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Effective polynomial upper bounds to perigees and
numbers of (3x+ d)-cycles of a given oddlength

by

Edward G. Belaga (Strasbourg)

1. Introduction. Let d be a positive odd integer not divisible by 3, and
let Td be the function defined on the set of positive integers, as follows: for
all m ∈ N,

(1.1) Td(m) =
{

(3m+ d)/2 if m is odd,
m/2, otherwise.

Repeated iterations of the function Td generate (3x+d)- (or Td-) trajectories

(1.2) τd(m) = {m,Td(m), T 2
d (m), . . .}

for all d ∈ D = {1, 5, 7, 11, 13, . . .} and m ∈ N. By definition, a trajectory
τd(m) is a cycle of length l, C = C(m,d) = τd(m), length(C) = l, if T ld(m) =
m and, for any j ∈ [1, l−1], T jd (m) 6= m (note that l > 1, since the mapping
Td has no fixed points). The minimal member of a Td-cycle C is odd, and
is called its perigee, n0 = prg(C). Thus, the number k of odd members of a
Td-cycle, called here its oddlength, is a positive integer, k ≥ 1. The length
and oddlength of a cycle are related by the inequality l ≥ dk log2 3e [Belaga,
Mignotte 1998] (see Theorem 3.2(1) below). Note also that no member of
a Td-trajectory (1.2), excluding possibly the first one, is divisible by 3, and
thus, all odd members of a Td-cycle belong to D.

It has been conjectured that the dynamical system Dd =
{
N, Td

}
has

no divergent Td-trajectories (1.2), and that the number ς(d) of cyclic Td-
trajectories is finite [Lagarias 1990], [Belaga, Mignotte 1998]. In the partic-
ular case d = 1, the well-known 3x+1 conjecture [Lagarias 1985], [Wirsching
1998] is even more specific: any trajectory τ1(m) enters ultimately the (only)
3x+ 1 cycle {1→ 2→ 1}.
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The present paper is concerned with the cyclic part of the above 3x+d
conjecture, and more generally, with quantitative (and when available, nu-
merical) characteristics of the cyclic structure of systems Dd. Let C(d) and
Ck(d) be the sets of all Td-cycles and, respectively, of all such cycles with k
odd members, or, in our terminology, of oddlength k ≥ 1.

Technically, our main result is the following general upper bound on the
perigee of a Td-cycle of length l and oddlength k: for all d ∈ D and C ∈ C(d),

(1.3)

{
length(C) = l

oddlength(C) = k

}
⇒ n0 = prg(C) ≤ d

2l/k − 3
.

The inequality (1.3) has four important implications.
The first one is an upper bound on the ratio of the length of a Td-cycle

to its oddlength, which, together with the well-known lower bound (2.5),
Theorem 2.1(1), confines this ratio to the interval:

(1.4) log2 3 < %d(C) =
length(C)

oddlength(C)
≤ log2(d+ 3).

The upper bound is sharp, and so is, in all probability, the lower bound;
but the considerations leading to the corresponding conclusions are quite
different in nature.

Consider first the case of the upper bound. For any r ≥ 2, the T2r−3-cycle
C0

2r−3 of length r + 1, starting at (the odd number) 1, has no other odd
members:

C0
2r−3 = {1, 2r−1, 2r−2, . . . , 2};

oddlength(C0
2r−3) = 1; length(C0

2r−3) = r = log2((2r − 3) + 3).

As to the lower bound, the calculations carried out in [Belaga, Mignotte
2000] (e.g., there exists a T233-cycle starting at 919, of length 13 and odd-
length 8, 1.584 < log2 3 < 1.585 < 1.625 = 13/8) show the high plausibility
of the following conjecture:

Conjecture 1.1. For any ε > 0, there exist a triplet of positive inte-
gers, d ∈ D, (k, l) ∈ N2, log2 3 < l/k < log2 3 + ε, and a Td-cycle of length l
and oddlength k.

Cf. also the inequalities (1.12) below.
Second, the inequality (1.3) implies the following general and uniform

upper bound on the perigees of Td-cycles of oddlength k ≥ 1:

(1.5) n0 = prg(C) ≤ Ud,k =
d

2dk log2 3e/k − 3
.

The bound (1.5) has an effective polynomial numerical equivalent (see the
estimate (1.9) below). It is also sharp in the following natural sense (The-
orem 3.2, (3.11)(1)): the average value of an odd member of a Td-cycle of
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the oddlength k ≥ 1 is bigger than Ud,k. Thus, for example, the T5-cycle
C = {23→ 37→ 58→ 29→ 46} has 3 odd members, n0 = prg(C) = 23 <
U5,3 ≈ 28.6038 < 29 < 37.

Third, since no two Td-cycles have a common member, any such cycle is
fully determined by its perigee. Thus, the upper bound (1.5) not only implies
that the set Ck(d) of Td-cycles of oddlength k ≥ 1 is finite, but supplies us
with an effective general upper bound on the number ςk(d) = #Ck(d) of
Td-cycles of oddlength k:

(1.6) ςk(d) ≤ 1
3
Ud,k =

1
3
· d

2dk log2 3e/k − 3
=

1
9
· d

2(dk log2 3e−k log2 3)/k − 1
(the factor 1/3 is due to the aforementioned inclusion n0 ∈ D).

Any numerical evaluation of the expression Ud,k depends on our knowl-
edge of effective lower bounds for diophantine approximations of linear com-
binations of logarithms log 2 and log 3 (cf. the left inequality in (1.4)),

(1.7) εk = dk log2 3e − k log2 3 =
1

log 2
min

l>k log2 3
(l log 2− k log 3).

According to [Baker, Wüstholz 1993], for some effectively calculable con-
stant C1 > 0, we have:

(1.8) ∀k, l ∈ Z, k < l, |l log 2− k log 3| > k−C1 .

One easily deduces from (1.8) the existence of an effectively calculable con-
stant C2 > 0 such that for all d ∈ D and k > 2,

(1.9) Ud,k ≤ dkC2 .

The original bound [Baker, Wüstholz 1993] on the constant C1 (and
thus, of the closely related C2) has been enormous. Using less general but
more appropriate techniques (linear combination of only two logarithms) of
[Laurent et al. 1995, Corollary 2], one can easily reduce the value C2 to a
two-digit number, C2 < 32.

Fourth, as is clear from the right side expressions of the upper bounds
(1.3), (1.5), (1.6), the values of pairs (k, l) corresponding to potentially “rich”
or “numerous” families of d-cycles do not actually depend on d (which enters
all three expressions as a linear factor) but only on how close to zero the
value |l log 2− k log 3| is.

Thus, any result concerning (non-)existence of d-cycles, for a specific
value of d, of oddlength k and length l would probably imply, or at least
strongly hint at, the (non-)existence of d′-cycles, for all d′ ∈ D, as well.

Historical remarks. The present author is not aware of any previous
effective (and in any sense sharp) upper bound on the minimal odd member
of a Td-cycle. The following general exponential upper bound on the number
ςk(d) of Td-cycles of oddlength k ≥ 1 was actually (implicitly) proved in
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[Belaga, Mignotte 1998] and refined in [Belaga, Mignotte 2000]: for all d ∈ D
and k ∈ N,

(1.10) ςk(d) < d

(
3
2

)k 2εk

2εk − 1
, εk = dk log2 3e − k log2 3.

The bound (1.10) was derived from an identical upper bound on the maximal
odd member of a cycle, the corresponding numerical upper bound being
based on the aforementioned estimate of [Baker, Wüstholz 1993]: for all
d ∈ D and k ∈ N,

(1.11) ςk(d) < dkC
(

3
2

)k
.

Comments and future prospects. (1) The upper bound (1.4) on the ratio
%d(C) implies in the 3x + 1 case that the length of a cycle with k odd
members does not exceed 2k. Note that the only 3x + 1 cycle known at
present, {1→ 2→ 1}, has one odd member, is of length two, and has ratio
two. A slightly more elaborate argument (to be published elsewhere) shows
that the length and oddlength of any other 3x + 1 cycle (in case it exists)
should satisfy the inequalities:

(1.12) 1.584 < log2 3 ≤ %1(C) ≤ 4− log2 5 < 1.679.

(2) The bounds (1.5) and, especially, (1.6) can be apparently improved.
In fact, the experimental discovery of 843 T14303-cycles of oddlength 17, with
perigees varying from 385057 to 1391321 < U14303,17 = 2099280, suggests
that the bound (1.5) is apparently sharp up to a one-digit constant.

As to the bound (1.6), our calculations have unearthed 944 different
T14303-cycles of oddlengths, respectively, k=17 (843 cycles), 34 (76), 51 (20),
68 (3), 85 (1), 1092 (1), implying the inequality

843 ≤ ς17(14303) <
1
3

U14303,17 = 699760.

This estimate, far from being sharp, is at least realistic: for some d, k, the
dynamical system Dd has “many” cycles of oddlength k.

(3) At present, the bounds (1.3), (1.5), (1.6) look useless, or at least
insufficient, for a possible proof of the cyclic part of the 3x+ d conjecture,
i. e., of the finiteness of the number ς(d) of Td-cycles.

However, this obstacle could possibly be circumvented by a refinement
of the above scheme, to fit the purpose of yielding directly an absolute (i.e.,
not depending on k) upper bound on the number ς(d).

Acknowledgements. The anonymous referee expressed his reserva-
tions about the sufficiency of the argument leading to the above upper bound
(1.9) (in the first version of the present paper, with a different effective con-
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stant C2). His insight was completely justified, and the above derivation of
(1.9) with C2 < 32 from Corollary 2 of the paper [Laurent et al. 1995] is due
to the author’s discussions with Maurice Mignotte, one of the co-authors of
the above paper.

2. Exponential diophantine formulae for 3x + d cycles. Let, as
above, C = C(m,d) = τd(m) be a Td-cycle of length l, length(C) = l. We
remind the reader that, according to (1.1), the minimal member, or perigee
of a Td-cycle, n0 = prg(C), is odd, and that the total number k ≥ 1 of odd
members of a cycle is called its oddlength. Moreover, if n is an odd member
of a cycle, then n ∈ D (see (1.2)), since no number divisible by 3 can belong
to a cycle.

Note that if m′ 6= m is a member of a Td-cycle C = τd(m), or in other
words, if C meets m′, one should view C′=C(m′, d) as just another name
for the same cycle C = C(m,d). Since a Td-cycle is fully characterized by
its minimal member, the following notation can be adopted as the canonical
one:

(2.1) C = C(n0, d) = C[n0, d] = τd(n0), n0 = prg(C).

In this case, we also say that C starts at n0.
For any positive integer m ∈ N, let odd(m) be the number obtained by

factoring out m by the highest possible power of 2, say 2j , and let ν2(m) = j.
Thus odd(m) is odd and m = odd(m) · 2ν2(m). Define

(2.2) S : D×D→ D, (n, d) 7→ Sd(n) = odd(3n+ d).

The function Sd speeds up the action of Td, skipping even members of Td-
trajectories. In particular, m = 1 becomes the fixed point of the function
S1 = odd(3n+ 1), S1(1) = 1, corresponding to the (according to the 3x+ 1
conjecture, only) T -cycle C(1, 1) = {1→ 2→ 1}.

We associate with any Td-cycle C = C[n0, d] its odd frame, F = Odd(C),
the list of odd members of the cycle, in the order of their appearance in
τd(n0), as the Td-iterations of n0 proceed. By definition, the frame is an
Sd-cycle starting at n0, and its length is called the oddlength of C:

(2.3)

l = length(C) = min{i ∈ N | mi = T id(n0) = n0};
k = oddlength(C) = min{j ∈ N | nj = Sjd(n0) = n0};
F = Odd(C) = 〈n0, n1, . . . , nk−1〉 ∈ Dk.

The even members of the Td-cycle C = C[n0, d] can be recovered from its
frame with the help of the cycle Collatz signature P = θ(C), the vector
of exponents of 2 factoring out from the values of the function Td at odd
members of C, as follows:
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(2.4)

F = Odd(C) =
〈
n0, n1, . . . , nk−1

〉
;

∀j ∈ [0, k − 1], pj+1 = ν2(Td(nj)) + 1 = ν2(3nj + d);

P = θ(C) = 〈p1, . . . , pk〉 ∈ Nk;

l = length(C) = |P| = p1 + . . .+ pk;

∀j ∈ [1, k − 1],
{mp1+...+pj = nj ;
pj > 1 ⇒ ∀i ∈ [1, pj − 1], mp1+...+pj−i = 2inj .

Moreover, the Collatz signature P = θ(C) of a cycle C = C[n0, d], where
n0, d ∈ D, completely characterizes it:

Theorem 2.1 [Belaga, Mignotte 1998]. (1) The Collatz signature P =
θ(C) satisfies the inequality :

(2.5) l = |P| = p1 + . . .+ pk ≥ dk log2 3e.
(2) Define the exponential diophantine function A = ak : Nk → N, as

follows: for P = 〈p1, . . . , pk〉 ∈ Nk,

(2.6) A = ak(P)

=
{ 1 if k = 1;

3k−1 + 2p1 · 3k−2 + . . .+ 2p1+...+pk−2 · 3 + 2p1+...+pk−1 otherwise.
Let σ = σk be the circular (counterclockwise) permutation on k-tuples: for
P = 〈p1, . . . , pk〉 ∈ Nk,

(2.7) σ(P) = σk(P) = 〈p2, . . . , pk, p1〉.
If now P = θ(C) is the Collatz signature of a cycle C = C[n0, d], n0, d ∈ D,
of length l, oddlength k ≥ 1, and with the frame F = 〈n0, n1, . . . , nk−1〉, then

(2.8)





(1) B = bk(P) = Bk,l = 2l − 3k > 0 (cf. (2.5));

(2) n0 = d
A

B
, A = ak(P) (cf. (2.6));

(3) ∀j ∈ [1, k − 1], nj = d
ak(σj(P))

B
(cf. (2.7)).

3. Upper bound on the number of 3x + d cycles of a given
oddlength. According to the formulae (2.8)(2), (3), the odd members of
a Td-cycle of oddlength k satisfy the inequality

(3.1) nj ≤Wd,k = d sup
P∈Nk

|P|≥k log2 3

ak(P)
2|P| − 3k

= d sup
l≥k log2 3

max
P∈Nk, |P|=l

ak(P)

2l − 3k

for all j ∈ [1, k − 1]. Simple calculations show that (cf. (1.10) above)

(3.2) Wd,k ≤ d
(

3
2

)k 2εk

2εk − 1
, εk = dk log2 3e − k log2 3.
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We will be able to improve these bounds thanks, first, to a more careful
analysis of the formulae (2.8), and then, to a remarkable inequality (3.5)
proved below (Theorem 3.1). Namely, instead of evaluating from above all
members of a Td-cycle of oddlength k, we evaluate here its minimal member
n0 = prg(C). Since the different Td-cycles have different perigees n0 ∈ D,
an upper bound n0 ≤ V′d,k would imply the bound ςk(d) ≤ 1

3 ·V′d,k to the
number of Td-cycles of the oddlength k.

More formally, if P = θ(C) (2.4) is the Collatz signature of the cycle
C = C[n0, d], n0, d ∈ D, of length l = |P| and oddlength k ≥ 1, then,
according to (2.8),

(3.3) n0 ≤ min{n0, n1, . . . , nk−1} = d
minj∈[0,k−1]{ak(σj(P))}

2l − 3k
.

For any k-tuple P of positive integers define its average P to be the arith-
metical mean of all its counterclockwise permutations. This k-tuple of pos-
itive (generally speaking, rational) numbers depends only on the dimension
k and length l = |P| of P:

(3.4) P =
1
k

∑

j∈[0,k−1]

σj(P) =
{
l

k
, . . . ,

l

k

}
.

Extending the definition of the function ak (see (2.6)) to k-tuples of positive
reals, we will prove below (Theorem 3.2) the inequality

(3.5) ãk(P) = min
j∈[0,k−1]

{ak(σj(P))} ≤ ak(P) =
2l − 3k

2l/k − 3

for P ∈ Nk. The inequalities (3.3) and (3.5) imply the general upper bound
(1.5), depending only on d and k, for the minimal member n0 = prg(C) of
any Td-cycle of oddlength k:

(3.6) ∀n, d ∈ D, C = C[n, d] ⇒ n ≤ Ud,k =
d

2l/k − 3
,

and, finally, the upper bound (1.6).

Definition 3.1. (1) Let Λ be the set of pairs of positive integers (k, l)
satisfying the inequality implied by (2.5),

(3.7) Λ = {(k, l) ∈ N2 | λ(k, l) = l − dk log2 3e ≥ 0}.

Extend the definition of the function A = ak (see (2.6)) to k-tuples of
positive reals from the (k − 1)-dimensional tetrahedron Tk,l, (k, l) ∈ Λ,

(3.8) Tk,l = {X ∈ Rk | |X| = x1 + . . .+ xk = l ∧ ∀j ∈ [1, k], xj ≥ 1},
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with k vertices V1, . . . ,Vk,

(3.9)

V1 = {l − k + 1, 1, . . . , 1},
V2 = {1, l − k + 1, . . . , 1}, . . . ,
Vk = {1, 1, . . . , l − k + 1}.

(2) The permutation σ (see (2.7)) induces on Tk,l the rotation σ, with the
center O of the tetrahedron being the only fixed point: for X = 〈x1, x2, . . . ,
xk−1, xk〉 ∈ Tk,l,

(3.10)

σ(X) = 〈x2, x3, . . . , xk, x1〉;

X =
1
k

∑

j∈[1,k]

σj(X) =
〈
l

k
, . . . ,

l

k

〉
= O;

σ(O) = O;

ak(O) =
k∑

j=1

3k−j2l/k =
2l − 3k

2l/k − 3
.

Theorem 3.2. For any k-tuple X from Tk,l, we have

(3.11)





(1) ak(X) =
1
k

k−1∑

j=0

ak(σj(X)) ≥ ak(O) =
2l − 3k

2l/k − 3
,

(2) ãk(X) = min
j∈[0,k−1]

{ak(σj(X))} ≤ ak(O) =
2l − 3k

2l/k − 3
,

with equalities holding only in the case X = O.

4. Proof of Theorem 3.2. Note that, according to (2.6), if k = 1, then
l ≥ 2 and for X ∈ T1,l,

(4.1) X = X = O, ak(X) = ãk(X) =
2l − 3
2l − 3

= 1.

Thus, it can be henceforth assumed that k ≥ 2.

(1) The inequality (3.11)(1) is implied by the standard inequality 1
k (a+

b+ . . .) ≥ k
√
a · b · . . . , as follows: for all k ≥ 2, (k, l) ∈ Λ, and X ∈ Tk,l,

1
k

∑

0≤j≤k−1

ak(σj(X)) = 3k−1 +
∑

1≤j≤k−1

3k−j−1

k

∑

0≤r≤k−1

2σ
r(x1+...+xj)

≥ 3k−1 +
∑

1≤j≤k−1

3k−j−1 · 2 1
k

∑
0≤r≤k−1 σ

r(x1+...+xj)

= ak(O) =
2l − 3k

2l/k − 3
(cf. (3.10)).
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(2) If X = O ∈ Tk,l, then (3.11)(2) becomes a trivial identity. Otherwise,
O 6= X ∈ Tk,l (k ≥ 2, (k, l) ∈ Λ), and among the k k-tuples σj(X), 0 ≤
j ≤ k − 1, there exist at least two different ones:

(4.2)
∀j ∈ [0, k − 1], σj(X) 6= X = O;

∃j ∈ [1, k − 1], X 6= σj(X).

Now the proof proceeds ad absurdum: the assumption ak(σj(X)) > ak(O)
for all j ∈ [0, k − 1] would imply that ak(X) > ak(O) as well—a contradic-
tion, since X = O (see (3.10), (4.2)).

The equation ak(X) = ak(O) induces a break up of the (k−1)-dimensio-
nal tetrahedron Tk,l (see (3.8)) into three disjoint subsets: the closed (k−2)-
dimensional submanifold T0 = T0

k,l defined by this equation, and two (k−1)-
dimensional submanifolds T+ = T+

k,l and T− = T−k,l, open in Tk,l, defined
by the inequalities ak(X) > ak(O) and ak(X) < ak(O), respectively:

(4.3)

T0 = T0
k,l = {X ∈ Tk,l | ak(X) = ak(O) = (2l − 3)/(2l/k − 3)};

T+ = T+
k,l = {X ∈ Tk,l | ak(X) > ak(O)};

T− = T−k,l = {X ∈ Tk,l | ak(X) < ak(O)}.
Below we prove the following properties of these three submanifolds:

(A) T0 is a smooth (in fact, analytical) submanifold.
(B) The submanifolds T0, T+, T− are connected and simply connected.
(C) The closed set T0+ = T0 ∪T+ is strictly convex: the convex closure

P(S) of a finite set S of k-tuples from T0+ is contained in T+, excluding,
if necessary, the tuples from S belonging to T0.

The last property immediately implies the validity of the above argument
ad absurdum.

To prove (A)–(C), one needs to look at the first and second partial deriva-
tives of the function ak(X): for all k ≥ 2, (k, l) ∈ Λ and X = 〈x1, . . . , xk〉
∈ Tk,l,

(4.4)

ak(X) =
{
∂ak
∂x1

, . . . ,
∂ak
∂xk−1

,
∂ak
∂xk

}
(X)

= ln 2 · {2x1ak−1(x2, . . . , xk), . . . , 2x1+...+xk−1a1(xk), 0};
∂ak(X)
∂xi

=
(

∂2ak
∂xi∂xj

)

i,j∈[1,k]
(X);

1
(ln 2)2

(
∂2ak
∂xi∂xj

)
(X) = 2x1+...+xrak−r(xr+1, . . . , xk),

r = max(i, j).
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Properties (A), (B) of the submanifolds T0, T+, T− follow immediately
from the character of the first derivative ak(X). To prove (C), consider the
second differential of the function ak, the quadratic form

(4.5) d2ak(X) =
∑

i,j∈[1,k]

∂2ak
∂xi∂xj

(X)dxidxj

= (ln 2)2
∑

r∈[1,k]

2x1+...+xrak−r(xr+1, . . . , xk)
( ∑

i,j∈[1,r]

dxidxj

)

= (ln 2)2
∑

r∈[1,k]

2x1+...+xrak−r(xr+1, . . . , xk)(dx1 + . . .+ dxr)2 > 0.
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