrak{l} \mid \mathfrak{l}_0$.

(i) The extension $L^{\mathfrak{l}}/F$ is the maximal subextension of $F(\mathfrak{l})/F$ which has an NIB. Furthermore, if $\{[\eta_1], \ldots, [\eta_r]\}$ is an \mathbb{F}_2 -basis of $\mathcal{N}^{\mathfrak{l}}$ with $\eta_i \equiv 1 \mod 4$, then $x := \prod_{i=1}^r ((1 + \sqrt{\eta_i})/2)$ is a generator of NIB of $L^{\mathfrak{l}}/F$.

²⁰⁰⁰ Mathematics Subject Classification: Primary 11R33.

(ii) Let K/F be a subextension of $F(\mathfrak{l})/F$. Then K/F has an NIB if and only if $K \subset L^{\mathfrak{l}}$. If the condition is satisfied, then $\operatorname{Tr}_{L^{\mathfrak{l}}/K}(x)$ is a generator of NIB of K/F. In particular, $F(\mathfrak{l})/F$ has an NIB if and only if $h_F =$ $|\mathcal{N}^{\mathfrak{l}}|[F(\mathfrak{l}) : F(1)]^{-1}$. Here, $\operatorname{Tr}_{L^{\mathfrak{l}}/K}$ is the trace map from $L^{\mathfrak{l}}$ to K and h_F denotes the class number of F.

In view of this theorem, the \mathbb{F}_2 -vector space $\mathcal{N}^{\mathfrak{l}}$ is naturally of interest. In [7], we determined an \mathbb{F}_2 -basis of $\mathcal{N}^{\mathfrak{l}}$ for all real quadratic fields and all cyclic cubic fields. The main purpose of this article is to determine an \mathbb{F}_2 -basis of $\mathcal{N}^{\mathfrak{l}}$ and a generator x of NIB of the abelian extension $L^{\mathfrak{l}}/F$ for a certain family of totally real number fields F which are defined by Eisenstein polynomials

$$f(X) = \prod_{i=1}^{n} (X - a_i) - 2.$$

Here, a_i 's are integers satisfying $8 | a_i|$ and some other conditions. (These types of polynomials are also dealt with in [5].) We state the main result (Proposition 3) in Section 2, and show it in Section 3. Applying Proposition 3 and Theorem 1, we examine whether $F(\mathfrak{l})/F$ has an NIB in (Proposition 6 of) Section 4. The final section is of supplementary nature. First, we show that the above mentioned family of totally real number fields of degree n contains infinite ones (Proposition 7). Next, we give an assertion (Proposition 9) on Galois extensions of prime power degree. As its consequence, we see that when n = 3, the cubic fields in this article are not cyclic ones which are dealt with in [7].

Acknowledgments. The second author expresses his appreciation to Yoshitaka Odai for suggesting Proposition 9.

2. Main result. We introduce a family of totally real number fields of Eisenstein type. Let $n \ge 2$ be a positive integer and take n-1 odd primes p_i $(2 \le i \le n)$ such that

(2.1)
$$p_i \equiv 5 \mod 8, \quad p_i \not\mid (2n-1).$$

Furthermore, let a_1, \ldots, a_n be integers which satisfy the conditions (2.2)–(2.5):

(2.2)
$$1 \le i < j \le n \implies a_j - a_i > 2\sqrt[n]{2},$$

and for each $i \ (1 \le i \le n)$,

- $(2.3) a_i \equiv 0 \bmod 8,$
- (2.4) $a_i \equiv -1 \mod p_i \quad \text{if } i \neq 1,$
- (2.5) $a_i \equiv 0 \mod p_j \quad \text{for all } j \ (2 \le j \le n, \ j \ne i).$

Then we put

$$f(X) := \prod_{i=1}^{n} (X - a_i) - 2.$$

Since $f(X) \equiv X^n - 2 \mod 4$ by (2.3), f(X) is an Eisenstein polynomial for 2. Let θ be a root of f(X), and define

(2.6)
$$F := \mathbb{Q}(\theta),$$

where \mathbb{Q} denotes the field of all rational numbers. As we shall show at the end of this section, (2.2) and the intermediate value theorem imply that f(X) has n distinct real roots θ_i $(1 \le i \le n)$ satisfying the following: when n is even,

$$(2.7) \quad \theta_1 < a_1 < a_2 < \theta_2 < \theta_3 < \ldots < \theta_{n-2} < \theta_{n-1} < a_{n-1} < a_n < \theta_n;$$

when n is odd,

$$(2.8) \quad a_1 < \theta_1 < \theta_2 < a_2 < a_3 < \ldots < \theta_{n-2} < \theta_{n-1} < a_{n-1} < a_n < \theta_n.$$

In particular, F is totally real. Also, 2 is totally ramified in $F: 2\mathfrak{o}_F = \mathfrak{p}^n$. As $a_i \ (1 \leq i \leq n)$ is even, we have $\operatorname{ord}_{\mathfrak{p}}(\theta) = 1 < \operatorname{ord}_{\mathfrak{p}}(a_i)$, so that $\operatorname{ord}_{\mathfrak{p}}(\theta - a_i) = 1$; also, we have $\prod_{i=1}^{n} (\theta - a_i) = 2$ since $f(\theta) = 0$. Hence, $\mathfrak{p} = (\theta - a_i)\mathfrak{o}_F$ for all $i \ (1 \leq i \leq n)$. Therefore,

(2.9)
$$\varepsilon_i := \frac{\theta - a_i}{\theta - a_1}$$

 $(2 \le i \le n)$ are elements of \mathfrak{o}_F^{\times} , and (2.3) implies that $\varepsilon_i \equiv 1 \mod 4$. By (2.1), (2.4) and (2.5), Lemma 2 follows from the same argument as in the proof of [5, Lemma].

LEMMA 2. Under the above setting, $\{[-1], [\varepsilon_i] \mid 2 \leq i \leq n\}$ is an \mathbb{F}_2 -basis of $\mathfrak{o}_F^{\times/} \mathfrak{o}_F^{\times 2}$.

For each i $(1 \le i \le n)$, we define a real embedding ι_i of F by putting $\iota_i(\theta) := \theta_i$. Let \mathfrak{l}_i be the real prime of F corresponding to ι_i . We have $\mathfrak{l}_0 = \mathfrak{l}_1 \mathfrak{l}_2 \dots \mathfrak{l}_n$. For $\mathfrak{l} | \mathfrak{l}_0$, we define a group $\overline{E}^{\mathfrak{l}}$ by

$$\overline{E}^{\mathfrak{l}} := \{ [\eta] \in \mathfrak{o}_{F}^{\times} / \mathfrak{o}_{F}^{\times 2} \mid \eta \in \mathfrak{o}_{F}^{\times}, \ \iota_{i}(\eta) > 0 \text{ for all } \mathfrak{l}_{i} \mid \mathfrak{l}_{0}\mathfrak{l}^{-1} \},\$$

which we also regard as a vector space over \mathbb{F}_2 . The vector space $\mathcal{N}^{\mathfrak{l}}$ is a subspace of $\overline{E}^{\mathfrak{l}}$. We determine \mathbb{F}_2 -bases of $\mathcal{N}^{\mathfrak{l}}$ and of $\overline{E}^{\mathfrak{l}}$, respectively, in Proposition 3 which we show in the next section.

DEFINITION 2.1. Let
$$l \mid l_0$$
. When *n* is even (resp. odd), we define
 $S = S^{\mathfrak{l}} := \{k \mid 1 \leq k \leq (n-2)/2 \text{ (resp. } (n-1)/2),$
 $i = 2k \text{ or } 2k + 1 \text{ (resp. } 2k - 1 \text{ or } 2k) \text{ with some } \mathfrak{l}_i \mid \mathfrak{l}_0 \mathfrak{l}^{-1}\}$

and put $\sigma = \sigma^{\mathfrak{l}} := |S|$. We write $S = \{k_1, \ldots, k_{\sigma}\}$ with $k_1 < \ldots < k_{\sigma}$.

PROPOSITION 3. Let F be a totally real number field as in (2.6) of degree n and ε_i (2 $\leq i \leq n$) units of F as in (2.9). Let $\mathfrak{l} | \mathfrak{l}_0$. Then, under the notation of Definition 2.1, we have dim $\mathcal{N}^{\mathfrak{l}} = n - 1 - \sigma^{\mathfrak{l}}$. Furthermore, the following hold (when n = 2, we put $k_0 := 0$ and $\varepsilon_1 := 1$):

(i) Suppose that n is even, and put

$$\begin{split} A_0 &:= \{ [\varepsilon_i] \mid 2 \le i \le 2k_1 \}, \\ B_0 &:= \{ [\varepsilon_i \varepsilon_{2k_{s+1}}] \mid 1 \le s \le \sigma - 1, \, 2k_s + 1 \le i \le 2k_{s+1} - 1 \}, \\ C_0 &:= \{ [-\varepsilon_i] \mid 2k_\sigma + 1 \le i \le n \}, \\ D_0 &:= \{ [\varepsilon_i \varepsilon_n] \mid 2k_\sigma + 1 \le i \le n - 1 \}. \end{split}$$

If $\mathfrak{l}_1\mathfrak{l}_n \mid \mathfrak{l}$, then $A_0 \cup B_0 \cup C_0$ (resp. $A_0 \cup B_0 \cup D_0$) is an \mathbb{F}_2 -basis of $\overline{E}^{\mathfrak{l}}$ (resp. $\mathcal{N}^{\mathfrak{l}}$). In particular, dim $\overline{E}^{\mathfrak{l}} = n - \sigma^{\mathfrak{l}}$. If $\mathfrak{l}_1\mathfrak{l}_n \nmid \mathfrak{l}$, then $\overline{E}^{\mathfrak{l}} = \mathcal{N}^{\mathfrak{l}}$, and $A_0 \cup B_0 \cup D_0$ is an \mathbb{F}_2 -basis of $\mathcal{N}^{\mathfrak{l}}$.

(ii) Suppose that n is odd, and put

$$\begin{aligned} A_{1} &:= \{ [\varepsilon_{i}] \mid 2 \leq i \leq 2k_{1} - 1 \}, \\ B_{1} &:= \{ [\varepsilon_{i}\varepsilon_{2k_{s+1} - 1}] \mid 1 \leq s \leq \sigma - 1, \, 2k_{s} \leq i \leq 2k_{s+1} - 2 \}, \\ C_{1} &:= \{ [-\varepsilon_{i}] \mid 2k_{\sigma} \leq i \leq n \}, \\ D_{1} &:= \{ [\varepsilon_{i}\varepsilon_{n}] \mid 2k_{\sigma} \leq i \leq n - 1 \}. \end{aligned}$$

If $\mathfrak{l}_n \mid \mathfrak{l}$, then $A_1 \cup B_1 \cup C_1$ (resp. $A_1 \cup B_1 \cup D_1$) is an \mathbb{F}_2 -basis of $\overline{E}^{\mathfrak{l}}$ (resp. $\mathcal{N}^{\mathfrak{l}}$). In particular, dim $\overline{E}^{\mathfrak{l}} = n - \sigma^{\mathfrak{l}}$. If $\mathfrak{l}_n \nmid \mathfrak{l}$, then $\overline{E}^{\mathfrak{l}} = \mathcal{N}^{\mathfrak{l}}$, and $A_1 \cup B_1 \cup D_1$ is an \mathbb{F}_2 -basis of $\mathcal{N}^{\mathfrak{l}}$.

Since $\varepsilon_i \equiv 1 \mod 4$ for all *i*, Theorem 1(i) and Proposition 3 yield:

COROLLARY 4. Let the assumption and notation be as in Proposition 3. Then an element x of the following form is a generator of NIB of $L^{\mathfrak{l}}/F$: when n is even,

$$x = \prod_{i=2}^{2k_1} \left(\frac{1+\sqrt{\varepsilon_i}}{2}\right) \prod_{s=1}^{\sigma-1} \prod_{i=2k_s+1}^{2k_{s+1}-1} \left(\frac{1+\sqrt{\varepsilon_i\varepsilon_{2k_{s+1}}}}{2}\right) \prod_{i=2k_\sigma+1}^{n-1} \left(\frac{1+\sqrt{\varepsilon_i\varepsilon_n}}{2}\right);$$

when n is odd,

$$x = \prod_{i=2}^{2k_1-1} \left(\frac{1+\sqrt{\varepsilon_i}}{2}\right) \prod_{s=1}^{\sigma-1} \prod_{i=2k_s}^{2k_{s+1}-2} \left(\frac{1+\sqrt{\varepsilon_i\varepsilon_{2k_{s+1}-1}}}{2}\right) \prod_{i=2k_\sigma}^{n-1} \left(\frac{1+\sqrt{\varepsilon_i\varepsilon_n}}{2}\right).$$

EXAMPLE 2.2. When n is even and $1 \le k \le (n-2)/2$, we list dim $\mathcal{N}^{\mathfrak{l}}$ for some \mathfrak{l} in Table I.

ľ	$\sigma^{\mathfrak{l}}$	$\dim \mathcal{N}^{\mathfrak{l}}$
l ₀	0	n-1
$\mathfrak{l}_0\mathfrak{l}_1^{-1}\mathfrak{l}_n^{-1}$	0	n-1
$\mathfrak{l}_2\mathfrak{l}_3\mathfrak{l}_4\ldots\mathfrak{l}_{2k+1}$	(n-2)/2 - k	n/2 + k
$\mathfrak{l}_2\mathfrak{l}_4\mathfrak{l}_6\ldots\mathfrak{l}_{2k}$	(n-2)/2	n/2
$\mathfrak{l}_1\mathfrak{l}_n$	(n-2)/2	n/2
1	(n-2)/2	n/2

Table I

EXAMPLE 2.3. When $n \geq 3$ is odd and $1 \leq k \leq (n-1)/2$, we list $\dim \mathcal{N}^{\mathfrak{l}}$ for some \mathfrak{l} in Table II.

ſ	$\sigma^{\mathfrak{l}}$	$\dim \mathcal{N}^{\mathfrak{l}}$
\mathfrak{l}_0	0	n-1
$\mathfrak{l}_0\mathfrak{l}_n^{-1}$	0	n-1
$\mathfrak{l}_1\mathfrak{l}_2\mathfrak{l}_3\ldots\mathfrak{l}_{2k}$	(n-1)/2 - k	(n-1)/2 + k
$\mathfrak{l}_1\mathfrak{l}_3\mathfrak{l}_5\ldots\mathfrak{l}_{2k-1}$	(n-1)/2	(n-1)/2
\mathfrak{l}_n	(n-1)/2	(n-1)/2
1	(n-1)/2	(n-1)/2

Table II

In order to prove (2.8), we assume that n is odd, and let $1 \le i \le n$. Then $f(a_i) = -2 < 0$. If i is odd, since n - i is even, (2.2) implies that

$$f(a_i + \sqrt[n]{2}) = \prod_{j=1}^{i} (a_i - a_j + \sqrt[n]{2}) \prod_{j=i+1}^{n} (a_j - a_i - \sqrt[n]{2}) - 2$$

> $\sqrt[n]{2} (3\sqrt[n]{2})^{i-1} \cdot (\sqrt[n]{2})^{n-i} - 2 \ge (\sqrt[n]{2})^n - 2 = 0$

Hence, the intermediate value theorem shows that f(X) has a real root in the open interval $(a_i, a_i + \sqrt[n]{2})$. If *i* is even, since n - (i - 1) is even, the same argument implies that $f(a_i - \sqrt[n]{2}) > 0$. Consequently, f(X) has a real root in $(a_i - \sqrt[n]{2}, a_i)$. This implies the condition (2.8), and similarly we obtain (2.7).

3. Proof of Proposition 3. In this section we prove Proposition 3. Let $2 \le i \le n$. Then we claim the following: when n is even and $1 \le k \le (n-2)/2$,

(3.1)
$$\iota_1(\varepsilon_i) > 0, \ \iota_n(\varepsilon_i) > 0; \quad \iota_{2k}(\varepsilon_i) > 0, \ \iota_{2k+1}(\varepsilon_i) > 0 \quad \text{if } i \le 2k; \\ \iota_{2k}(\varepsilon_i) < 0, \ \iota_{2k+1}(\varepsilon_i) < 0 \quad \text{if } i \ge 2k+1;$$

when n is odd and $1 \le k \le (n-1)/2$,

(3.2)
$$\iota_n(\varepsilon_i) > 0; \quad \iota_{2k-1}(\varepsilon_i) > 0, \quad \iota_{2k}(\varepsilon_i) > 0 \quad \text{if } i \le 2k-1; \\ \iota_{2k-1}(\varepsilon_i) < 0, \quad \iota_{2k}(\varepsilon_i) < 0 \quad \text{if } i \ge 2k.$$

These are shown as follows. For each j $(1 \le j \le n)$, we have $\iota_j(\varepsilon_i) = (\theta_j - a_i)/(\theta_j - a_1)$. Assume that n is even and $1 \le k \le (n-2)/2$. Since $\theta_1 < a_1 < a_2 \le a_i$ by (2.7), we obtain $\iota_1(\varepsilon_i) > 0$; also, $a_1 < a_i < \theta_n$ implies that $\iota_n(\varepsilon_i) > 0$. Furthermore, we have

$$a_{2k} < \theta_{2k} < \theta_{2k+1} < a_{2k+1} < a_{2k+2}$$

from (2.7). Hence, if $i \leq 2k$ (resp., i > 2k), as $a_1 < \theta_{2k}$, we have $\iota_{2k}(\varepsilon_i) > 0$ and $\iota_{2k+1}(\varepsilon_i) > 0$ (resp., $\iota_{2k}(\varepsilon_i) < 0$ and $\iota_{2k+1}(\varepsilon_i) < 0$). Thus (3.1) holds. Similarly, (3.2) follows from (2.8).

Lemma 2 shows that

(3.3)
$$\mathcal{N}^{\mathfrak{l}_0} = \prod_{i=2}^n \langle [\varepsilon_i] \rangle \text{ and } \mathfrak{o}_F^{\times/} \mathfrak{o}_F^{\times 2} = \langle [-1] \rangle \times \mathcal{N}^{\mathfrak{l}_0},$$

because $\varepsilon_i \equiv 1 \mod 4$ $(2 \leq i \leq n)$ and $-1 \not\equiv 1 \mod 4$. In the remainder of the proof, we let $[\eta] \in \mathfrak{o}_F^{\times}/\mathfrak{o}_F^{\times 2}$, and write $[\eta] = [-1]^{e_1} \prod_{i=2}^n [\varepsilon_i]^{e_i}$ with some e_1, e_i in $\{0, 1\}$. It follows immediately from (3.3) that

(3.4)
$$[\eta] \in \mathcal{N}^{\mathfrak{l}} (\subset \mathcal{N}^{\mathfrak{l}_0}) \Rightarrow e_1 = 0.$$

If $1 \leq j \leq n$, then $[\iota_j(\eta)] = [-1]^{e_1} \prod_{i=2}^n [\iota_j(\varepsilon_i)]^{e_i}$. We prove only the assertion (i) of Proposition 3, since the same argument implies (ii). By (3.1), if j = 2k or 2k + 1, then

$$\iota_j(\eta) > 0 \iff e_1 + \sum_{i=2k+1}^n e_i \equiv 0 \mod 2.$$

It follows from this and the definition of $S^{\mathfrak{l}}$ that

$$(3.5) \quad [\eta] \in \overline{E}^{\mathfrak{l}} \iff e_{1} + \sum_{i=2k_{s}+1}^{n} e_{i} \equiv 0 \mod 2 \text{ for all } s \ (1 \leq s \leq \sigma)$$
$$\Leftrightarrow \sum_{i=2k_{s}+1}^{2k_{s}+1} e_{i} \equiv 0 \mod 2 \text{ for all } s \ (1 \leq s \leq \sigma - 1),$$
$$\text{and } e_{1} + \sum_{i=2k_{\sigma}+1}^{n} e_{i} \equiv 0 \mod 2.$$

First, assume that $\mathfrak{l}_1\mathfrak{l}_n | \mathfrak{l}$, and $[\eta] \in \overline{E}^{\mathfrak{l}}$ (resp., $\in \mathcal{N}^{\mathfrak{l}}$). Then (3.5) and (3.4) imply that $e_{2k_{s+1}} \equiv \sum_{i=2k_s+1}^{2k_{s+1}-1} e_i$ for all $s \ (1 \leq s \leq \sigma - 1)$, and $e_1 \equiv$

$$\sum_{i=2k_{\sigma}+1}^{n} e_i \mod 2 \text{ (resp., } e_n \equiv \sum_{i=2k_{\sigma}+1}^{n-1} e_i \mod 2 \text{). Hence,}$$
$$[\eta] = \prod_{i=2}^{2k_1} [\varepsilon_i]^{e_i} \prod_{s=1}^{\sigma-1} \prod_{i=2k_s+1}^{2k_{s+1}-1} [\varepsilon_i \varepsilon_{2k_{s+1}}]^{e_i} \times \prod_{i=2k_{\sigma}+1}^{n} [-\varepsilon_i]^{e_i}$$
$$(\text{resp.} \times \prod_{i=2k_{\sigma}+1}^{n-1} [\varepsilon_i \varepsilon_n]^{e_i}).$$

Also, all elements of $A_0 \cup B_0 \cup C_0$ (resp. $A_0 \cup B_0 \cup D_0$) are in $\overline{E}^{\mathfrak{l}}$ (resp. $\mathcal{N}^{\mathfrak{l}}$) by (3.5), and are linearly independent over \mathbb{F}_2 by (3.3). Therefore this set constitutes an \mathbb{F}_2 -basis of $\overline{E}^{\mathfrak{l}}$ (resp. $\mathcal{N}^{\mathfrak{l}}$). So,

dim
$$\overline{E}^{\mathfrak{l}} = (2k_1 - 1) + \sum_{s=1}^{\sigma-1} (2k_{s+1} - 2k_s - 1) + (n - 2k_{\sigma}) = n - \sigma.$$

Similarly, we have dim $\mathcal{N}^{\mathfrak{l}} = n - 1 - \sigma$.

Next, assume that $\mathfrak{l}_1\mathfrak{l}_n \nmid \mathfrak{l}$ and $[\eta] \in \overline{E}^{\mathfrak{l}}$. Then $\iota_1(\eta) > 0$ or $\iota_n(\eta) > 0$; therefore we have $e_1 = 0$ by (3.1). Hence, (3.3) implies that $\overline{E}^{\mathfrak{l}} = \mathcal{N}^{\mathfrak{l}}$. By the same argument as above, $A_0 \cup B_0 \cup D_0$ is an \mathbb{F}_2 -basis of $\mathcal{N}^{\mathfrak{l}}$. This proves (i).

4. NIB of $F(\mathfrak{l})/F$. In this section, using Proposition 3, we examine whether $F(\mathfrak{l})/F$ has an NIB. We assume that F is a totally real number field as in (2.6) of degree n, and \mathfrak{l}_i $(1 \leq i \leq n)$ is the real prime of Fcorresponding to the real embedding ι_i , defined in Section 2. For $\mathfrak{l} | \mathfrak{l}_0$, let $\varrho_{\mathfrak{l}}$ denote the number of distinct prime divisors of \mathfrak{l} . Then the Galois group $\operatorname{Gal}(F(\mathfrak{l})/F(1))$ is an elementary abelian 2-group, which is also regarded as a vector space over \mathbb{F}_2 . We have

(4.1)
$$\delta_{\mathfrak{l}} := \dim \operatorname{Gal}(F(\mathfrak{l})/F(1)) = \dim \overline{E}^{\mathfrak{l}_0\mathfrak{l}^{-1}} - \varrho_{\mathfrak{l}_0\mathfrak{l}^{-1}}$$

(cf. [7, Section 3]).

LEMMA 5. Let $\mathfrak{l} \mid \mathfrak{l}_0$.

(i) When n is even, if $\mathfrak{l} | \mathfrak{l}_0 \mathfrak{l}_1^{-1} \mathfrak{l}_n^{-1}$ then $\delta_{\mathfrak{l}} = \varrho_{\mathfrak{l}} - \sigma^{\mathfrak{l}_0 \mathfrak{l}^{-1}}$, and otherwise $\delta_{\mathfrak{l}} = \varrho_{\mathfrak{l}} - \sigma^{\mathfrak{l}_0 \mathfrak{l}^{-1}} - 1$.

(ii) When n is odd, if $\mathfrak{l} | \mathfrak{l}_0 \mathfrak{l}_n^{-1}$ then $\delta_{\mathfrak{l}} = \varrho_{\mathfrak{l}} - \sigma^{\mathfrak{l}_0 \mathfrak{l}^{-1}}$, and otherwise $\delta_{\mathfrak{l}} = \varrho_{\mathfrak{l}} - \sigma^{\mathfrak{l}_0 \mathfrak{l}^{-1}} - 1$.

Proof. Using Proposition 3, we can calculate $\delta_{\mathfrak{l}}$ from (4.1). If $\mathfrak{l} | \mathfrak{l}_0 \mathfrak{l}_1^{-1} \mathfrak{l}_n^{-1}$, since $\mathfrak{l}_1 \mathfrak{l}_n | \mathfrak{l}_0 \mathfrak{l}^{-1}$, we have $\delta_{\mathfrak{l}} = (n - \sigma^{\mathfrak{l}_0 \mathfrak{l}^{-1}}) - \varrho_{\mathfrak{l}_0 \mathfrak{l}^{-1}} = \varrho_{\mathfrak{l}} - \sigma^{\mathfrak{l}_0 \mathfrak{l}^{-1}}$. If $\mathfrak{l} \nmid \mathfrak{l}_0 \mathfrak{l}_1^{-1} \mathfrak{l}_n^{-1}$, then $\delta_{\mathfrak{l}} = (n - 1 - \sigma^{\mathfrak{l}_0 \mathfrak{l}^{-1}}) - \varrho_{\mathfrak{l}_0 \mathfrak{l}^{-1}} = \varrho_{\mathfrak{l}} - \sigma^{\mathfrak{l}_0 \mathfrak{l}^{-1}} - 1$. Hence we obtain (i); the proof of (ii) is similar.

PROPOSITION 6. We have 2-rank $\operatorname{Gal}(F(1)/F) \geq [n/2]$, where $[\alpha]$ denotes the largest integer not exceeding a real number α . Furthermore, let

 $\mathfrak{l} \mid \mathfrak{l}_0$. Then:

(i) When "n is even and $\iota_1 \iota_n \nmid \iota$ ", or n is odd, we have: $F(\iota)/F$ has an NIB if and only if $h_F = 2^{[n/2]}$.

(ii) When n is even and $\mathfrak{l}_1\mathfrak{l}_n | \mathfrak{l}, F(\mathfrak{l})/F$ has no NIB.

Proof. Since L^1 is a subfield of F(1), we have

2-rank
$$\operatorname{Gal}(F(1)/F) \ge 2$$
-rank $\operatorname{Gal}(L^1/F) = \dim \mathcal{N}^1$.

Examples 2.2 and 2.3 imply that $\dim \mathcal{N}^1 = [n/2]$. Therefore we obtain 2-rank $\operatorname{Gal}(F(1)/F) \geq [n/2]$. If we write $|\mathcal{N}^{\mathfrak{l}}|[F(\mathfrak{l}) : F(1)]^{-1} = 2^{e_{\mathfrak{l}}}$ with some integer $e_{\mathfrak{l}}$, then Proposition 3 yields

(4.2)
$$e_{\mathfrak{l}} = n - 1 - (\sigma^{\mathfrak{l}} + \delta_{\mathfrak{l}}).$$

As before, let $S = S^{\mathfrak{l}}$ and $\sigma = \sigma^{\mathfrak{l}}$. For brevity, put $S' := S^{\mathfrak{l}_0 \mathfrak{l}^{-1}}$, $\sigma' := |S'|$, and $t := |S \cap S'|$. To show Proposition 6, we first write $\varrho_{\mathfrak{l}}$ and $\varrho_{\mathfrak{l}_0 \mathfrak{l}^{-1}}$ in terms of σ, σ', t (and next calculate $e_{\mathfrak{l}}$). For this, the following remark is useful. When n is even, we see from the definition of S and S' that (I) if $k \in S \cap S'$ then either " $\mathfrak{l}_{2k} | \mathfrak{l}_0 \mathfrak{l}^{-1}$ and $\mathfrak{l}_{2k+1} | \mathfrak{l}'$, or " $\mathfrak{l}_{2k+1} | \mathfrak{l}_0 \mathfrak{l}^{-1}$ and $\mathfrak{l}_{2k} | \mathfrak{l}'$, and that (II) if $k \in S - (S \cap S')$ (resp., $\in S' - (S \cap S')$), then $\mathfrak{l}_{2k} \mathfrak{l}_{2k+1} | \mathfrak{l}_0 \mathfrak{l}^{-1}$ (resp., $\mathfrak{l}_{2k} \mathfrak{l}_{2k+1} | \mathfrak{l}$). A similar assertion holds for n odd.

(A) The case where n is even. When $\mathfrak{l} \nmid \mathfrak{l}_0 \mathfrak{l}_1^{-1} \mathfrak{l}_n^{-1}$, we put $u := |\{1, n\} \cap \{i; \mathfrak{l}_i \mid \mathfrak{l}\}|$. If $\mathfrak{l} \mid \mathfrak{l}_0 \mathfrak{l}_1^{-1} \mathfrak{l}_n^{-1}$ (resp., $\mathfrak{l} \nmid \mathfrak{l}_0 \mathfrak{l}_1^{-1} \mathfrak{l}_n^{-1}$), by the above remark, we have $\varrho_{\mathfrak{l}_0 \mathfrak{l}^{-1}} = t + 2(\sigma - t) + 2$ and $\varrho_{\mathfrak{l}} = t + 2(\sigma' - t)$ (resp., $\varrho_{\mathfrak{l}_0 \mathfrak{l}^{-1}} = t + 2(\sigma - t) + 2 - u$ and $\varrho_{\mathfrak{l}} = t + 2(\sigma' - t) + u$). Consequently, $\varrho_{\mathfrak{l}_0 \mathfrak{l}^{-1}} - \varrho_{\mathfrak{l}} = 2(\sigma - \sigma') + 2$ (resp., $\varrho_{\mathfrak{l}_0 \mathfrak{l}^{-1}} - \varrho_{\mathfrak{l}} = 2(\sigma - \sigma') + 2 - 2u$). On the other hand, we clearly have $\varrho_{\mathfrak{l}_0 \mathfrak{l}^{-1}} + \varrho_{\mathfrak{l}} = n$. Therefore, we obtain

(4.3)
$$(n-2)/2 \text{ (resp. } n/2 + u - 1) = \varrho_{\mathfrak{l}} + \sigma - \sigma'.$$

By (4.2) and Lemma 5(i), we obtain $e_{\mathfrak{l}} = n - 1 - (\sigma + \varrho_{\mathfrak{l}} - \sigma')$ (resp., = $n - (\sigma + \varrho_{\mathfrak{l}} - \sigma')$). Hence, (4.3) implies that $e_{\mathfrak{l}} = n/2$ (resp., = n/2 - (u-1)). Since u = 1 or 2, if $\mathfrak{l}_1 \mathfrak{l}_n \nmid \mathfrak{l}$ (resp., $\mathfrak{l}_1 \mathfrak{l}_n \mid \mathfrak{l}$) then $e_{\mathfrak{l}} = n/2$ (resp., = n/2 - 1).

(B) The case where n is odd. If $\mathfrak{l} \mid \mathfrak{l}_0\mathfrak{l}_n^{-1}$ (resp., $\mathfrak{l} \nmid \mathfrak{l}_0\mathfrak{l}_n^{-1}$), by the above remark, we have $\varrho_{\mathfrak{l}_0\mathfrak{l}^{-1}} = t + 2(\sigma - t) + 1$ and $\varrho_{\mathfrak{l}} = t + 2(\sigma' - t)$ (resp., $\varrho_{\mathfrak{l}_0\mathfrak{l}^{-1}} = t + 2(\sigma - t)$ and $\varrho_{\mathfrak{l}} = t + 2(\sigma' - t) + 1$); consequently, $\varrho_{\mathfrak{l}_0\mathfrak{l}^{-1}} - \varrho_{\mathfrak{l}} = 2(\sigma - \sigma') + 1$ (resp., $\varrho_{\mathfrak{l}_0\mathfrak{l}^{-1}} - \varrho_{\mathfrak{l}} = 2(\sigma - \sigma') - 1$); therefore,

(4.4)
$$(n-1)/2 \text{ (resp. } (n+1)/2) = \varrho_{\mathfrak{l}} + \sigma - \sigma'.$$

By (4.2) and Lemma 5(ii), we obtain $e_{\mathfrak{l}} = n - 1 - (\sigma + \varrho_{\mathfrak{l}} - \sigma')$ (resp., $= n - (\sigma + \varrho_{\mathfrak{l}} - \sigma')$). Hence, (4.4) implies that $e_{\mathfrak{l}} = (n - 1)/2$.

Theorem 1(ii) shows that $F(\mathfrak{l})/F$ has an NIB if and only if $h_F = 2^{e_{\mathfrak{l}}}$. When "*n* is even and $\mathfrak{l}_{\mathfrak{l}}\mathfrak{l}_n \nmid \mathfrak{l}$ ", or *n* is odd, (A) and (B) imply that $e_{\mathfrak{l}} = [n/2]$. Hence the assertion (i) holds. When *n* is even and $\mathfrak{l}_{\mathfrak{l}}\mathfrak{l}_n \mid \mathfrak{l}$, since $2^{[n/2]} \mid h_F$, it follows from (A) that

$$2^{e_{\mathfrak{l}}} = 2^{n/2 - 1} < 2^{[n/2]} \le h_F$$

Hence $F(\mathfrak{l})/F$ has no NIB. This proves our proposition.

Assume that $h_F = 2^{[n/2]}$. When *n* is even, Proposition 6 implies that $F(\mathfrak{l})/F$ has an NIB if and only if $\mathfrak{l}_1\mathfrak{l}_n \nmid \mathfrak{l}$. Also, when *n* is odd, $F(\mathfrak{l})/F$ has an NIB for all $\mathfrak{l} \mid \mathfrak{l}_0$. On the other hand, if $h_F \neq 2^{[n/2]}$ then $F(\mathfrak{l})/F$ has no NIB for all $\mathfrak{l} \mid \mathfrak{l}_0$. Thus the existence of NIB of $F(\mathfrak{l})/F$ is determined by the condition on the class number h_F and an integral divisor \mathfrak{l} .

REMARK 4.1. Suppose that n = 2. Let ε (> 1) be the fundamental unit of F and g the order of ε mod 4 in $(\mathfrak{o}_F/4\mathfrak{o}_F)^{\times}$. By Lemma 2, we see that the index $(\mathfrak{o}_F^{\times} : \langle -1 \rangle \times \langle \varepsilon_2 \rangle)$ is odd, where the unit ε_2 is defined in (2.9). This implies that g is odd and ε is totally positive. Hence, Proposition 6 for n = 2 also follows from [7, Corollaries 11 and 12].

EXAMPLE 4.2. Let Cl_F be the ideal class group of F. For a positive integer m, we denote by C_m a cyclic group of order m. We consider a real quadratic field F which is defined by a polynomial of the form $f(X) = X(X - a_2) - 2$, where a_2 is an integer such that $a_2 \equiv 0 \mod 8$ and $a_2 \equiv$ $-1 \mod p_2$, p_2 being a prime with $p_2 \equiv 5 \mod 8$. For all fields F in Table III, by using PARI [1], we see that F(1)/F has a relative integral basis, that is, $\mathfrak{o}_{F(1)}$ has a free \mathfrak{o}_F -basis; we can also obtain the same result by using KASH [8] (cf. [7, Section 5]). But, as $h_F \neq 2$, F(1)/F has no NIB by Proposition 6.

p_2	a_2	Cl_F	h_F
5	224	$C_2 \times C_2$	4
5	424	C_6	6
5	54744	$C_2 \times C_2$	4
5	138944	$C_2 \times C_2$	4
5	156624	$C_2 \times C_2$	4
13	168	C_6	6
13	13896	C_6	6
29	11512	$C_2 \times C_2$	4
157	23392	$C_2 \times C_2$	4

Table III

5. Supplements. In this section we prove Propositions 7 and 9.

PROPOSITION 7. For each positive integer $n \ge 2$, there exist infinitely many totally real number fields F as in (2.6) of degree n.

For the proof, we need:

LEMMA 8. Let $n \ge 2$ be a positive integer and $\beta \in \mathbb{Z}$, $\beta \ne 0$. Then there exist infinitely many primes l that satisfy the following two conditions:

(i) $l \nmid \beta n(n-1)$.

(ii) There is some a(l) in \mathbb{Z} such that $\operatorname{ord}_l(d(g_a)) = 1$ for all integers a with $a \equiv a(l) \mod l^2$, where we put $g_a(X) := X^n - aX^{n-1} - \beta$ and denote by $d(g_a)$ the discriminant of $g_a(X)$.

Proof. Let ζ_n be a primitive *n*th root of unity, and put

 $K := \mathbb{Q}(\sqrt[n]{-\beta(n-1)})$ and $N := K(\zeta_n).$

Since N/\mathbb{Q} is Galois, by the Dirichlet density theorem, there exist infinitely many primes l such that $l \nmid \beta n(n-1)$ and l is completely decomposed in N. Take such a prime l and let \mathcal{L} be a prime ideal of \mathfrak{o}_K lying above l. Since lis a prime element of \mathcal{L} , we have

$$\mathfrak{o}_K/\mathcal{L}^2 = \{ (a_0 + a_1 l) \bmod \mathcal{L}^2 \mid a_0, a_1 \in \mathbb{Z}/l\mathbb{Z} \}.$$

Therefore there is some b in \mathbb{Z} such that

(5.1)
$$b \equiv \sqrt[n]{-\beta(n-1)} \frac{n}{n-1} \mod \mathcal{L}^2.$$

Since $l \nmid \beta n(n-1)$, we have $l \nmid b$. Put a(l) := b + l. Let a be an integer with $a \equiv a(l) \mod l^2$ and put $g(X) := X^n - aX^{n-1} - \beta$. By Swan [9, Theorem 2], we have

(5.2)
$$d(g) = (-1)^{n(n-1)/2} (-\beta)^{n-2} \{ (-1)^{n-1} (n-1)^{n-1} (-a)^n - n^n \beta \}$$
$$= (-1)^{(n+2)(n-1)/2} \beta^{n-2} \{ (n-1)^{n-1} a^n + n^n \beta \}.$$

As the definition of a and (5.1) imply that

$$a^n \equiv a(l)^n \equiv b^n + nb^{n-1}l \equiv -\beta(n-1)(n/(n-1))^n + nb^{n-1}l \mod l^2$$
,
we obtain $(n-1)^{n-1}a^n + n^n\beta \equiv n(n-1)^{n-1}b^{n-1}l \mod l^2$. Hence, (5.2) yields

$$d(g) \equiv (-1)^{(n+2)(n-1)/2} \beta^{n-2} n(n-1)^{n-1} b^{n-1} l \mod l^2.$$

As $l \nmid \beta n(n-1)b$, we have $\operatorname{ord}_l(d(g)) = 1$. This proves our lemma.

Proof of Proposition 7. Let F_1, \ldots, F_t be finitely many distinct fields as in (2.6). It follows from Lemma 8 for $\beta = 2$ that there exist some odd prime l and some a(l) in \mathbb{Z} such that $\operatorname{ord}_l(d(g)) = 1$ and l is unramified in each F_i $(1 \le i \le t)$, where we put $g(X) := X^n - a(l)X^{n-1} - 2$. Take n - 1 odd primes p_i $(2 \le i \le n)$ with $p_i \ne l$ satisfying (2.1), and let a_1, \ldots, a_n be integers which satisfy (2.2)–(2.5),

(5.3) $a_1 \equiv a(l) \mod l^2$, and $a_i \equiv 0 \mod l^2$ for all $i \ (2 \le i \le n)$.

Then we define a field F as in (2.6). Since (5.3) implies that $f(X) \equiv g(X) \mod l^2$, we have $\operatorname{ord}_l(d(f)) = 1$. If d_F is the absolute discriminant of F, then $d(f) = d_F \cdot (\mathfrak{o}_F : \mathbb{Z}[\theta])^2$. Hence, $l \mid d_F$. Therefore, l is ramified in F, and $F \neq F_1, \ldots, F_t$.

When the degree n is a power of odd prime, Proposition 9 implies that a field F as in (2.6) is not Galois over \mathbb{Q} , because 2 is (totally) ramified in F. In particular, when n = 3, we see that F is not a cyclic cubic field.

PROPOSITION 9. Let F/\mathbb{Q} be a Galois extension of prime power degree, say l^t . Suppose that p is a prime such that $p \neq l$ and $p \not\equiv 1 \mod l$. Then pis unramified in F. In particular, if l is odd then 2 is unramified in F.

Proof. Let $G := \operatorname{Gal}(F/\mathbb{Q})$ and \mathfrak{p} a prime ideal of \mathfrak{o}_F lying above p. For each non-negative integer m, we put

$$G_m := \{ s \in G \mid s(x) \equiv x \text{ mod } \mathfrak{p}^{m+1} \text{ for all } x \text{ in } \mathfrak{o}_F \}.$$

Then it is known that $|G_0/G_1||(N\mathfrak{p}-1)$, and $|G_m/G_{m+1}||N\mathfrak{p}$ for each $m \geq 1$ (cf. Iwasawa [6, Proposition 2.19]), where $N\mathfrak{p}$ is the absolute norm of \mathfrak{p} . As $p \neq l$, we obtain $G_m = \{1\}$ for all $m \geq 1$. Hence, $|G_0||(N\mathfrak{p}-1)$. Let f be the residue degree of \mathfrak{p} in F/\mathbb{Q} : $N\mathfrak{p} = p^f$. Since F/\mathbb{Q} is Galois, both f and $|G_0|$ divide l^t . By Fermat's little theorem, we obtain $N\mathfrak{p} \equiv p \mod l$. Then, since the assumption implies that $l \nmid (N\mathfrak{p}-1)$, we have $l \nmid |G_0|$. Hence, $G_0 = \{1\}$, therefore p is unramified in F. This proves our proposition.

References

- C. Batut, K. Belabas, D. Bernardi, H. Cohen and M. Olivier, GP/PARI calculator, Version 2.0.17 (beta).
- J. Brinkhuis, Unramified abelian extensions of CM-fields and their Galois module structure, Bull. London Math. Soc. 24 (1992), 236–242.
- [3] —, On the Galois module structure over CM-fields, Manuscripta Math. 75 (1992), 333–347.
- [4] L. Childs, The group of unramified Kummer extensions of prime degree, Proc. London Math. Soc. 35 (1977), 407–422.
- H. Ichimura, A note on unramified quadratic extensions over algebraic number fields, Proc. Japan Acad. Ser. A 76 (2000), 78–81.
- [6] K. Iwasawa, Local Class Field Theory, Oxford Univ. Press, 1986.
- [7] F. Kawamoto and Y. Odai, Normal integral bases of ∞ -ramified abelian extensions of totally real number fields, Abh. Math. Sem. Univ. Hamburg, to appear.
- [8] M. Pohst, KANT/KASH calculator, Version 2.2.
- [9] R. Swan, Factorization of polynomials over finite fields, Pacific J. Math. 12 (1962), 1099–1106.

Department of Mathematics
Faculty of Science, Gakushuin University
1-5-1 Mejiro Toshima-ku
Tokyo 171-8588, Japan
E-mail: fuminori.kawamoto@gakushuin.ac.jp

Received on 23.8.2001 and in revised form on 11.3.2002