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1. Introduction. Second order modular forms appear in the work of
Goldfeld [G] on the distribution of modular symbols as well as the work
of Kleban and Zagier [KZ] calculating crossing probabilities in percolation
theory. A systematic theory of second order modular forms was initiated by
Chinta, Diamantis, and O’Sullivan [CDO].

Let Γ ⊂ SL(2,R) be an H-group, that is, a Fuchsian group of the first
kind which contains translations. Γ has the following presentation [Leh1,
p. 236]:

Γ = 〈γ1, . . . , γ2g, ε1, . . . , εr, π1, . . . , πs〉,(1.1)

γ1γg+1γ
−1
1 γ−1

g+1 · · · γgγ2gγ
−1
g γ−1

2g ε1 · · · εrπ1 · · ·πs = I, ε
lj
j = I.(1.2)

Here γj , εj , πj are hyperbolic, elliptic, and parabolic elements, respectively;
lj ≥ 2 is the order of εj , g is the genus of the Riemann surface Γ\H (with
H the upper half-plane), and s is the number of inequivalent cusps. Let F

denote a fundamental domain of Γ and p1 =∞, p2, . . . , ps a complete set of
inequivalent cusps in F. For 1 < j ≤ s, set Aj =

( 1 −1−pj
1 −pj

)
∈ SL(2,R) and

A1 =
(

1 0
0 1

)
, thus Ajpj = ∞. The stabilizer Γpj is cyclic and the parabolic

generator πj can be chosen so that AjπjA−1
j = Sλj

.=
(

1 λj
0 1

)
with λj ∈ R+;

λj is called the width of the cusp pj . In particular Γ∞ = 〈Sλ1〉.
Definition 1.1 (slash operator). Let H = {τ ∈ C : Im(τ) > 0} be the

upper half-plane and F : H→ C. We define |k, the slash operator, by

(F |kV )(τ) = (cτ + d)−kF (τ),

where V =
(
a b
c d

)
∈ Γ .

A function F (τ) meromorphic on H∗
.= H ∪ {γpj : γ ∈ Γ, 1 ≤ j ≤ s}

satisfying
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(F |kπj)(τ) = F (τ)

has a Fourier expansion at pj [Leh1]:

(1.3) F (τ) =
1

(τ − pj)k
∞∑

n=µj

ajne
2πinAjτ/λj , |µj | <∞.

F (τ) is holomorphic at pj if µj ≥ 0 and F (τ) vanishes at pj if µj > 1.
Next we define the various spaces of modular forms which appear in this

paper. First, the classical modular forms:

Definition 1.2. A function F (τ) meromorphic on H∗ is a modular form
of weight k if

(F |kV )(τ) = F (τ), ∀V ∈ Γ.
We denote the space of modular forms of weight k by {Γ, k}. A function
F (τ) ∈ {Γ, k} which is holomorphic on H∗ is called an entire modular form
of weight k. The space of entire modular forms of weight k is denoted by
Mk(Γ ). An entire modular form of weight k which vanishes at each cusp is
called a cusp form. We denote by Sk(Γ ) the space of cusp forms of weight k.

We are interested in the spaces of (parabolic) higher order modular
forms. They are defined iteratively as follows, with S0

k(Γ ) = {0}:
Definition 1.3. For t ≥ 1, a function F (τ) holomorphic on H is a

(parabolic) modular cusp form of weight k and order t if

(1) F |k(V − I)(τ) ∈ St−1
k (Γ ) for all V ∈ Γ ;

(2) (F |kπj)(τ) = F (τ) for 1 ≤ j ≤ s;
(3) F (τ) vanishes at each cusp.

If we replace condition (3) with

(3′) ajn = 0 for n < 0,

then we call F (τ) a (parabolic) entire modular form of weight k and order t.

Remark 1.4. The term parabolic is used because of condition (2). We
assume this condition throughout the paper. It allows, in particular, Fourier
expansions of higher order forms.

We denote the space of (parabolic) modular cusp forms of weight k and
order t by Stk(Γ ), and the space of (parabolic) entire modular forms of weight
k and order t by Rtk(Γ ). We also define the following space of meromorphic
second order forms:

Definition 1.5. A meromorphic second order modular form F (τ) is a
meromorphic function on H∗ such that

(i) F |k(V − I)(τ) ∈ {Γ, k},
(ii) (F |kπj)(τ) = F (τ), 1 ≤ j ≤ s.
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We will denote the space of meromorphic second order modular forms by
{Γ, k}(2).

Remark 1.6. Given f(τ) meromorphic on H∗ with (f |2V ) (τ) = f(τ)
such that f(τ) vanishes at each cusp, the integral

(1.4) Φ(τ) =
τ�

τ0

f(z) dz

is called an abelian integral. An abelian integral satisfies

Φ(V τ) = Φ(τ) + cV (f), ∀V ∈ Γ.
Here the period function

cV (f) =
V τ�

τ

f(z) dz

is the modular symbol which is independent of τ . Eichler [Ei1] generalized
abelian integrals to higher weights allowing polynomial periods. From our
point of view, an abelian integral is a weight zero second order modular
form. The periods are constants, that is, weight zero modular forms. Thus
second order modular forms are a natural generalization of abelian integrals
to weight k with modular periods.

Remark 1.7. Since S1
k(Γ ) = Sk(Γ ) and R1

k(Γ ) = Mk(Γ ), we suppress
the 1 for first order (classical) modular forms.

For each t ≥ 1, the group Γ acts on Stk(Γ ) by means of the slash op-
erator; therefore, by general theory [EM], we can assign to this action the
cohomology groups Hn(Γ, Stk(Γ )). In this paper we only need H1(Γ, Stk(Γ ))
which is defined as

H1(Γ, Stk(Γ )) = Z1(Γ, Stk(Γ ))/B1(Γ, Stk(Γ )), k > 2,

where

Z1(Γ, Stk(Γ )) = {Ω : Γ→Stk(Γ ) : Ω(VW )(τ) = (Ω(V )|kW )(τ)+Ω(W )(τ)},
B1(Γ, Stk(Γ )) = {ψ ∈ Z1(Γ, Stk(Γ )) : ψ(V )(τ) = F |k(V − I)(τ)

for some F (τ) ∈ Stk(Γ )}.
For k = 2, we modify the space of 1-cocycles. Given Ω ∈ Z1(Γ, Stk(Γ )), we
can construct F (τ) ∈ Rt+1

2 (Γ ) (Theorem 4.1) such that F |2(V − I)(τ) =
ΩV (τ) for all V ∈ Γ . We denote this F by Eic(Ω). Then

(1.5) Z1
∗ (Γ, S

t
2(Γ )) = {Ω ∈ Z1(Γ, St2(Γ )) : Eic(Ω)(τ) has zero residue sum}.

This gives the modified cohomology space

H1
∗ (Γ, S

t
2(Γ )) = Z1

∗ (Γ, S
t
2(Γ ))/B1(Γ, St2(Γ )).
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Remark 1.8. We use the convention

H1(Γ, S0
k(Γ )) = Sk(Γ ) and H1

∗ (Γ, S
0
2(Γ )) = S2(Γ ).

We may now state the main result of the paper:

Theorem 1.9. Let Γ be an H-group. Then for k > 2 and t ≥ 1,

St+1
k (Γ ) ∼= H1(Γ, Stk(Γ ))⊕H1(Γ, St−1

k (Γ ))⊕ · · · ⊕H1(Γ, S0
k(Γ )).

For k = 2 and t ≥ 1,

St+1
2 (Γ ) ∼= H1

∗ (Γ, S
t
2(Γ ))⊕H1

∗ (Γ, S
t−1
2 (Γ ))⊕ · · · ⊕H1

∗ (Γ, S
0
2(Γ )).

Corollary 1.10. For Γ an H-group, k > 2, and t ≥ 1,

dimSt+1
k (Γ ) =

t∑
ν=0

([ν/2]∑
j=0

(−1)j
(
ν − j
j

)
(2g)ν−2j

)
dimSk(Γ ).

2. Second order modular forms. In this section we prove S2
k(Γ ) ∼=

H1(Γ, Sk(Γ )) ⊕ Sk(Γ ), k ≥ 2. This case is straightforward and instructive.
Let

(2.1) Hompar(Γ, Sk(Γ ))
= {ϕ : Γ → Sk(Γ ) : ϕ(VW )(τ) = ϕ(V )(τ) + ϕ(W )(τ) and

ϕ(π)(τ) = 0, ∀π parabolic}.

Since Γ acts simply on Sk(Γ ), we have

B1(Γ, Sk(Γ )) = {0},
Z1(Γ, Sk(Γ )) = {Ω : Γ → Sk(Γ ) : Ω(VW )(τ) = Ω(V )(τ) +Ω(W )(τ)}.

Thus

(2.2) H1(Γ, Sk(Γ )) ∼= Hompar(Γ, Sk(Γ )).

Let {F1(τ), . . . , Fχ1(k)(τ)} be a basis for Sk(Γ ). Then a basis {ωil : 1 ≤ i
≤ 2g, 1 ≤ l ≤ χ1(k)} for Hompar(Γ, Sk(Γ )) is determined as follows:

ωil(γjh)(τ) = δijhFl(τ), 1 ≤ jh ≤ 2g;
ωil(πjp)(τ) = 0, 1 ≤ jp ≤ s;(2.3)
ωil(εje)(τ) = 0, 1 ≤ je ≤ r.

Thus for V ∈ Γ , we have ωil(V )(τ) = ni(V )Fl(τ) where ni(V ) is the sum of
the powers of γi that appear when V is expressed as a word in the generators
{γjh , πjp , εje : 1 ≤ jh ≤ 2g, 1 ≤ jp ≤ s, 1 ≤ je ≤ r}; ni(V ) does not depend
on the factorization.



Decomposition of higher order modular forms 113

Following Eichler [Ei2], we define, for ν any even integer with k+ ν > 2,
a weighted Eisenstein series

Ψil(τ) = −
∑

W∈(Γ∞\Γ )

ωil(W )(τ)
(cτ + d)k+ν

, W =
(
∗ ∗
c d

)
(2.4)

= −Fl(τ)
∑

W∈(Γ∞\Γ )

ni(W )
(cτ + d)k+ν

.

Here (Γ∞\Γ ) denotes an arbitrary system of coset representatives of
Γ with respect to Γ∞. The sum is independent of the choice of the coset
representatives since ni(π) = 0 for all π parabolic. For W =

(
a b
c d

)
∈ SL(2,R)

set µ(W ) = a2+b2+c2+d2. Let M denote the choice of coset representatives
such that, for some C > 0, µ(W ) ≤ C(c2 + d2) for all W ∈ Γ . That such
an M exists is shown in [Leh2]. Let β = {γ1, . . . , γ2g, ε1, . . . , εr} be the set
of nonparabolic generators of Γ . We use the following result due to Eichler
[Ei2]:

Theorem 2.1. W ∈Γ has a representation W =C1 · · ·Cl, where Cj ∈β
or Cj = π

nj
ij

for some 1 ≤ ij ≤ s and nj ∈ Z. Furthermore

(2.5) l ≤ m1 logµ(W ) +m2,

with m1,m2 > 0 and independent of W .

Proposition 2.2.
∑

W∈M ni(W )/(cτ + d)σ converges absolutely and
uniformly on compact subsets of H for σ > 2.

Proof. Let W = C1 · · ·Cl be the Eichler representation of W . Then

ni(W ) ≤ l ≤ m1 logµ(W ) +m2 ≤ m1 log(c2 + d2) +m′2,

by our choice of M. Thus

ni(W ) ≤ m1 log |cτ + d|2 +m′′2.

The proposition follows from this estimate.

In the above proposition we used the fact that c2 + d2 ≤ C|cτ + d|2
uniformly on compact subsets of H; this is a consequence of the following
lemma proved in [K]:

Lemma 2.3. For real numbers c, d and τ = x+ iy, we have

(2.6)
y2

1 + 4|τ |2
(c2 + d2) ≤ |cτ + d|2 ≤ 2(|τ |2 + y−2)(c2 + d2).
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Now Ψil(τ) satisfies, for ν an even integer and for all V ∈ Γ , V =
( ∗ ∗
cV dV

)
,

(Ψil|2k+νV )(τ) = (cV τ + dV )−2k−νΨil(V τ)

= −(cV τ + dV )−kFl(V τ)
∑
W∈M

ni(W )
(cV τ + dV )k+ν(cV τ + d)k+ν

= −Fl(τ)
∑
W∈M

ni(W )
(cWV τ + dWV )k+ν

= −Fl(τ)
∑
W∈M

ni(WV )
(cWV τ + dWV )k+ν

+ Fl(τ)ni(V )
∑
W∈M

1
(cWV τ + dWV )k+ν

= Ψil(τ) + ωil(V )(τ)Ek+ν(τ).

Here Ek+ν(τ) =
∑

W∈M 1/(cτ + d)k+ν is the weight k + ν Eisenstein series
associated to the cusp ∞. Set

(2.7) Φil(τ) =
Ψil(τ)
Ek+ν(τ)

.

Then

(Φil|kV )(τ) = (cV τ + dV )−k
Ψil(V τ)
Ek+ν(V τ)

=
(cV τ + dV )−2k−νΨil(V τ)

(cV τ + dV )−k−νEk+ν(V τ)
.

Therefore

(2.8) (Φil|kV )(τ) = Φil(τ) + ωil(V )(τ).

We will take ν = 0 for k > 2 and ν = 2 for k = 2.
From (2.8), we see that Φil(τ) is a second order modular form (∈{Γ, k}(2))

with period forms {ωil(V )(τ)}. We are interested in holomorphic second or-
der modular cusp forms as defined in the introduction. Therefore we must
eliminate the poles introduced by the zeros of the Eisenstein series Ek+ν(τ)
in (2.7). Since adding a classical modular form to Φil(τ) does not affect the
period in (2.8), we apply the ‘Mittag-Leffler’ theorem for weight k ≥ 2 clas-
sical forms [K, p. 622], which gives the existence of a Gil(τ) ∈ {Γ, k} with
principal parts identical to the principal parts of Φil(τ). Then

(2.9) F ′il(τ) = Φil(τ)−Gil(τ) ∈ R2
k(Γ ), k ≥ 2,

that is, it is an entire second order modular form.
If k ≥ 4 we can further add a linear combination of weight k Eisenstein

series to F ′il(τ) in order to obtain a cuspidal form:

(2.10) Fil(τ) = F ′il(τ)−
s∑
j=1

aj0(F ′il)Ek,j(τ) ∈ S2
k(Γ ),

where Ek,j(τ) is the standard Eisenstein series attached to the cusp pj . In
this way we obtain a second order cusp form Fil(τ) with the prescribed
period forms {ωil(V )(τ)}.
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Theorem 2.4. Let Γ be an H-group. The set

{Fil(τ), Fj(τ)}1≤i≤2g, 1≤l≤χ1(k), 1≤j≤χ1(k),

with Fil(τ) given by (2.10), is a basis for S2
k(Γ ), k > 2.

Proof. Let k > 2. If F (τ) ∈ S2
k(Γ ), then (V 7→ FV (τ)) ∈ Hom(Γ, Sk(Γ )).

Here FV (τ) = F |k(V − I)(τ). Therefore

FV (τ) =
∑

1≤i≤2g
1≤l≤χ1(k)

ailωil(V )(τ) =
∑

1≤i≤2g
1≤l≤χ1(k)

ailni(V )Fl(τ)

for some ail ∈ C. Let G(τ) =
∑

1≤i≤2g, 1≤l≤χ1(k) ailFil(τ). Then

(G|kV )(τ) = G(τ) +
∑

1≤i≤2g
1≤l≤χ1(k)

ailni(V )Fl(τ) = G(τ) + F |k(V − I)(τ).

This implies F (τ)−G(τ) ∈ Sk(Γ ) and

F (τ) =
∑

1≤i≤2g
1≤l≤χ1(k)

ailFil(τ) +
∑

1≤j≤χ1(k)

bjFj(τ).

This shows that span{Fij(τ), Fj(τ)} = S2
k(Γ ). Suppose∑

1≤i≤2g
1≤l≤χ1(k)

ailFil(τ) =
∑

1≤j≤χ1(k)

bjFj(τ).

Apply |kV to both sides to obtain, for each l,∑
i

ailni(V ) = 0.

Letting V = γi gives ail = 0, and linear independence of the Fl(τ) gives
bl = 0.

Remark 2.5. The map Fil 7→ wil and Fj 7→ Fj and (2.2) give S2
k(Γ ) ∼=

H1(Γ, Sk(Γ ))⊕ Sk(Γ ) for k ≥ 2.

Corollary 2.6. Let Γ be an H-group and k > 2. Then

dimS2
k(Γ ) = (2g + 1) dimSk(Γ ).

Remark 2.7. Weight 2 Eisenstein series have residue sum zero. Thus
we can extend the notion of residue sum zero to higher order forms. As
F |k(V −I)(τ) = 0 for V parabolic (condition (2) in Definition 1.3) and for V
elliptic (Proposition 6.2), the expansion and order of F (τ) at a point τ ∈ H∗

are identical to those of a classical weight k form. Although for weight 2,
F (τ) can no longer be identified with a differential on the Riemann surface
Γ\H∗, we define the residue, res(F, pj , Γ ), of F (τ) at pj by res(F, pj , Γ ) =
λja

j
0. This agrees with the residue of weight 2 forms (see [Ran, p. 122]). If
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F (τ) ∈ Rt2(Γ ), the residue sum of F (τ) is
∑s

j=1 res(F, pj , Γ ) =
∑s

j=1 λja
j
0.

For clarity, we will write aj0(F ) for the zeroth coefficient in the Fourier
expansion of F (τ) at the cusp pj .

We consider the map

Res : R2
2(Γ )→ C, F 7→

s∑
j=1

λja
j
0(F ).

Remark 2.8. The map Res : R2
2(Γ ) → C is nontrivial. For example,

given f ∈ S2(Γ ) and a cusp a, the function, denoted in [DO] by Zf,f (τ) +
2iV 〈f, f〉Pa0(τ)2 is shown, in the proof of Proposition 5.2 of [DO], to be in
R2

2(Γ ) with nonzero residue sum.

Let cil = residue sum(F ′il(τ)) =
∑s

j=1 λja
j
0(F ′il). At least one cil is not 0

(see the remark above); without loss of generality, we assume c11 6= 0. Let
F ∗il
′(τ) = c11F

′
il(τ) − cilF ′11(τ), (i, l) 6= (1, 1). The F ∗il

′(τ) have residue sum
zero. Thus

(2.11) Fil(τ) = F ∗il
′(τ)−

s∑
j=2

λja
j
0(F ∗il

′)E∗j (τ) ∈ S2
2(Γ ), (i, l) 6= (1, 1),

where E∗j (τ) ∈ M2(Γ ), 2 ≤ j ≤ s, is the standard weight two Eisenstein
series with residue −1 at pj , residue 1 at p1, and vanishing at the remaining
cusps.

Remark 2.9. If there is only one cusp, s = 1, then the sum appearing
in (2.11) is vacuous. Yet the result is true since for one cusp, residue sum
zero is equivalent to cuspidal.

Theorem 2.10. Let Γ be an H-group. Then

{Fil(τ), Fj(τ)}1≤i≤2g, 1≤l≤χ1(2), 1≤j≤χ1(2), (i,l)6=(1,1),

where Fil(τ) given by (2.11), is a basis for S2
2(Γ ) (χ1(2) = g).

Proof. Let F (τ) ∈ S2
2(Γ ) with FV (τ) =

∑
1≤i≤2g, 1≤l≤χ1(k) ailωil(V )(τ).

The Eichler construction above gives F ′(τ) =
∑

1≤i≤2g, 1≤l≤χ1(k) ailF
′
il(τ) ∈

R2
2(Γ ) with period forms {FV (τ)}. Thus F (τ) − F ′(τ) ∈ M2(Γ ). We recall

M2(Γ ) = S2(Γ ) ⊕ E, where E = span{E∗j (τ)}sj=2 (see [S]); in particular
elements of M2(Γ ) have residue sum zero. We have

F (τ)− F ′(τ) = F (τ)−
∑

1≤i≤2g
1≤l≤χ1(k)

ailF
′
il(τ)

= F (τ)−
∑

1≤i≤2g
1≤l≤χ1(k)

ail
c11

(c11F
′
il(τ)− cilF ′11(τ)) +

∑
1≤i≤2g

1≤l≤χ1(k)

ailcil
c11

F ′11(τ).



Decomposition of higher order modular forms 117

Recall F ∗il
′(τ) = c11F

′
il(τ)− cilF ′11(τ), so that

F (τ)− F ′(τ) = F (τ)−
∑

1≤i≤2g
1≤l≤χ1(k)
(i,l)6=(1,1)

ail
c11

F ∗il
′(τ)−

( ∑
1≤i≤2g

1≤l≤χ1(k)

ailcil
c11

)
F ′11(τ).

Now as F (τ)− F ′(τ) has residue sum zero, it follows that∑
1≤i≤2g

1≤l≤χ1(k)

ailcil = 0.

Therefore

F (τ)− F ′(τ) = F (τ)−
∑

1≤i≤2g
1≤l≤χ1(2)
(i,l)6=(1,1)

ail
c11

F ∗il
′(τ)

= F (τ)−
∑

1≤i≤2g
1≤l≤χ1(2)
(i,l)6=(1,1)

ail
c11

Fil(τ)−
∑

1≤i≤2g
1≤l≤χ1(2)
(i,l)6=(1,1)

ail
c11

s∑
j=2

λja
j
0(F ∗il)E

∗
j (τ).

We have F (τ) − F ′(τ), E∗j (τ) ∈ S2(Γ ) ⊕ E, by assumption F (τ) ∈ S2
2(Γ )

and by construction Fil(τ) ∈ S2
2(Γ ); therefore

F (τ)−
∑

1≤i≤2g
1≤l≤χ1(2)
(i,l)6=(1,1)

ail
c11

Fil(τ) ∈ S2
2(Γ ) ∩ (S2(Γ )⊕ E) = S2(Γ ).

This gives

span{Fil(τ), Fj(τ)}1≤i≤2g, 1≤l≤χ1(2), 1≤j≤χ1(2), (i,l)6=(1,1) = S2
2(Γ ).

The proof of linear independence is the same as for k > 2.

Corollary 2.11. Let Γ be an H-group. Then

dimS2
2(Γ ) = (2g + 1) dimS2(Γ )− 1.

3. Preliminary lemmas. In this section, we prove a series of lemmas
which will be used, in the next section, to construct the Eichler map, Eic.
For large Y , let FY = {τ ∈ F : y > Y }; it is a neighborhood of ∞ and
FYj = A−1

j FY is the corresponding neighborhood of the cusp pj . Then F =⋃s
j=1A

−1
j FY ∪FYc , where FYc is compact. For α > 0, let Eα = {τ ∈ H : |x| ≤

1/α, y ≥ α}. Let EYα = {τ ∈ Eα : y > Y } and Eα,Y = {τ ∈ Eα : y ≤ Y }.
We use the following lemma proved in [Shi].
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Lemma 3.1. There exists a positive number r, depending only on Γ , such
that |c| ≥ r for all V ∈ Γ − Γ∞, where V =

( ∗ ∗
c d

)
. Moreover, for such an r,

one has Im(τ) Im(V τ) ≤ 1/r2 for all τ ∈ H and all V ∈ Γ − Γ∞.

Lemma 3.2. There exists Y0 such that for all Y > Y0,

FYj ∩ V (Eα,Y ) = ∅ for all V ∈ Γ, j = 1, . . . , s.

Proof. Choose Y > 1/(αr2), with r as in Lemma 3.1. Let τ ∈ FYj . Con-
sider Im(AjV τ) = Im(AjV A−1

j Ajτ). By Lemma 3.1, if AjV A−1
j ∈ Γ − Γ∞,

then
Im(AjV A−1

j Ajτ) ≤ 1
Im(Ajτ)r2

≤ 1
Y r2

< α.

If AjV A−1
j ∈ Γ∞, then Im(AjV A−1

j Ajτ) = Im(Ajτ) > Y . The lemma
follows with Y0 = 1/(αr2).

Lemma 3.3. There exist a finite number of elements W1, . . . ,Wm ∈ Γ
such that

Eα ⊂
m⋃
j=1

WjF.

Proof. Choose Y > Y0 as above. We have F =
⋃s
j=1 FYj ∪ FYc and Eα =

EYα ∪Eα,Y , where FYc and EYα are compact. We know Eα,Y ⊂
⋃
V ∈Γ V F and,

by Lemma 3.2, (V Eα,Y ) ∩ FYj = ∅ for all V ∈ Γ and j = 1, . . . , s; therefore

Eα,Y ⊂
⋃
V ∈Γ

V FYc .

Since FYc and EYα are compact, Eα,Y ∪ V FYc 6= ∅ for only finitely many V ’s
[Shi]. Label these W1, . . . ,Wn. Also, EYα ⊂

⋃l
t=−l S

tFY for some l. Label
the Si’s Wn+1, . . . ,Wm. Thus Eα ⊂W1F ∪ · · · ∪WmF.

Lemma 3.4. Let F (τ) ∈ Stk(Γ ). Then there exists C = C(F, α) such that

|F (τ)| ≤ C, ∀τ ∈ Eα.
Proof. By Lemma 3.3, there exist elements W1, . . . ,Wm ∈ Γ such that

Eα ⊂
⋃m
j=1WjF. Let g(τ) = |Im(τ)k/2F (τ)|. Hence for τ ∈ Eα there exist

w ∈ F and j ∈ {1, . . . ,m} so that

g(τ) = g(Wjw) = Im(w)k/2|(cjw + dj)−kF (Wjw)|(3.1)

= Im(w)k/2|F (w) + FWj (w)|.
Thus g(τ) ≤M(F, {W1, . . . ,Wm}), where

M(F, {W1, . . . ,Wm}) = sup
w∈F, j=1,...,m

Im(w)k/2(|F (w)|+ |FWj (w)|).

Therefore |F (τ)| ≤M Im(τ)−k/2 ≤ C(F, α) for τ ∈ Eα.
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Remark 3.5. Lemma 3.4 shows that, as in the case of classical modular
cusp forms, F (τ) ∈ Stk(Γ ) satisfies supτ∈F Im(τ)k/2|F (τ)| ≤ C. This follows
from the exponential decay at the cusps, i.e. condition (3), and compactness
away from the cusps.

Recall that

Z1(Γ, Stk(Γ )) = {Ω : Γ→Stk(Γ ) : Ω(VW )(τ) = (Ω(V )|kW )(τ)+Ω(W )(τ)}.

Let Ω ∈ Z1(Γ, Stk(Γ )) and set ΩV (τ) = Ω(V )(τ). Thus ΩV (τ) ∈ Stk(Γ ) for
all V ∈ Γ and Ω satisfies the 1-cocycle condition:

(3.2) ΩVW (τ) = (ΩV |kW )(τ) +ΩW (τ).

The following statement and proof are modifications of those of Theorem 1
in [Leh2].

Theorem 3.6. Let Ω ∈ Z1(Γ, Stk(Γ )). For W ∈ Γ and τ ∈ Eα, we have

(3.3) |ΩW (τ)| ≤ C(m1 logµ(W ) +m2)µ(W )m1 log 2.

Here m1 and m2 are as in Theorem 2.1.

Proof. Let W = C1 · · ·Cl be the Eichler factorization of W . Using
(3.2) and the multiplicativity of the slash operator, ((F |kV )|kW )(τ) =
(F |kVW )(τ), we have

(3.4) ΩW (τ) = (ΩC1···Cl−1
|kCl)(τ) +ΩCl(τ)

= (ΩC1 |kC2 · · ·Cl)(τ)+(ΩC2 |kC3 · · ·Cl)(τ)+ · · ·+(ΩCl−1
|kCl)(τ)+ΩCl(τ).

For τ ∈ Eα we estimate each of the above l terms. By assumption ΩCj (τ)
= 0 if Cj is parabolic, thus we need only estimate the terms involving
ΩCj (τ) with Cj nonparabolic, i.e. Cj ∈ β

.= {γ1, . . . , γ2g, ε1, . . . , εr}, the set
of nonparabolic generators of Γ . Since Ω ∈ Z1(Γ, Stk(Γ )), we have ΩCj (τ)
∈ Stk(Γ ). Thus we may write

(3.5) ΩCj (τ) =
χt(k)∑
i=1

bijFi(τ),

where {Fi(τ)}1≤i≤χt(k) is a basis for Stk(Γ ). Now we wish to estimate
(ΩCj |kCj+1 · · ·Cl)(τ); we write Cj =

( ∗ ∗
cj dj

)
and Cj · · ·Cl =

( ∗ ∗
γj δj

)
, so

that

(ΩCj |kCj+1 · · ·Cl)(τ) = (γj+1τ + δj+1)−kΩCj (Cj+1 · · ·Clτ)(3.6)

= (γj+1τ + δj+1)−k
χt(k)∑
i=1

bijFi(Cj+1 · · ·Clτ).
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Since Fi(τ) ∈ Stk(Γ ), we have

F (Cj+1 · · ·Clτ)

= (cj+1Cj+2 · · ·Clτ + dj+1)k(Fi(Cj+2 · · ·Clτ) + FiCj+1(Cj+2 · · ·Clτ)),

where FiCj+1(Cj+2 · · ·Clτ) = (Fi|k(Cj+1 − I))(Cj+2 · · ·Clτ) ∈ St−1
k (Γ ).

Remark 3.7. We use the notation

FiCj1 ···Cjν (τ) = (FiCj1 ···Cjν−1
|k(Cjν − I))(τ).

Repeating the argument, we have

F (Cj+1 · · ·Clτ)

= (cj+1Cj+2 · · ·Clτ + dj+1)k(cj+2Cj+3 · · ·Clτ + dj+2)k

× {Fi(Cj+3 · · ·Clτ) + FiCj+2(Cj+3 · · ·Clτ) + FiCj+1(Cj+3 · · ·Clτ)

+ FiCj+1Cj+2(Cj+3 · · ·Clτ)}.
Continuing, we arrive at

F (Cj+1 · · ·Clτ)

= (cj+1Cj+2 · · ·Clτ + dj+1)k(cj+2Cj+3 · · ·Clτ + dj+2)k

· · · (cl−1Clτ + dl−1)k(clτ + dl)k

×
{
Fi(τ) +

∑
1≤ν1≤l−j

FiCj+ν1 (τ) +
∑

1≤ν1<ν2≤l−j
FiCj+ν1Cj+ν2 (τ)

+ · · ·+ FiCj+1Cj+2···Cl(τ)
}
.

Thus

(3.7) F (Cj+1 · · ·Clτ) = (γj+1τ + δj+1)k

×
{
Fi(τ) +

∑
1≤ν1≤l−j

FiCj+ν1 (τ) +
∑

1≤ν1<ν2≤l−j
FiCj+ν1Cj+ν2 (τ)

+ · · ·+ FiCj+1Cj+2···Cl(τ)
}
.

Since Fi(τ) ∈ Stk(Γ ), FiCj1 ···Cjν (τ) = 0 when ν > t. Thus we set

N = max
1≤i≤χt(k)
Cj1 ,...,Cjν∈β

0≤ν≤t

C(FiCj1 ···Cjν , α)

where C(F, α) is the bound given in Lemma 3.4. Here we have used the
convention FiC0 = Fi. N is a bound, independent of j or l, for each of the
2l−j higher order forms appearing in (3.7). Therefore for τ ∈ Eα, we have

(3.8) |F (Cj+1 · · ·Clτ)| ≤ 2l−jN |γj+1τ + δj+1|k.
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This implies, by (3.6) and (3.8), that

(3.9) |(ΩCj |kCj+1 · · ·Cl)(τ)| ≤ N
χt(k)∑
i=1

|bij |2l−j ≤ N12l.

Here N1 = N maxCj∈β
∑χt(k)

i=1 |bij |. Since there are l terms in (3.4), we have

(3.10) |ΩW (τ)| ≤ N1l2l.

Recall l is the number of factors in the Eichler factorization of W . We use
the Eichler estimate on l given in Theorem 2.1 to obtain

|ΩW (τ)| ≤ N1(m1 logµ(W ) +m2)2m1 log µ(W )+m2(3.11)

≤ C(m1 logµ(W ) +m2)µ(W )m1 log 2.

4. Higher order forms with preassigned periods; the Eichler
map. Let Ω ∈ Z1(Γ, Stk(Γ )). We use the Eichler construction to obtain a
t+ 1 order form with period Ω. The exposition follows Lehner [Leh2].

Theorem 4.1. Let Γ be an H-group and Ω ∈ Z1(Γ, Stk(Γ )).

(1) For k > 2, there exists F (τ) ∈ St+1
k (Γ ) such that F |k(V − I)(τ) =

ΩV (τ) for all V ∈ Γ .
(2) For k = 2, there exists F (τ) ∈ Rt+1

2 (τ) such that F |2(V − I)(τ) =
ΩV (τ) for all V ∈ Γ .

Proof. Let δ be a positive even integer > 2m1 log 2 and

Ψ(τ) = −
∑
W∈M

ΩW (τ)
(cτ + d)k+δ

.

As in the proof of Proposition 2.2, the estimate (3.3) implies

(4.1) |ΩW (τ)| ≤ C(m1 log |cτ + d|2 +m′′2)|cτ + d|2m1 log 2

on compact subsets of H. It follows that the sum
∑

W∈MΩW (τ)/(cτ + d)k+δ

converges absolutely uniformly on compact subsets of H for k ≥ 2. We have,
as before,

(Ψ |2k+δV )(τ) = Ψ(τ) +ΩV (τ)Ek+δ(τ).

Here Ek+δ(τ) =
∑

W∈M 1/(cτ + d)k+δ. Also, with Φ(τ) = ψ(τ)/Ek+δ(τ), we
have

(Φ|kV )(τ) = Φ(τ) +ΩV (τ).

As in the second order case, there exists a classical modular form, G(τ),
with exactly the same poles and principal parts as Φ(τ). If we set F ′(τ) =
Φ(τ) − G(τ), then F ′(τ) ∈ Rt+1

k (Γ ) and F ′(τ)|k(V − I)(τ) = ΩV (τ) for
all k ≥ 2. For k > 2, we let F (τ) = F ′(τ) −

∑s
j=1 a

j
0(F ′)Ej(τ) so that

F (τ)|k(V − I)(τ) = ΩV (τ) and F (τ) ∈ St+1
k (Γ ). For k = 2, in order to
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obtain a cuspidal form, we restrict to F ′(τ) having residue sum zero; then
F (τ) = F ′(τ)−

∑s
j=2 aj(F

′)E∗j (τ) is in St+1
2 (Γ ) and has the correct period.

Fixing the choices made in Theorem 4.1 gives us the maps

Eic : Z1(Γ, Stk(Γ ))→ St+1
k (Γ ), k > 2,(4.2)

Eic : Z1(Γ, St2(Γ ))→ Rt+1
2 (τ)(4.3)

with Eic(Ω)|k(V − I)(τ) = ΩV (τ) for all V ∈ Γ and k ≥ 2. Next we define

(4.4) Z1
∗ (Γ, S

t
2(Γ )) = {Ω ∈ Z1(Γ, St2(Γ )) : Eic(Ω)(τ) has zero residue sum}.

We have B1(Γ, St2(Γ )) ⊂ Z1
∗ (Γ, S

t
2(Γ )), thus we define

H1
∗ (Γ, S

t
2(Γ )) = Z1

∗ (Γ, S
t
2(Γ ))/B1(Γ, St2(Γ )).

Finally, we have

(4.5) Eic : Z1
∗ (Γ, S

t
2(Γ ))→ St+1

2 (Γ ).

5. The decomposition. In this section, we establish

Theorem 5.1. Let Γ be an H-group.

(1) For k > 2 and t ≥ 1,

St+1
k (Γ ) ∼= H1(Γ, Stk(Γ ))⊕ · · · ⊕H1(Γ, S0

k(Γ )).

(2) For t ≥ 1,

St+1
2 (Γ ) ∼= H1

∗ (Γ, S
t
2(Γ ))⊕ · · · ⊕H1

∗ (Γ, S
0
2(Γ )).

Proof. Let π : St+1
k (Γ ) → H1(Γ, Stk(Γ )) be the map F 7→ [{FV }]. Here

[{FV }] is the equivalence class of the 1-cocycle FV . We must show that π
is onto, π is a homomorphism, and Kerπ = Stk(Γ ). That π is onto is given
by the Eichler map defined above: given Ω + B1(Γ, Stk(Γ )) ∈ H1(Γ, Stk(Γ ))
(or H1

∗ (Γ, S
t
2(Γ )), for k = 2), F (τ) = Eic(Ω)(τ) has the property that

F |k(V − I)(τ) = ΩV (τ) for k ≥ 2. That Kerπ = Stk(Γ ) follows from the
definition of B1(Γ, Stk(Γ )).

6. The dimension of H1(Γ, Stk(Γ )). In this section we calculate the
dimension of H1(Γ, Stk(Γ )) under the assumption Ωπ = 0 for all π parabolic.
We use the following notation:

Rt(k) = dimH1(Γ, Stk(Γ )), k > 2,

Rt(2) = dimH1
∗ (Γ, S

t−1
2 (Γ )), k = 2,

rt(k) = dimZ1(Γ, Stk(Γ )), k > 2,

rt(2) = dimZ1
∗ (Γ, S

t
2(Γ )), k = 2,

r0t (k) = dimB1(Γ, Stk(Γ )), k ≥ 2.
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We have
Rt(k) = rt(k)− r0t (k).

Proposition 6.1. Let Γ be an H-group.

(1) If k > 2 and t ≥ 1, then

B1(Γ, Stk(Γ )) = Z1(Γ, St−1
k (Γ )).

(2) For t ≥ 1,
B1(Γ, St2(Γ )) = Z1

∗ (Γ, S
t−1
2 (Γ )).

Proof. Let k > 2 and Ω ∈ B1(Γ, Stk(Γ )). By definition, there exists
F (τ) ∈ Stk(Γ ) such that ΩV (τ) = F |k(V −I)(τ) for all V ∈ Γ . Therefore Ω ∈
Z1(Γ, St−1

k (Γ )). If Ω ∈ Z1(Γ, St−1
k (Γ )), then G(τ) = Eic(Ω)(τ) ∈ Stk(Γ )

satisfies G|k(V − I)(τ) = ΩV (τ) for all V ∈ Γ . That is, Ω ∈ B1(Γ, Stk(Γ )).
This gives (1).

For k = 2, as before, if Ω ∈ B1(Γ, St2(Γ )) then Ω ∈ Z1(Γ, St−1
2 (Γ )) and

there exists F (τ) ∈ St2(Γ ) such that ΩV (τ) = F |2(V − I)(τ). We must show
Ω ∈ Z1

∗ (Γ, S
t−1
2 (Γ )). As Ω ∈ Z1(Γ, St−1

2 (Γ )) we have Eic(Ω)(τ) ∈ Rt2(Γ ) by
(4.3), and Eic(Ω)|k(V − I)(τ) = F |k(V − I)(τ). Therefore Eic(Ω)(τ)−F (τ)
∈M2(Γ ), which implies

0 = residue sum(Eic(Ω)(τ)− F (τ)) = residue sum(Eic(Ω)(τ)),

since F (τ) ∈ St2(Γ ). Hence Ω ∈ Z1
∗ (Γ, S

t−1
2 (Γ )). Conversely, Z1

∗ (Γ, S
t−1
2 (Γ ))

⊂ B1(Γ, St2(Γ )) follows from (4.5).

The above proposition implies Rt(k) = rt(k)− rt−1(k) for k ≥ 2. Hence
we are left to determine the dimension, rt(k), of Z1(Γ, Stk(Γ )). We calcu-
late dimZ1(Γ, Stk(Γ )) following the method described in [Ei1]. Given Ω ∈
Z1(Γ, Stk(Γ )), we have ΩV (τ) ∈ Stk(Γ ) and Ω is a 1-cocycle, i.e.,

(6.1) ΩVW (τ) = (ΩV |kW )(τ) +ΩW (τ).

Essentially we calculate the number of choices for Ωδ, where δ is a generator
of Γ , subject to the relations (1.2).

Proposition 6.2. Let Ω ∈ Z1(Γ, Stk(Γ )), k ≥ 2. If ε ∈ Γ is elliptic,
then Ωε(τ) = 0.

Proof. Suppose εl = I, l a positive integer. Applying (6.1), we have

(6.2) 0 = ΩI(τ) = Ωεl(τ) = Ωε|k{I + ε+ · · ·+ εl−1}(τ).

Now let (see [Ei1])

(6.3) F (τ) =
−1
l − 1

Ωε|k{(l − 1)I + (l − 2)ε+ (l − 3)ε2 + · · ·+ εl−1}(τ).

This choice is such that F (τ) ∈ Stk(Γ ) and

(6.4) F |k(ε− I)(τ) = Ωε(τ).
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This relation implies, by the definition of Stk(Γ ), that Ωε(τ) ∈ St−1
k (Γ ),

which in turn implies, by (6.3), F (τ) ∈ St−1
k (Γ ). Iterating, we arrive at

F (τ) ∈ Sk(Γ ) such that

Ωε(τ) = F |k(ε− I)(τ) = 0.

Remark 6.3. The above proposition together with the parabolic as-
sumption, F |k(π − I)(τ) = 0 for all π parabolic, necessitates Γ to have
positive genus (g > 0) in order for there to exist nontrivial higher order
(parabolic) forms.

From the decomposition given in Theorem 5.1, we can write

St+1
k (Γ ) = Pk,t+1(Γ )⊕ · · · ⊕ Pk,1(Γ )

where Pk,t(Γ ) = π−1(H1(Γ, St−1
k (Γ ))) ∼= H1(Γ, St−1

k ), k > 2 and P2,t(Γ ) ∼=
H1
∗ (Γ, S

t−1
2 (Γ )).

We want to enumerate basis elements for each component Pt(Γ ). We use
the index sets It(k), k > 2, and It(2) defined, iteratively, as follows:

I0(k) = {i : 1 ≤ i ≤ χ1(k)},
I1(k) = {(i1, i) : 1 ≤ i1 ≤ 2g, 1 ≤ i ≤ χ1(k)},
It(k) = {(it, it−1, . . . , i1, i) : 1 ≤ it ≤ 2g, (it, it−1) 6= (1, g + 1),

(it−1, . . . , i1, i) ∈ It−1(k)};
It(2) = {(it, it−1, . . . , i1, i) : 1 ≤ it ≤ 2g, (it, it−1) 6= (1, g + 1),

(it, . . . , i1, i) 6= (1, 1), (it−1, . . . , i1, i) ∈ It−1(2)},
I0(2) = {i : 1 ≤ i ≤ χ1(2)},
I1(2) = {(i1, i) : 1 ≤ i1 ≤ 2g, 1 ≤ i ≤ χ1(2), (i1, i) 6= (1, 1)}.

The condition (it, . . . , i1, i) 6= (1, 1) is vacuous for t > 1.

Theorem 6.4. Let Γ be an H-group.

(1) For k > 2 and t ≥ 1, there exists a basis {Fit,...,i1,i(τ)}(it,...,i1,i)∈It(k)
of Pk,t+1(Γ ) such that

(6.5) Fit,...,i1,i|k(γj − I)(τ) = δitjFit−1,...,i1,i(τ),
1 ≤ it, j ≤ 2g, (it, it−1) 6= (1, g + 1).

Here {Fit−1,...,i1,i(τ)}(it−1,...,i1,i)∈It−1(k) is a basis for Pk,t(Γ ).
(2) There exists a basis {Fit,...,i1,i(τ)}(it,...,i1,i)∈It(2) of P2,t+1(Γ ), t ≥ 1,

such that

(6.6) Fit,...,i1,i|k(γj − I)(τ) = δitjc11Fit−1,...,i1,i(τ)− δ1jcit...i11F
′
11(τ),

1 ≤ it, j ≤ 2g, (it, it−1) 6= (1, g + 1).
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Here {Fit−1,...,i1,i(τ)}(it−1,...,i1,i)∈It−1(k) is a basis for P2,t(Γ ) ∼=
H1
∗ (Γ, S

t−1
2 (Γ )) and F ′11(τ) ∈ R2

2(Γ ), constructed in Section 2, satis-
fies F ′11|2(V −I)(τ)=n1(V )F1(τ) and c11 =residue sum(F ′11(τ)) 6= 0.

By convention, Fi0,i(τ) = Fi(τ).

Proof. The proof is by induction on t. For t = 1, we have shown there
exists a basis {Fi1,i(τ)} for Pk,2(Γ ) ∼= H1(Γ, Sk(Γ )) with Fi1,i|k(γj − I)(τ)
= δi1jFi(τ). The condition i0 6= g + 1 is vacuous. Next we assume a ba-
sis {Fit−1,...,i1,1(τ)} for Pk,t(Γ ), satisfying (6.5), has been chosen. We have,
by Proposition 6.1, H1(Γ, Stk(Γ )) = Z1(Γ, Stk(Γ ))/Z1(Γ, St−1

k (Γ )). Thus we
first find a basis for Z1(Γ, Stk(Γ )). Let Ω ∈ Z1(Γ, Stk(Γ )), k ≥ 2, and con-
sider the hyperbolic generators γ1, . . . , γ2g. The relation (1.2) and the cocycle
condition (6.1) imply

(6.7) Ωγ1γg+1γ
−1
1 γ−1

g+1|kγ2γg+2···γ−1
g γ−1

2g ε1···εrπ1···πs(τ)

+Ωγ2γg+2···γ−1
g γ−1

2g ε1···εrπ1···πs(τ) = 0.

Also, the cocycle condition implies

(6.8) Ωα−1(τ) = −Ωα|kα−1(τ).

Therefore

Ωγ1γg+1γ
−1
1 γ−1

g+1
(τ) = {Ωγ1 |k(γg+1 − I)−Ωγg+1 |k(γ1 − I)}|kγ−1

1 γ−1
g+1(τ).

We write the above equation as

(6.9) C(τ) = Ng+1(Ωγ1)(τ),

where Ni denotes the map

Ni : Stk(Γ )→ St−1
k (Γ ), F (τ) 7→ F |k(γi − I)(τ),(6.10)

and

C(τ) = N1(Ωγg+2)(τ)

+Ωγ2γg+2···γ−1
g γ−1

2g ε1···εrπ1···πs |k(γ2γg+2 · · · γ−1
g γ−1

2g ε1 · · · εrπ1 · · ·πs)−1(τ)

= N1(Ωγg+2)(τ) +Ωπ−1
s ···π−1

1 ε−1
r ···ε−1

1 γ2g ···γ−1
g+2γ

−1
2

(τ),

using (6.8). Thus, since Ωδ = 0 for δ parabolic or elliptic, we have

C(τ) = N1(Ωγg+2)(τ) +Ωγ2gγgγ−1
2g γ

−1
g ···γ−1

g+2γ
−1
2

(τ).

Remark 6.5. The importance, for us, of C(τ) is that it depends only on
Ωγ2(τ), . . . , Ωγ2g(τ). Also note that Ωγ2gγgγ−1

2g γ
−1
g ···γ−1

g+2γ
−1
2

(τ), N1(Ωγg+2)(τ),

and C(τ) are in St−1
k (Γ ).

We choose Ωγj (τ) ∈ Stk(Γ ), 2 ≤ j ≤ 2g, arbitrarily; Ωγ1(τ) is then
subject to the constraint (6.9). As we noted, C(τ) ∈ St−1

k (Γ ), thus, by
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Theorem 5.1 and the induction hypothesis, we write

(6.11) C(τ) =
t−2∑
ν=0

∑
(iν ,...,i1,i)∈Iν(k)

Ciν ,...,i1,iFiν ,...,i1,i(τ).

Also, since Ωγ1(τ) ∈ Stk(Γ ),

(6.12) Ωγ1(τ) =
t−1∑
ν=0

∑
(iν ,...,i1,i)∈Iν(k)

ωiν ,...,i1,iFiν ,...,i1,i(τ).

Thus we have

C(τ) =
∑

(it−2,...,i1,i)∈It−2(k)

Cit−2,...,i1,iFit−2,...,i1,i(τ)

+ · · ·+
∑

(i1,i)∈I1(k)

Ci1,iFi1,i(τ) +
∑

i∈I0(k)

CiFi(τ)

= Ng+1(Ωγ1)(τ) (by (6.9))

=
∑

(it−1,...,i1,i)∈It−1(k)

ωit−1,...,i1,iNg+1(Fit−1,...,i1,i)(τ)

+ · · ·+
∑

(i1,i)∈I1(k)

ωi1,iNg+1(Fi1,i)(τ)

=
∑

(it−2,...,i1,i)∈It−2(k)

ωg+1,it−2,...,i1,iFit−2,...,i1,i(τ)

+ · · ·+
∑

i∈I0(k)

ωg+1,iFi(τ).

We have used (6.10) and (6.5), which is valid by the induction hypothesis.
Therefore, equating coefficients, we have

(6.13)
ωg+1,iν−1,...,i1,i = Ciν−1,...,i1,i, (iν−1, . . . , i1, i) ∈ Iν−1(k), 1 ≤ ν ≤ t− 1.

All other coefficients appearing in (6.12) may be arbitrarily chosen. Thus a
basis for Z1(Γ, Stk(Γ )), k≥2, is given by

⋃t
ν=1{Ωiν ,iν−1,...,i1,i}(iν ,iν−1,...,i1,i)∈Iν

where

Ωiν ,iν−1,...,i1,i
γj (τ) = δiνjFiν−1,...,i1,i(τ), 2 ≤ iν ≤ 2g, 2 ≤ j ≤ 2g,(6.14)

(iν−1, . . . , i1, i) ∈ Iν−1(k),

Ωiν ,iν−1,...,i1,i
γ1 (τ) =

t−2∑
µ=1

∑
(iµ,...,i1,i)∈Iµ(k)

Ciµ,...,i1,iFg+1,iµ,...,i1,i(τ),(6.15)
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and

Ω1,iν−1,...,i1,i
γj (τ) = 0, 2 ≤ j ≤ 2g,(6.16)

Ω1,iν−1,...,i1,i
γ1 (τ) = Fiν−1,...,i1,i(τ),(6.17)

(iν−1, . . . , i1, i) ∈ Iν−1(k), iν−1 6= g + 1.

Thus (6.14) represents all possible choices forΩγj (τ), j ≥ 2. The Ciµ,...,i1,i are
then determined by these choices. The (iν−1, . . . , i1, i) in (6.17) parameterize
the remaining degrees of freedom for Ωγ1(τ).

A basis for H1(Γ, Stk(Γ )), k > 2, is given by the cocycle representatives
{Ωit,...,i1,i} satisfying the conditions (6.14)–(6.17) with ν = t. The corre-
sponding basis of Pt+1 is {Fit,...,i1,i(τ)}(it,...,i1,i)∈It(k) where Fit,...,i1,i(τ) =
Eic(Ωit,...,i1,i)(τ). To see this, we need only check that the above set is lin-
early independent. Suppose

0 =
∑

(it,...,i1,i)∈It(k)

ait,...,i1,iFit,...,i1,i(τ)(6.18)

=
∑

(it,...,i1,i)∈It(k)

ait,...,i1,i Eic(Ωit,...,i1,i)(τ)

= Eic
( ∑

(it,...,i1,i)∈It(k)

ait,...,i1,iΩ
it,...,i1,i

)
(τ) + F (τ),

where F (τ)∈Sk(Γ ). Then all periods of
∑

(it,...,i1,i)∈It(k) ait,...,i1,iΩ
it,it−1,...,i1,i

are zero. Hence

(6.19) 0 =
∑

(it,...,i1,i)∈It(k)

ait,...,i1,iΩ
it,...,i1,i,

which implies ait,...,i1,i = 0 since the set {Ωit,...,i1,i} is linearly independent.
For k = 2 we fix the element Ω11 = n1(·)F1(τ) ∈ Z1(Γ, St2(Γ )); it has

the property that F ′11(τ) = Eic(Ω11)(τ) and the residue sum of F ′11(τ) is
c11 6= 0. A basis for Z1

∗ (Γ, S
t
2(Γ )) is then given by

⋃t
ν=1{c11Ω

iν ,iν−1,...,i1,i −
ciν ,iν−1,...,i1,iΩ

11} where {Ωiν ,iν−1,...,i1,i} is a basis for Z1(Γ, St2(Γ )) given by
(6.14)–(6.17) with ν = t, k = 2 and {Fiν−1,...,i1,i(τ)}(iν−1,...,i1,i)∈Iν−1(2) a basis
for P2,t(Γ ) ⊂ St2(Γ ). A basis for H1

∗ (Γ, S
t
2(Γ )) is given by the cocycle repre-

sentatives {c11Ω
it,...,i1,i−cit,...,i1,iΩ1,1}. The corresponding basis of P2,t+1(Γ )

is {Fit,...,i1,i(τ)}(it,...,i1,i)∈It(2) where

Fit,...,i1,i(τ) = Eic(c11Ω
it,...,i1,i − cit,...,i1,iΩ11)(τ).

By counting the number of elements satisfying (6.14)–(6.17), for ν = t,
we obtain
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Corollary 6.6. Let Γ be an H-group.

(1) For k > 2 and t ≥ 1,

(6.20) dimH1(Γ, Stk(Γ )) =
[t/2]∑
j=0

(−1)j
(
t− j
j

)
(2g)t−2j dimSk(Γ ).

(2) For k = 2 and t ≥ 1,

(6.21) dimH1
∗ (Γ, S

t
2(Γ )) =

[t/2]∑
j=0

(−1)j
(
t− j
j

)
(2g)t−2j dimS2(Γ )

−
[(t−1)/2]∑
j=0

(−1)j
(
t− 1− j

j

)
(2g)t−1−2j .

Proof. Let |It(k)| denote the cardinality of It(k). The number ofΩiν ,...,i1,i

satisfying (6.14)–(6.15), with ν = t is

(2g − 1)|It−1(k)| = (2g − 1) dimH1(Γ, St−1
k (Γ )),

and the number of Ωiν ,...,i1,i satisfying (6.16)–(6.17) with ν = t is

|It−1(k)| − |It−2(k)| = dimH1(Γ, St−1
k (Γ ))− dimH1(Γ, St−2

k (Γ )).

Hence the dimension satisfies the recursive formula

(6.22) dimH1(Γ, Stk(Γ )) = 2g dimH1(Γ, St−1
k (Γ ))− dimH1(Γ, St−2

k (Γ )).

We use this formula and induction to prove (6.20). As noted in Section 2,
H1(Γ, Sk(Γ )) ∼= Hom(Γ, Sk(Γ )). Hence dimH1(Γ, Sk(Γ )) = 2g dimSk(Γ ).
Also, recall H1(Γ, S0

k(Γ )) = Sk(Γ ). Thus for t = 2, (6.22) gives

dimH1(Γ, S2
k(Γ )) = 2g dimH1(Γ, Sk(Γ ))− dimH1(Γ, S0

k(Γ ))(6.23)

= ((2g)2 − 1) dimSk(Γ ).

Assume (6.20) holds for ν < t. Applying (6.22), we have

dimH1(Γ, Stk(Γ ))/dimSk(Γ )

= 2g
[(t−1)/2]∑
j=0

(−1)j
(
t−1−j
j

)
(2g)t−1−2j −

[(t−2)/2]∑
j=0

(−1)j
(
t−2−j
j

)
(2g)t−2−2j

= (2g)t +
[(t−1)/2]∑
j=1

(−1)j
(
t−1−j
j

)
(2g)t−2j +

[(t−2)/2]+1∑
j=1

(−1)j
(
t−1−j
j−1

)
(2g)t−2j .

For t odd,
[
t
2

]
=
[
t−1
2

]
=
[
t−2
2

]
+ 1, thus the above sum is

(2g)t +
[(t−1)/2]∑
j=1

(−1)j
(
t− j
j

)
(2g)t−2j =

[t/2]∑
j=0

(−1)j
(
t− j
j

)
(2g)t−2j .
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Here we have used
(
t−1−j
j

)
+
(
t−1−j
j−1

)
=
(
t−j
j

)
. For t even,

[
t
2

]
=
[
t−1
2

]
+ 1 =[

t−2
2

]
+ 1, thus the sum becomes

(2g)t +
[t/2−1]∑
j=1

(−1)j
(
t− j
j

)
(2g)t−2j + (−1)t/2

=
[t/2]∑
j=0

(−1)j
(
t− j
j

)
(2g)t−2j .

For k = 2, t ≥ 2, we count the number of elements {c1,1Ωit,...,i1,i −
cit,...,i1,iΩ

1,1} with Ωit,...,i1,i satisfying (6.14) with ν = t. The number of
{Ωit,...,i1,i} satisfying Ω

it,it−1,...,i1,i
γj = δitjFit−1,...,i1,i(τ), 2 ≤ it, j ≤ 2g,

(it−1, . . . , i1, i) ∈ It−1(2), is (2g − 1)|It−1(2)| = (2g − 1) dimH1
∗ (Γ, S

t−1
2 (Γ ))

and the number of elements satisfying Ω1,it−1,...,i1,i
γ1 = Fit−1,...,i1,i(τ), it−1 6=

g + 1, is |It−1(2)| − |It−2(2)| = dimH1
∗ (Γ, S

t−1
2 (Γ )) − dimH1

∗ (Γ, S
t−2
2 (Γ )).

In particular, H1
∗ (Γ, S

t
2(Γ )) satisfies the recursive relation (6.22) with ini-

tial data dimH1
∗ (Γ, S

0
2(Γ )) = dimS2(Γ ) = g and dimH1

∗ (Γ, S2(Γ )) =
2g dimS2(Γ )− 1. Since the solution to the recursive relation (6.22) depends
linearly on the initial data, H1

∗ (Γ, S
t
2(Γ )) is the sum of the solutions with

initial data (dimS2(Γ ), 2g dimS2(Γ )) and (0,−1). This yields (6.21).

Corollary 6.7. Let Γ be an H-group.

(1) For k > 2 and t ≥ 1,

(6.24) dimSt+1
k (Γ ) =

t∑
ν=0

[ν/2]∑
j=0

(−1)j
(
ν − j
j

)
(2g)ν−2j dimSk(Γ ).

(2) For k = 2 and t ≥ 1,

dimSt+1
2 (Γ ) =

t∑
ν=0

[ν/2]∑
j=0

(−1)j
(
ν − j
j

)
(2g)ν−2j dimS2(Γ )

−
t−1∑
ν=0

[ν/2]∑
j=0

(−1)j
(
ν − j
j

)
(2g)ν−2j .

Finally, we express these results in the form given in [DS]:

Corollary 6.8. Let Γ be an H-group.

(1) For k > 2 and t ≥ 1,

(6.25) dim(St+1
k (Γ )/Stk(Γ ))

=
dimSk(Γ )

2
√
g2 − 1

(
(g +

√
g2 − 1)t+1 − (g −

√
g2 − 1)t+1

)
.
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(2) For k = 2 and t ≥ 1,

(6.26) dim(St+1
2 (Γ )/St2(Γ )) =

1
2
(
(g +

√
g2 − 1)t+1 + (g −

√
g2 − 1)t+1

)
.

To show that Corollary 6.8 follows from Corollary 6.7, use the binomial
formula to write

(6.27)
(g +

√
g2 − 1)t+1 − (g −

√
g2 − 1)t+1

2
√
g2 − 1

=
[t/2]∑
j=0

(
t+ 1

2j + 1

)
gt−2j(g2 − 1)j .

Then we use the fact, to be proved in the next section, that

(6.28)
[t/2]∑
j=0

(
t+ 1

2j + 1

)
gt−2j(g2 − 1)j =

[t/2]∑
j=0

(−1)j
(
t− j
j

)
(2g)t−2j .

7. A binomial identity. In this section we prove (6.28). Expanding
and equating like terms reduces the problem to showing

(7.1)
(
t−m
m

)
2t−2m =

[t/2]∑
j=m

(
t+ 1

2j + 1

)(
j

m

)
, 0 ≤ m ≤ [t/2].

We introduce, for a a positive integer, the notation (a)n = a(a−1) · · · (a−n)
if n ≥ 0 and (a)n = 1 if n < 0. Thus we want to prove the following

Proposition 7.1.

(7.2) (t−m)m−12t−2m =
[t/2]∑
j=m

(
t+ 1

2j + 1

)
(j)m−1.

Proof. We introduce the auxiliary function

F (x, y; t) =
(
√
x+ y)t+1 − (−

√
x+ y)t+1

√
x

.

Applying the binomial expansion and differentiating, we have

(7.3)
∂mF

∂xm
(1, 1; t) = 2

[t/2]∑
j=m

(
t+ 1

2j + 1

)
(j)m−1.

Therefore we want to prove

(7.4)
∂mF

∂xm
(1, 1; t) = (t−m)m−12t−2m+1.

We prove (7.4) by induction. Our starting point is (0, 0) where we have
F (1, 1; 0) = 2. Next we assume (7.4) holds for any (m′, t′) < (m, t), that
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is, either t′ < t, or t′ = t and m′ < m. The function F (x, y; t) satisfies the
recursive differential equation

∂2F

∂x2
(x, y; t) = −3

2
∂F

∂x
(x, y; t) +

(t+ 1)t
22x

F (x, y; t− 2).

Therefore, after applying Leibniz’s rule and evaluating at x = y = 1, we
have

(7.5)
∂mF

∂xm
(1, 1; t) =

(−1)m−2(m− 2)!
22

×
m−2∑
j=0

(−1)j

j!

{
(t+ 1)t

∂jF

∂xj
(1, 1; t− 2)− 6

∂j+1F

∂xj+1
(1, 1; t)

}
.

Our induction hypothesis holds for all derivatives appearing in the right
hand side of (7.5), thus

(7.6)
∂mF

∂xm
(1, 1; t) = (−1)m−2(m− 2)!

×
m−2∑
j=0

(−1)j

j!
2−2j(t2 − 5t+ 6(j + 1))(t− (j + 2))j−1.

Now the problem is reduced to showing, for m ≥ 3,

(7.7) (−1)m−2(m−2)!2t−3
m−2∑
j=0

(−1)j

j!
2−2j(t2−5t+6(j+1))(t−(j+2))j−1

= 2−2(m−2)(t−m)m−1.

We denote the left hand side of (7.7) by Gm and again apply induction.
Direct calculation gives the result for m = 3. We then rewrite Gm as

Gm = 2−2(m−2)(t2 − 5t+ 6(l + 1))(t−m)m−3 − (m− 2)Gm−1.

By the induction hypothesis, Gm−1 = 2−2(m−3)(t− (m− 1))m−3, so that

Gm = 2−2(m−2)(t−m)m−3(t2 + (3− 4m)t+ (2m− 1)(2m− 2))

= 2−2(m−2)(t−m)2m−1.

Remark 7.2. Cormac O’Sullivan has pointed out that identity (7.1) is
the combinatorial identity counting the number of odd committees one can
make from n people with subcommittees of size m chosen from the first half
(i.e. below the median j + 1st element in a committee with 2j + 1 elements)
[BQ].

Acknowledgements. I wish to thank Marvin Knopp for myriad sug-
gestions, critical reading, and detailed feedback. I also wish to thank Cormac
O’Sullivan and Nikolaos Diamantis for several helpful comments. This paper



132 K. Taylor

was written while the author was a postdoctoral fellow at the University of
Nottingham.

References

[BQ] A. T. Benjamin and J. J. Quinn, Proofs that Really Count, Math. Assoc. Amer.,
2003.

[CDO] G. Chinta, N. Diamantis and C. O’Sullivan, Second order modular forms, Acta
Arith. 103 (2002), 209–223.

[DO] N. Diamantis and C. O’Sullivan, The dimensions of spaces of holomorphic second-
order automorphic forms and their cohomology, Trans. Amer. Math. Soc. 360
(2008), 5629–5666.

[DS] N. Diamantis and D. Sim, The classification of higher-order cusp forms, J. Reine
Angew. Math. 622 (2008), 121–153.

[Ei1] M. Eichler, Eine Verallgemeinerung der Abelschen Integrale, Math. Z. 67 (1957),
267–298.

[Ei2] —, Grenzkreisgruppen und kettenbruchartige Algorithmen, Acta Arith. 11 (1965),
169–180.

[EM] S. Eilenberg and S. MacLane, Cohomology theory in abstract groups I, Ann. of
Math. 48 (1947), 51–78.

[G] D. Goldfeld, Zeta functions formed with modular symbols, in: Proc. Sympos. Pure
Math. 66, Amer. Math. Soc., 1999, 111–122.

[I] H. Iwaniec, Topics in Classical Automorphic Forms, Amer. Math. Soc., 1997.
[KZ] P. Kleban and D. Zagier, Crossing probabilities and modular forms, J. Statist.

Phys. 113 (2003), 431–454.
[K] M. Knopp, Some new results on the Eichler cohomology of automorphic forms,

Bull. Amer. Math. Soc. 80 (1974), 607–632.
[Leh1] J. Lehner, Discontinuous Groups and Automorphic Functions, Amer. Math. Soc.,

1964.
[Leh2] —, Automorphic integrals with preassigned periods, J. Res. Nat. Bur. Standards

Sect. B 73B (1969), 153–161.
[Ran] R. A. Rankin, Modular Forms and Functions, Cambridge Univ. Press, 1977.
[S] P. Sarnak, Some Applications of Modular Forms, Cambridge Tracts in Math. 99,

Cambridge Univ. Press, 1990.
[Shi] G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions,

Iwanami Shoten and Princeton Univ. Press, 1971.

Karen Taylor
Department of Mathematics and Computer Science
Bronx Community College
City University of New York
2055 University Avenue
Bronx, NY 10453, U.S.A.
E-mail: karen.taylor@bcc.cuny.edu

Received on 23.12.2008
and in revised form on 4.9.2011 (5896)

http://dx.doi.org/10.4064/aa103-3-2
http://dx.doi.org/10.1090/S0002-9947-08-04755-7
http://dx.doi.org/10.1007/BF01258863
http://dx.doi.org/10.2307/1969215
http://dx.doi.org/10.1023/A:1026012600583
http://dx.doi.org/10.1090/S0002-9904-1974-13520-2

	Introduction
	Second order modular forms
	Preliminary lemmas
	Higher order forms with preassigned periods; the Eichler map
	The decomposition
	The dimension of H1(,Skt())
	A binomial identity

