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1. Introduction. Let Λ be the von Mangoldt function. For (a, q) = 1,
let ∑

n≤x
n≡a (mod q)

Λ(n) =
x

φ(q)
+ E(x; q, a).

It is well known that for given A > 0, C > 0,

(1.1) E(x, q) := max
(a,q)=1

|E(x; q, a)| � x

q(log x)A

for x ≥ 2, q ≤ (log x)C . See e.g. Davenport [5].
Suppose we are given a set S with some arithmetic structure. Let

S(Q) = {q ∈ S : Q < q ≤ 2Q}.

Can we prove that (1.1) holds for most q in S(Q), for large values of Q?
That is, we seek bounds

(1.2)
∑

q∈S(Q)

E(x, q)� x|S(Q)|
Q(log x)A

for every A > 0. Here |T | denotes the cardinality of a finite set T . If S is
the set N of natural numbers, then (1.2) holds for Q ≤ x1/2(log x)−A−5, by
the Bombieri–Vinogradov theorem; see e.g. [5].

In the present paper we study the particular case

(1.3) S = Sf = {f(k) : k ∈ N}

where

(1.4) f(X) = adX
d + · · ·+ a1X + a0, aj ∈ Z, d ≥ 2, ad > 0.
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The first result for this case is due to Elliott [6]. He showed that (1.2) holds
for S = Sf ,

Q < x1/4−ε.

Mikawa and Peneva [11] sharpened this, replacing the constant 1/4 by 8/19.
More is known in the special case f(x) = x2. Baier and Zhao [2] used

a version of the large sieve, due to Baier [1], for fractions a/q2, q ≤ Q,
(a, q) = 1, to obtain (1.2) for S = {k2 : k ≥ 1} whenever

Q < x4/9−ε.

In the present paper we sharpen these results.

Theorem 1. Let f be as in (1.4). Let ε > 0. We have∑
q∈Sf (Q)

E(x, q)�
x|Sf (Q)|
Q(log x)A

for every A > 0, provided that

Q < x9/20−ε.

The implied constant depends at most on f , ε and A.

Theorem 2. Let f(x) = x2. The conclusion of Theorem 1 holds when-
ever

Q < x43/90−ε.

For comparison, we note that 8/19 = 0.421 . . . , 4/9 = 0.4̇, 9/20 = 0.45,
43/90 = 0.47̇.

For some applications, the following theorem is more useful than Theo-
rem 2.

Theorem 3. We have∑
Q1/2<p≤(2Q)1/2

E(x, p2)� xQ−1/2(log x)−A

for every A > 0, provided that

Q < x1/2−ε.

To prove Theorem 1 we start from the work of Mikawa and Peneva, and
import an averaging over q in Sf (Q) into the treatment of ‘Type 1’ sums.
Theorem 2 follows the same lines, but incorporates a generalization of the
large sieve inequality of Baier and Zhao [?] to obtain a new mean value
bound for the relevant Dirichlet polynomials. For Theorem 3, we adapt the
proof of Theorem 2 a little. The treatment of the bilinear forms in the
remainder terms goes back to Iwaniec [9], and we need only adapt this to
the present purpose.
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In applications, it is sometimes useful to have a ‘maximal variant’ of
Theorems 1, 2 or 3 in which E(x, q) is replaced by max1≤y≤xE(y, q). We
provide this maximal variant of the theorems in Section 6.

Throughout the paper, ε denotes a positive number, which we suppose to
be sufficiently small; furthermore, δ = ε2 and f is a polynomial, as in (1.4).
We assume that Q ≥ 1, and that N is a natural number.

2. The Dirichlet polynomials
∑

n≤N χ(n)n−s. Let γ be a constant,
0 < γ < 1. We seek good bounds on

B(s, χ) =
∑
n≤N

χ(n)n−s

that are valid on the critical line for all nonprincipal χ (mod q) and all
N ≥ qγ , for q ∈ Sf (Q) \ F (Q). The cardinality of the exceptional set F (Q)
will be small compared with |Sf (Q)|.

Lemma 1. Let b > 0 and let G be a finite subset of N ∩ [b,∞). Let

F = {q ∈ Sf (Q) : r | q for some r ∈ G}.

Then
|F | � |Sf (Q)| |G|b−1/d+ε.

The implied constant depends at most on f and ε.

Remark 1. Unless otherwise stated, the dependencies of implied con-
stants in the proof will be the same as in the statement of the lemma;
similarly in subsequent proofs.

Proof. We may suppose that Q is sufficiently large, so that

Q1/d � |Sf (Q)| � Q1/d.

Fix r ∈ G. We need only show that

|{q ∈ Sf (Q) : r | q}| � |Sf (Q)|r−1/d+ε.

We recall that for an irreducible polynomial g in Z[x],

|{n (mod t) : g(n) ≡ 0 (mod t)}| �g t
ε

(see e.g. Nagell [15]). Now let

f = g1 . . . gh

where g1, . . . , gh are irreducible, h ≤ d. If f(n) ≡ 0 (mod r), then

r = (g1(n) . . . gh(n), r) ≤ (gj(n), r)h
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for some j. Hence for any interval [a, b],

|{n ∈ [a, b] : f(n) ≡ 0 (mod r)}|

≤
h∑
j=1

∑
t|r

t≥r1/h

|{n ∈ [a, b] : gj(n) ≡ 0 (mod t)}|

� rε/2
(
b− a
t

+ 1
)
|{n (mod t) : gj(n) ≡ 0 (mod t)}|

(for some j, 1 ≤ j ≤ h and t | r, t ≥ r1/h)

� rε
(
b− a
r1/h

+ 1
)
.

We now obtain the lemma on noting that

{q ∈ Sf (Q) : r | q} = {f(n) : n ∈ [a, b], f(n) ≡ 0 (mod r)}

with b− a� Q1/d. Since r � Q if there is some q ∈ Sf (Q) divisible by r,

|{q ∈ Sf (Q) : r | q}| � rε((Q/r)1/d + 1)� |Sf (Q)|r−1/d+ε.

For any nonprincipal character χ to modulus q, there is a divisor

r = condχ

of q, the conductor of χ, and a primitive character χ′ (mod r) such that

χ(n) =
{
χ′(n) if (n, q) = 1,
0 if (n, q) > 1.

We say that χ is induced by χ′ (see [5, Chapter 5]).

Lemma 2. Let b > 0, 4/5 ≤ α ≤ 1, T ≥ 2. Let

F = F (α, T, b)

be the set of q in Sf (Q) for which

L(s, χ) = 0

for some nonprincipal χ (mod q) with condχ≥ b, and some s with Re(s)≥α,
|Im(s)| ≤ T . Then

|F | � |Sf (Q)|(Q2T )2(1−α)/α(logQT )14b−1/d+ε.

The implied constant depends at most on f and ε.

Proof. Let q ∈ F . Suppose that L(s, χ) = 0, where χ and s are as in the
statement of the lemma, χ being induced by the primitive character χ′ to
modulus r ≥ b. Then

L(s, χ′) = 0
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[5, Section 5]. Let us write N(σ, T, χ′) for the number of zeros of L(s, χ′)
with Re(s) ≥ σ, |Im(s)| ≤ T . Let

G = {r : b ≤ r ≤ 2Q, L(s, χ′) = 0 for some primitive character χ′ (mod r)
and some s, Re(s) ≥ α, |Im(s)| ≤ T}.

Obviously
|G| ≤

∑
r≤2Q

∑∗

λ (mod r)

N(α, T, λ)

where the asterisk denotes a restriction to primitive characters. The above
discussion yields

(2.1) F ⊆ {q ∈ Sf (Q) : r | q for some r ∈ G}.
Combining Lemma 1 with (2.1), we obtain

|F | � |Sf (Q)|b−1/d+ε
∑
r≤2Q

∑∗

λ (mod r)

N(α, T, λ).

We now complete the proof by appealing to the bound∑
r≤2Q

∑∗

λ (mod r)

N(α, T, λ)� (Q2T )2(1−α)/α(logQT )14

given by Montgomery [12, Theorem 12.2].

Lemma 3. Let 1/2 < α < 1. Let T ≥ T0(α, ε). Suppose that χ is a
nonprincipal character modulo q, and

L(s, χ) 6= 0 (Re(s) ≥ α, |Im(s)| ≤ T ).

Then for σ ≥ α, |t| ≤ T/2,

(2.2) logL(σ + it, χ)� (log qT )(1−σ)/(1−α)+ε.

The implied constant depends at most on α and ε.

Proof. We argue as in Titchmarsh [16, proof of Theorem 14.2]. Let η =
η(α, ε) > 0 be sufficiently small, and σ1 = σ1(α, ε) > 0 sufficiently large.
Apply the Borel–Carathéodory theorem to the function logL(s, χ) and the
circles with center 2 + it and radii r, 2− α, where |t| ≤ T and

0 < r ≤ 2− α− η.
On the larger circle,

Re(logL(s, χ)) = log |L(s, χ)| < log 4qT

([5, (14) of Chapter 12]). Hence, on the smaller circle,

|logL(s, χ)| ≤ 4− 2α
η

log 4qT +
4− 2α− η

η
|logL(2 + it, χ)|.
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Thus for Re(s) ≥ α+ η, |Im(s)| ≤ T it is clear that

|logL(s, χ)| � log qT.

In proving (2.2) we may suppose that

α+ η ≤ σ ≤ 1 + η, |t| ≤ T/2.

We apply Hadamard’s three circles theorem to the circles with center σ1 + it
passing through the points 1 + η + it, σ + it and α+ η + it. The radii are

r1 = σ1 − (1 + η), r2 = σ1 − σ, r3 = σ1 − (α+ η).

If the maxima of |logL(s, χ)| on the circles are M1, M2, M3, then

M2 ≤M1−a
1 Ma

3 , where a =
log(r2/r1)
log(r3/r1)

.

Hence
logL(σ + it, χ)�Ma

3 � (log qT )a.

It remains to bound a. We have

log
(
r2
r1

)
= log

(
1 +

1 + η − σ
σ1 − 1− η

)
=

1 + η − σ
σ1 − 1− η

(1 +O(σ−1
1 )),

log
(
r3
r1

)
= log

(
1 +

1− α
σ1 − 1− η

)
=

1− α
σ1 − 1− η

(1 +O(σ−1
1 )),

where the implied constants are absolute. Hence

a =
1 + η − σ

1− α
(1 +O(σ−1

1 )) <
1− σ
1− α

+ ε

as required, if η and σ1 are chosen suitably.

The following version of Perron’s formula is a slight variant of [3, Lem-
ma 13].

Lemma 4. Let b ≥ 0, c > 0 and let λ ∈ R, λ+ c > 1 + b. For K > 0 and
complex numbers al (l ≥ 1) with |al| ≤ Klb, write

h(s) =
∞∑
l=1

al
ls

(Re(s) > 1 + b).

Then for T > 1,∑
l≤N

al
lλ

=
1

2πi

c+iT�

c−iT
h(s+ λ)

(N + 1/2)s

s
ds+O

(
KN c

T

)
.

The implied constant depends at most on c, λ+ c− 1− b.
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Let χ be a nonprincipal character modulo q. We apply the lemma with
al = χ(l), K = 1, b = λ = 0, c = 1 + ε. Thus

(2.3)
∑
n≤N

χ(n) =
1

2πi

1+ε+iT�

1+ε−iT
L(s, χ)

(N + 1/2)s

s
ds+O

(
N1+ε

T

)
.

This leads to the following result.

Lemma 5. Let γ > 0, 1/2 < α < 1 and suppose that the nonprincipal
character χ (mod q) satisfies

L(s, χ) 6= 0 (Re(s) ≥ α, |Im(s)| ≤ 2q).

Then ∑
n≤N

χ(n)� Nα+ε (N ≥ qγ).

The implied constant depends at most on α, γ and ε.

Proof. We may suppose that N > T0(α, ε). In view of the Pólya–Vino-
gradov inequality, we may further suppose that N < q. By (2.3),∑

n≤N
χ(n) =

1
2πi

1+ε+iN�

1+ε−iN
L(s, χ)

(N + 1/2)s

s
ds+O(N ε).

We replace the integral by

(2.4)
α+ε/2+iN�

α+ε/2−iN

L(s, χ)
(N + 1/2)s

s
ds,

incurring an error that is the sum of the integrals over horizontal segments.
On these segments the integrand is

O
(
N ε max

Re(s)≥α+ε/2
|Im(s)|≤q

|L(s, χ)|
)

= O(N εqγε) = O(N2ε)

by an application of Lemma 3. Likewise the integral in (2.4) is

O

(
Nα+2ε/3

N�

−N

dt

|α+ it|

)
= O(Nα+ε).

The lemma follows on combining these estimates.

Lemma 6. Let 0 < γ < 1. There is a subset F (Q) of Sf (Q), with

|F (Q)| � |Sf (Q)|Q−β,
such that for q ∈ Sf (Q) \ F (Q), χ nonprincipal modulo q and Re(s) = 1/2
we have
(2.5)

∑
n≤N

χ(n)n−1/2+it � |s|N1/2−β (N ≥ qγ).

Here β = β(γ, d) > 0. The implied constants depend only on f and γ.
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Proof. Let s = 1/2 + it and

T (χ, u) =
∑
n≤u

χ(n).

Suppose for a moment that

T (χ, u)� u1−β (u ≥ qγ/2).
Then for N ≥ qγ ,∑
n≤N

χ(n)n−1/2+it =
N�

1−
u−1/2+it dT (χ, u)

= T (χ, u)u−1/2+it
∣∣N
1− −

(
−1

2
+ it

)N�

1

u−3/2+itT (χ, u) du

� |s|N1/2−β + |s|
qγ/2�

1

u−1/2 du� |s|N1/2−β

provided that β ≤ 1/4.
Now let α be a positive constant, 4/5 ≤ α < 1, to be determined below.

We take F (Q) = F (α, 4Q, (2Q)γ/2) in the notation of Lemma 2. We first
show that for q ∈ Sf (Q) \ F (Q) and a nonprincipal character χ (mod q),

(2.6) T (χ, u)� u1−β (u ≥ qγ/2).

Suppose first that condχ ≥ (2Q)γ/2. Since q 6∈ F (Q),

L(s, χ) 6= 0 (Re(s) ≥ α, |Im(s)| ≤ 4Q).

By Lemma 5, with γ/2 in place of γ,

T (χ, u)� uα+ε (u ≥ qγ/2).

This gives the bound (2.6), provided that we choose β ≤ 1−α−ε, and (2.5)
follows.

Now suppose that χ has conductor r < (2Q)γ/2 and is induced by the
primitive character χ′. Let u ≥ qγ/2. Then

T (χ, u) =
∑
n≤u

(∑
d|n
d|q

µ(d)
)
χ′(n) =

∑
d|q

µ(d)χ′(d)
∑

m≤u/d

χ′(m)(2.7)

� τ(q)r1/2 log r (by the Pólya–Vinogradov inequality)

� qγ/4+ε � u1−β (u ≥ qγ/2).

This establishes that (2.5) holds for all χ (mod q).
It remains to bound |F (Q)|. According to Lemma 2,

|F (Q)| � |Sf (Q)|Q6(1−α)/α(logQ)14Q−γ/3d.
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We choose α so that 6(1− α)/α = γ/(6d). This gives the desired bound
provided that we take β < γ/(6d).

3. First stage of proof of Theorems 1, 2 and 3. By the Brun–
Titchmarsh theorem [13],

E(x, q)� x

φ(q)
� x

Q
log log x (q ∈ Sf (Q)).

With F (Q) as in Lemma 6,∑
q∈F (Q)

E(x, q)� x|F (Q)|
Q

log log x�
x|Sf (Q)|
Q(log x)A

.

Thus we need only show that∑
q∈Sf (Q)\F (Q)

E(x, q)�
x|Sf (Q)|
Q(log x)A

.

We use a particular case of Vaughan’s identity (see e.g. [5, Chapter 24]).
Let Z = Qxε/4. Then

Λ(n) = a1(n) + a2(n) + a3(n) + a4(n)

with

a1(n) =
{
Λ(n) if n ≤ Z,
0 if n > Z,

a3(n) =
∑
hd=n
d≤Z

µ(d) log h,

a2(n) = −
∑

mdr=n
m≤Z, d≤Z

Λ(m)µ(d), a4(n) = −
∑
mk=n

m>Z, k>Z

Λ(m)
(∑

d|k
d≤Z

µ(d)
)
.

Let
Ei(x; q, a) =

∑
n≤x

n≡a (mod q)

ai(n)− 1
φ(q)

∑
n≤x

(n,q)=1

ai(n).

For q ∈ Sf (Q),
4∑
i=1

Ei(x; q, a) = ψ(x; q, a)− 1
φ(q)

∑
n≤x

(n,q)=1

Λ(n)

= ψ(x; q, a)− x

φ(q)
+O

(
x(log x)−A

Q

)
by the prime number theorem. Thus to prove Theorem 1 or 2 it suffices to
show for 1 ≤ i ≤ 4 that

(3.1) Hi(Q) :=
∑

q∈Sf (Q)\F (Q)

max
(a,q)=1

|Ei(x; q, a)| �
x|Sf (Q)|
Q(log x)A

.



142 R. C. Baker

The case i = 1 is obvious from the Brun–Titchmarsh theorem. A partial
summation, together with an elementary argument, gives

E3(x; q, a)� Zxε � x

Q(log x)A
,

and yields (3.1) for i = 3.
For i = 4, we appeal to the work of Mikawa and Peneva [11, Section 3.1].

Their bound Q < x8/19−ε is not used in this part of the argument, which
gives ∑

q∈Sf (Q)

max
(a,q)=1

|E4(x; q, a)| �
x|Sf (Q)|
Q(log x)A

.

Turning to H2(Q), let q ∈ Sf (Q), (a, q) = 1. Then

E2(x; q, a) = −
∑

m,n≤Z
(mn,q)=1

Λ(m)µ(n)
{ ∑

l≤x/mn
lmn≡a (mod q)

1− 1
φ(q)

∑
l≤x/mn

(lmn,q)=1

1
}
.

We can change the inner summation condition (lmn, q) = 1 to (l, q) = 1
because (mn, q) = 1. An easy computation yields

1
φ(q)

∑
l≤x/mn
(l,q)=1

1− x

qmn
= O(τ(q)/φ(q)),

E2(x; q, a) = −I(x; q, a) +O

(
Z2τ(q) log x

φ(q)

)
,

where

I(x; q, a) =
∑

m,n≤Z
(mn,q)=1

Λ(m)µ(n)
{ ∑

l≤x/mn
lmn≡a (mod q)

1− x

qmn

}
.

Thus it suffices for the proof of Theorem 1 or 2 to show for Q in the appro-
priate interval that

(3.2)
∑

q∈Sf (Q)\F (Q)

max
(a,q)=1

|I(x; q, a)| �
x|Sf (Q)|
Q(log x)A

.

Likewise for Theorem 3 it suffices to show that∑
p2∈(Q,2Q]\F (Q)

max
p - a
|I(x, p2, a)| � xQ−1/2(log x)−A.

4. Sums over characters of absolute values of Dirichlet polyno-
mials. Our strategy resembles that of Iwaniec [9, Section 2] in dealing with
sieve remainder terms. We begin with some material about sums over sets
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of characters χ (mod q), q ∈ Sf (Q) \F (Q), of the absolute values of certain
Dirichlet polynomials.

Proposition 1. Let M1, . . . ,M15 be numbers with M1 ≥ · · · ≥M15 ≥ 1,
and suppose {1, . . . , 15} partitions into subsets A and B such that

(4.1)
∏
i∈A

Mi � x9/20−3ε/4,
∏
i∈B

Mi � x9/20−3ε/4.

Let ai(m) (Mi/2 < m ≤Mi) be a complex sequence with

|ai(m)| ≤ logm (1 ≤ i ≤ 15, Mi/2 < m ≤Mi).

Suppose that whenever Mi > x1/8 then either

ai(m) = 1 (Mi/2 < m ≤Mi)

or
ai(m) = logm (Mi/2 < m ≤Mi).

Let Mi(s, χ) =
∑

Mi/2<m≤Mi
ai(m)χ(m)m−s and

L =
x

M1 . . .M15
, B(s, χ) =

∑
n≤L

χ(n)n−s.

Then for Re(s) = 1/2 and

(4.2) Q� x9/20−ε,

we have

(4.3)
∑

q∈Sf (Q)\F (Q)

∑
χ (mod q)
χ 6=χ0

|B(s, χ)|
15∏
i=1

|Mi(s, χ)| � |s|3 |Sf (Q)|x1/2−3δ.

Proposition 2. For f(X) = X2, the assertion of Proposition 1 remains
true if we replace 9/20 by 43/90 in (4.1), and replace (4.2) by

(4.4) Q� x43/90−ε.

Proposition 3. Suppose that f(X) = X2 and

(4.5) Q� x1/2−ε.

The assertion of Proposition 1 remains true if we replace 9/20 by 1/2
in (4.1), and replace q in (4.3) by p2, with p prime.

The following basic lemmas are needed.

Lemma 7. We have, for q ≥ 2, L ≥ 1,∑
χ (mod q)
χ 6=χ0

∣∣∣∑
l≤L

χ(l)l−1/2−it
∣∣∣4 � q(|t|+ 1) log6 qL(|t|+ 1).

Proof. This is [9, Lemma 3].



144 R. C. Baker

Lemma 8. For any complex numbers an (N < n� N),∑
χ (mod q)

∣∣∣ ∑
N<n�N

anχ(n)
∣∣∣2 � (N + q)

∑
N<n�2N

|an|2.

Proof. See [12, Theorem 6.2].

Lemma 9. For any complex numbers an (N < n� N) and V > 0, and
G =

∑
N<n�N |an|2,∣∣∣{χ (mod q) :

∣∣∣ ∑
N<n�N

anχ(n)
∣∣∣ > V

}∣∣∣� GNV −2 + q1+εG3NV −6.

Proof. See e.g. Jutila [10].

Proof of Proposition 1. We prove (4.3) simply by showing for a fixed q
in Sf (Q) \ F (Q) that, writing

M =
∏
i∈A

Mi, N =
∏
i∈B

Mi(4.6)

and

M(s, χ) =
∏
i∈A

Mi(s, χ), N(s, χ) =
∏
i∈B

Mi(s, χ),(4.7)

we have

(4.8)
∑

χ (mod q)
χ 6=χ0

|B(s, χ)M(s, χ)N(s, χ)| � |s|3x1/2−3δ.

We have trivially

B(s, χ)� L1/2, M(s, χ)�M1/2+δ, N(s, χ)� N1/2+δ.

Thus the characters χ 6= χ0 for which one of these three Dirichlet polynomi-
als has absolute value less than (φ(q)x5δ)−1 can be neglected. We partition
the remaining characters into O((log x)3) subsets Aq(U, V,W ) of characters
satisfying

U < |B(s, χ)| ≤ 2U, V < |M(s, χ)| ≤ 2V, W < |N(s, χ)| ≤ 2W,

where U � L1/2, V � M1/2+δ, W � N1/2+δ. To prove (4.8), it suffices to
show for each triple U , V , W that

UVW |Aq(U, V,W )| � |s|3x1/2−4δ.

From the above lemmas applied to B(s, χ),M(s, χ), N(s, χ), B(s, χ)2 we
obtain

|Aq(U, V,W )| � xδ|s|1+δP,
where

P = min
(
M +Q

V 2
,
N +Q

W 2
,
Q

U4
,
M

V 2
+
QM

V 6
,
N

W 2
+
QN

W 6
,
L2

U4
+
QL2

U12

)
.
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Thus it suffices to show

UVWP � x1/2−5δ.

We consider four cases.

Case 1: P ≤ 2V −2M , P ≤ 2W−2N . In this case we apply Lemma 6
with γ = 1/10; we have MN ≤ x9/10 and L ≥ x1/10. Since q ∈ Sf (Q)\F (Q),
we obtain

U � |s|L1/2x−5δ,

and

UVWP ≤ 2UVW min(V −2M, W−2N)� U(MN)1/2 � |s|x1/2−5δ.

Case 2: P > 2V −2M , P > 2W−2N . In this case,

P ≤ 2 min{QV −2, QW−2, QMV −6, QNW−6, QU−4, L2U−4}
+ 2 min{QV −2, QW−2, QMV −6, QNW−6, QU−4, QL2U−12}

≤ 2(QV −2)5/16(QW−2)5/16(QMV −6)1/16(QNW−6)1/16

×(min(QU−4, L2U−4))1/4

+2 min{(QV −2)5/16(QW−2)5/16(QMV −6)1/16(QNW−6)1/16(QU−4)1/4,

(QV −2)7/16(QW−2)7/16(QMV −6)1/48(QNW−6)1/48(QL2U−12)1/12}
= 2(UVW )−1Q(MN)1/16{min(1, Q−1/4L1/2) + min(1, L1/6(MN)−1/24)}
� (UVW )−1(x1/16Q31/32 + x1/20Q)� (UVW )−1x1/2−ε

since Q� x9/20−ε.

Case 3: P > 2V −2M , P ≤ 2W−2N . In this case,

P ≤ 2 min{QV −2, NW−2, QMV −6, QU−4, L2U−4}
+ 2 min{QV −2, NW−2, QMV −6, QU−4, QL2U−12}

≤ 2(QV −2)1/8(NW−2)1/2(QMV −6)1/8(min(QU−4, L2U−4))1/4

+ 2 min{(QV −2)1/8(NW−2)1/2(QMV −6)1/8(QU−4)1/4,

(QV −2)3/8(NW−2)1/2(QMV −6)1/24(QL2U−12)1/12}
= 2(UVW )−1(QN)1/2M1/8{min(1, Q−1/4L1/2) + min(1, L1/6M−1/12)}
� (UVW )−1(x1/8Q7/16N3/8 + x1/12Q1/2N5/12)� (UVW )−1x1/2−ε

since Q� x9/20−ε and N < Qxε/2. (There is a little to spare in Case 3.)

Case 4: P > 2W−2N , P ≤ 2V −2M . We proceed as in Case 3, inter-
changing the roles of M and N .

This completes the proof of Proposition 1.
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We break the argument for Proposition 2 into a number of lemmas. We
maintain the definitions (4.6), (4.7) and let M = xα1 , N = xα2 , Q = xθ. We
may suppose that θ > 9/20− ε and α2 ≤ α1.

It suffices to show for 0 ≤ λ ≤ θ that

(4.9)
∑

q∈Sf (Q)\F (Q)

∑
χ (mod q), χ 6=χ0

xλ<condχ≤2xλ

|B(s, χ)M1(s, χ) . . .M15(s, χ)|

� |s|3x1/2−4δQ1/2.

A strategy which works for some triples λ, α1, α2 is to show that, for
q ∈ Sf (Q) \ F (Q),

(4.10)
∑

χ (mod q), χ 6=χ0

xλ<condχ≤2xλ

|B(s, χ)M(s, χ)N(s, χ)| � |s|3x1/2−4δ.

Lemma 10. Let q ∈ Sf (Q) \ F (Q). Suppose that

α1 + α2 < 8− 16λ− 200δ,(4.11)
α1 < 1− 6λ/5− 20δ.(4.12)

Then (4.10) holds. In particular, it holds if λ ≤ (5θ + ε)/6.

Proof. When χ is counted in the sum in (4.10),

M(s, χ) =
∑

(n,q)=1

a(n)χ′(n)n−s

with a(n)� xδ and some primitive character χ′ (mod r), r ≤ 2xλ; similarly
for N(s, χ). We may improve our bounds for mean and large values of these
Dirichlet polynomials, replacing q by xλ in each case. Thus

|Aq(U, V,W )| � min(MV −2 + xλ+δV −2, NW−2 + xλ+δW−2,

MV −2 + xλ+δMV −6, NW−2 + xλ+δNW−6).

To get variants of the other quantities in the definition of P , we observe that

B(s, χ) =
∑
n≤L

(∑
d|q
d|n

µ(d)
)
χ′(n)n−s =

∑
d|q

µ(d)χ′(d)
ds

∑
k≤L/d

χ′(k)k−s.

If |B(s, χ)| ≥ U , then ∣∣∣ ∑
k≤L/d

χ′(k)k−s
∣∣∣ ≥ Ux−δ/12

for some d with d | q, and consequently

|Aq(U, V,W )| � min(xλ+δU−4|s|1+δ, xδL2U−4 + xλ+δL2U−12).
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Let

P ′ = min
(
M + xλ

V 2
,
N + xλ

W 2
,
xλ

U4
,
M

V 2
+
xλM

V 6
,
N

W 2
+
xλN

W 6
,
L2

U4
+
xλL2

U12

)
.

The bound (4.10) will follow if we show that

UVWP ′ � |s|1+δx1/2−7δ.

As in the preceding proof, we break the argument into Cases 1–4, defined
exactly as before with P replaced by P ′. Case 1 proceeds as before. In Case 2,

P ′ ≤ 2 min{xλV −2, xλW−2, xλMV −6, xλNW−6, xλU−4}
≤ 2(xλV −2)5/16(xλW−2)5/16(xλMV −6)1/16(xλNW−6)1/16(xλU−4)1/4

= 2(UVW )−1xλ(MN)1/16 � (UVW )−1x1/2−7δ

from (4.11). In Case 3, the argument used in proving (4.8) yields

P ′ � (UVW )−1(x1/8+7λ/16N3/8 + x1/12+λ/2N5/12)� (UVW )−1x1/2−7δ.

To see this, note that

1
8

+
7λ
16

+
3α2

8
<

1
2
− 7δ

since α2 < 1− 7λ/6− 20δ, and

1
12

+
λ

2
+

5α2

12
<

1
2
− 7δ

since α2 < 1− 6λ/5− 20δ. In Case 4, proceed as in Case 3, with M and N
interchanged.

This proves the first assertion of the lemma. For the second assertion,
we observe that if λ ≤ (5θ + ε)/6, then

α1 ≤ θ + ε/4 < 1− θ − ε < 1− 6λ/5− 20δ,
α1 + α2 ≤ 2θ + ε/2 < 8− 80θ/6− 20ε < 8− 16λ− 200δ.

We obtain (4.10) in view of the first assertion of the lemma.

In view of Lemma 10, we suppose for the remainder of the proof of
Proposition 2 that

(4.13) λ > (5θ + ε)/6.

We now bring the work of Baier and Zhao into play.

Lemma 11. Let a1, . . . , aN be complex numbers and

T (α) =
N∑
n=1

ane(nα), G =
N∑
n=1

|an|2.
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Let g ∈ N, g ≤ Q. Then∑
q≤Q

gq2∑
a=1

(a,gq2)=1

∣∣∣∣T( a

gq2

)∣∣∣∣2 � (QN)ε(g2Q3 + gQ1/2N)G.

Proof. We deduce this from the work of Baier and Zhao [?], where the
case g = 1 is treated. By [12, Theorem 2.1],

(4.14)
∑
q≤Q

gq2∑
a=1

(a,q)=1

∣∣∣∣T( a

gq2

)∣∣∣∣2 � K(∆)(N +∆−1)G.

Here

(4.15) K(∆) = max
α∈R

∑
q≤Q

gq2∑
a=1

(a,gq2)=1
‖a/(gq2)−α‖≤∆

1.

We observe that the conditions of summation in (4.15) imply

(4.16)
∥∥∥∥ aq2 − gα

∥∥∥∥ ≤ g∆.
If there are N (α) solutions of (4.16) with (a, q) = 1, 1 ≤ a ≤ q2, q ≤ Q,
then there are gN (α) solutions with (a, q) = 1, 1 ≤ a ≤ gq2, q ≤ Q. Now
according to [?, Section 11], with g∆ in place of ∆,

N (α)� (Q∆−1)ε(Q3(g∆) +Q7/4(g∆)1/2 +Q(g∆)1/4 +Q1/2).

Take ∆ = N−1 to obtain

(N+∆−1)K(N−1)� (QN)ε(g2Q3 +g3/2Q7/4N1/2 +g5/4QN3/4 +gQ1/2N).

The lemma follows on combining this with (4.14), since

g3/2N1/2Q7/4 = (g2Q3)1/2(gQ1/2N)1/2,

g5/4QN3/4 ≤ (g2Q3)1/4(gQ1/2N)3/4.

Lemma 12. Let c1, . . . , cJ be complex numbers. Let

T (J, λ) =
∑

Q1/2<q≤2Q1/2

∑
χ (mod q2), χ 6=χ0

xλ<condχ≤2xλ

∣∣∣ J∑
m=1

cmχ(m)
∣∣∣2.

Then

T (J, λ)� (QJ)2δ(Q3/2 +Q7/4x−3λ/2J)
J∑

m=1

|cm|2.
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Proof. The conductor of a character χ counted in T (J, λ) may be written
as gk2 where g is square-free, gk2 ∈ (xλ, 2xλ]. These χ counted by T (J, χ)
arising from a given primitive character χ′ to modulus gk2 may be written
as

χ′v(m) =
{
χ′(m) if (m, v) = 1,
0 if (m, v) > 1,

where v takes integer values such that

(4.17) vgk2 = q2 ∈ (Q, 2Q].

Clearly all such v have

(4.18) g | v, v ∈ (Qx−λ/2, 2Qx−λ).

Let

av,m =
{
cm if (m, v) = 1,
0 if (m, v) > 1.

For a given triple k, g, v satisfying (4.17), (4.18), we have∑∗

χ′ (mod gk2)

∣∣∣ J∑
m=1

cmχ
′
v(m)

∣∣∣2 =
∑∗

χ′ (mod gk2)

∣∣∣ J∑
m=1

av,mχ
′(m)

∣∣∣2

≤ φ(gk2)
gk2

gk2∑
a=1

(a,gk2)=1

∣∣∣∣Tv( a

gk2

)∣∣∣∣2,
where

Tv(α) =
J∑

m=1

av,me(mα).

Here we appeal to (10) in [5, Section 27]. Combining this with Lemma 11
we find that, for a given pair g, v satisfying (4.18),

∑
Q1/2/(vg)1/2<k≤(2Q)1/2/(vg)1/2

∑∗

χ′ (mod gk2)

∣∣∣ J∑
m=1

cmχ
′
v(m)

∣∣∣2

� (QJ)δ
(
g2Q3/2

(vg)3/2
+

gQ1/4

(vg)1/4
J

) J∑
m=1

|cm|2

� (QJ)δ(Q3/2v−1 +Q1/4Jv1/2)
J∑

m=1

|cm|2.

Summing over all pairs v, g satisfying (4.18), we obtain

T (J, λ)� (QJ)2δ(Q3/2 +Q1/4J(Qx−λ)3/2)
J∑

m=1

|cm|2,

as claimed.
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Lemma 13. Let

H(s, χ) =
∑
n≤H

anχ(n)n−s, K(s, χ) =
∑
n≤K

bnχ(n)n−s,

with |an| ≤ τ(n)B, |bn| ≤ τ(n)B for an absolute constant B. If

HK � x, K ≤ H � x1+3λ/2−9θ/4−16δ,

then

(4.19)
∑

q∈Sf (Q)

∑
χ (mod q), χ 6=χ0

xλ<condχ≤2xλ

|H(s, χ)K(s, χ)| � x1/2−6δQ1/2.

Proof. By Lemma 12 and the Cauchy–Schwarz inequality, the left-hand
side of (4.19) is

� x2δ(Q3/4 +Q7/8x−3λ/4H1/2)(Q3/4 +Q7/8x−3λ/4K1/2)

� x2δ(Q3/2 +Q7/4x−3λ/2+1/2 +Q13/8x−3λ/4H1/2).

Now
x2δQ3/2 � Q1/2x1/2−6δ

since θ < 1/2− ε. Also

x2δQ7/4x−3λ/2+1/2 � Q1/2x1/2−6δ

from (4.13). Finally,

x2δQ13/8x−3λ/4H1/2 � Q1/2x1/2−6δ

since H � x1−9θ/4+3λ/2−16δ.

Lemma 14. Let β1 ≥ · · · ≥ βR ≥ 0, β1 + · · ·+βR ≥ 1/2, R ≥ 2. Suppose
that β1 + β2 ≤ 3/5. Then there is a sum

σ =
r∑
j=1

βj , 2 ≤ r ≤ R,

such that σ ∈ [2/5, 3/5].

Proof. Suppose the contrary; then β1 + β2 < 2/5,

β1 + β2 + β3 ≤
3
2

(β1 + β2) <
3
5
, hence β1 + β2 + β3 <

2
5
.

Arguing in this way we prove for j = 4, . . . , R that

β1 + · · ·+ βj ≤
j

j − 1
(β1 + · · ·+ βj−1) <

3
5
, hence β1 + · · ·+ βj <

2
5
.

When j = R, we have a contradiction.
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Lemma 15. Suppose that

λ ≥ − 4
15

+
3θ
2

+ 12δ.

Then (4.9) holds.

Proof. We decompose B(s, χ) into O(log x) Dirichlet polynomials of the
form

M16(s, χ) =
∑

M16/2<m≤M16

χ(m)m−s.

It suffices to prove the analog of (4.9) with M16 in place of B and 6δ in
place of 4δ. Fix M16 and rearrange M1, . . . ,M16 as N1 ≥ · · · ≥ N16; write
Ni(s) for the corresponding Dirichlet polynomials and

(4.20) Ni = xβi .

Thus β1 ≥ · · · ≥ β16 ≥ 0, β1 + · · ·+ β16 ≤ 1.
We treat the rather trivial case

β1 + · · ·+ β16 < 1/2

by applying Lemma 13 with K(s, χ) = 1,

H(s, χ) =N1(s, χ) . . . N16(s, χ), H = xβ1+···+β16 <x1/2 <x1+3λ/2−9θ/4−ε

since 3λ/2 > 5θ/4 and θ < 1/2− ε.
Now suppose that β1 + · · ·+ β16 ≥ 1/2, so that Lemma 14 is applicable.
Suppose first that β1 + β2 > 3/5. We write N0(s) = N3(s) . . . N16(s),

A(U0, U1, U2) = {χ (mod q) : q ∈ Sf (Q), χ 6= χ0 , x
λ < condχ ≤ 2xλ,

Uj < |Nj(s)| ≤ 2Uj (j = 0, 1, 2)}.
Arguing as in the proof of Proposition 1, it suffices to show that

(4.21) U0U1U2|A(U0, U1, U2)| � Q1/2|s|3x1/2−6δ.

Since N1 ≥ x3/10, we have

|A(U0, U1, U2)| � Q1/2|s|1+δxθ+δU−4
1

from Lemma 7 (and, if needed, a partial summation). Next

|A(U0, U1, U2)| � Q1/2|s|1+δxθ+δU−4
2

from Lemma 7 (if N2
2 > xθ) and Lemma 8 (if N2

2 ≤ xθ). We have

|A(U0, U1, U2)| � Q1/2xθ+δU−2
0

from Lemma 8, since N0 � x2/5 � xθ. Hence

|A(U0, U1, U2)| � Q1/2|s|1+δxθ+δ(U−4
1 )1/4(U−4

2 )1/4(U−2
0 )1/2,

and (4.21) follows at once.
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Now suppose that β1 + β2 ≤ 3/5. By Lemma 14, there is a subset W of
{1, . . . , 16} such that

x2/5 �
∏
j∈W

Mj � x3/5.

We now apply Lemma 13 with {H,K} = {
∏
j∈W (2Mj),

∏
j≤16, j 6∈W (2Mj)},

H ≥ K. We have

x1/2 � H � x3/5 � x1+3λ/2−9θ/4−16δ

by hypothesis. This gives the analog of (4.9) with M16 in place of B and 6δ
in place of 4δ, and the lemma follows at once.

Lemma 16. Suppose that

α1 ≥
9θ
4
− 3λ

2
+ 16δ.

Then (4.9) holds.

Proof. Since α1 < 1/2, this is a straightforward consequence of Lemma 13
with K(x, χ) = M(s, χ), H(s, χ) = N(s, χ)B(s, χ).

Lemma 17. Suppose that

α1 < 4− 8λ− 100δ.

Then (4.9) holds.

Proof. We have (4.11) since α2 ≤ α1. In view of Lemma 10, we need
only show that

α1 < 1− 6λ
5
− 20δ.

By Lemma 16, we may suppose that

α1 <
9θ
4
− 3λ

2
+ 16δ.

Hence we can establish

α1 < 1− 6λ
5
− 20δ

by using λ > (5θ + ε)/6, θ < 1/2 to obtain

1 +
3λ
10

>
9θ
4

+ 40δ.

Proof of Proposition 2. We recall that it suffices to prove (4.9). By
Lemma 15, we may suppose that

(4.22) λ < − 4
15

+
3θ
2

+ 12δ.
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In view of Lemmas 16 and 17, it remains to show that the intervals [9θ/4−
3λ/2 + 16δ, θ+ ε/4] and [0, 4− 8λ− 100δ) overlap. That is, we need to show

4− 8λ− 100δ >
9θ
4
− 3λ

2
+ 16δ,

or
13λ
2

< 4− 9θ
4
− 116δ.

Indeed, from (4.22),
13λ
2

< −26
15

+
39θ
4

+ 78δ < 4− 9θ
4
− 116δ

since θ < 43/90− ε.
Proof of Proposition 3. As in the preceding proof it suffices to show that

for each tuple M1, . . . ,M15,

(4.23)
∑

p2∈(Q,2Q]\F (Q)

∑
χ (mod p2), χ 6=χ0

xλ<condχ≤2xλ

|B(s, χ)M1(s, χ) . . .M15(s, χ)|

� |s|3x1/2−4δQ1/2.

The conductor of each character counted in (4.23) is either p or p2, so
that

condχ ∈ (Q1/2, (2Q)1/2] ∪ (Q, 2Q].

Thus the sum in (4.23) is empty unless

λ = θ/2 or λ = θ.

For λ = θ/2, we obtain (4.23) as a consequence of Lemma 10. (Note that
no inequality stronger than θ < 1/2 − ε was used in the proofs of Lemmas
10–17.) For λ = θ, we have

λ > − 4
15

+
3θ
2

+ 12δ,

with something to spare. Now (4.23) is a consequence of Lemma 15.

5. Proofs of Theorems 1, 2 and 3. We work with the Riesz means

Ak(x, q, a, d) =
1
k!

∑
l≤x

l≡a (mod q)
l≡0 (mod d)

(
log

x

l

)k
.

Ultimately we are interested in A0; the presence of the factor s−5 in (5.5)
below is the reason for working initially with A4.

Let us write the associated remainder term as

rk(x, q, a, d) = Ak(x, q, a, d)− x

qd
.
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We borrow from Iwaniec [9, (2.5)] the inequalities

rk−1(x, q, a, d) ≤
(
eλ − 1
λ
− 1
)
x

qd
+

1
λ

[rk(eλx, q, a, d)− rk(x, q, a, d)],

(5.1) rk−1(x, q, a, d)

≥
(

1− e−λ

λ
− 1
)
x

qd
+

1
λ

[rk(x, q, a, d)− rk(e−λx, q, a, d)].

If ud ≥ 0 (D1 < d ≤ D), it follows that

(5.2)
∑

D1<d≤D
udrk−1(x, q, a, d) ≤

(
eλ − 1
λ
− 1
)
x

q

∑
D1<d≤D

ud
d

+
1
λ

[ ∑
D1<d≤D

udrk(eλx, q, a, d)−
∑

D1<d≤D
udrk(x, q, a, d)

]
.

There is a similar lower bound for the left-hand side of (5.2), which follows
from (5.1). We see that for 0 < λ < 1,

(5.3)
∑

q∈Sf (Q)\F (Q)

∣∣∣ ∑
D1<d≤D

udrk−1(x, q, a, d)
∣∣∣

�
λx|Sf (Q)|

Q

∑
D1<d≤D

ud
d

+
1
λ

∑
q∈Sf (Q)\F (Q)

{∣∣∣ ∑
D1<d≤D

udrk(eλx, q, a, d)
∣∣∣

+
∣∣∣ ∑
D1<d≤D

udrk(x, q, a, d)
∣∣∣+
∣∣∣ ∑
D1<d≤D

udrk(e−λx, q, a, d)
∣∣∣}.

For q ∈ Sf (Q) \ F (Q), let a(q) be an integer coprime to q. Suppose that∑
D1<d≤D

ud
d
� xη/6

and ∑
q∈Sf (Q)\F (Q)

∣∣∣ ∑
D1<d≤D

udrk(x, q, a(q), d)
∣∣∣� |Sf (Q)|

Q
x1−η

for some η > 0, whenever Q� xα. Taking λ = x−η/2, we deduce from (5.3)
that ∑

q∈Sf (Q)\F (Q)

∣∣∣ ∑
D1<d≤D

udrk−1(x, q, a(q), d)
∣∣∣� |Sf (Q)|

Q
x1−η/3

for Q� xα.
We are now ready to make a suitable inference from the work of Section 4

about remainders r0(x, q, a(q), d).
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Lemma 18. Let ai(m) (Mi/2 < m ≤ Mi) be nonnegative sequences sat-
isfying the hypotheses of Proposition 1. Let

ud =
∑

d=m1...m15
Mi/2<mi≤Mi (i=1,...,15)

a1(m1) . . . a15(m15)

for D1 < d ≤ D, with D = M1 . . .M15, D1 = 2−15D. Suppose that (4.2)
holds. Then for every A > 0,∑

q∈Sf (Q)\F (Q)

∣∣∣ ∑
D1<d≤D

udr0(x, q, a(q), d)
∣∣∣� x|Sf (Q)|

Q(log x)A
.

Proof. In view of the above discussion, it suffices to prove that∑
q∈Sf (Q)\F (Q)

∣∣∣ ∑
D1<d≤D

udr4(x, q, a(q), d)
∣∣∣� x1−δ|Sf (Q)|

Q

for Q� x9/20−ε. We represent r4(x, q, a(q), d) in the form

r4(x, q, a(q), d) =
1

24φ(q)

∑
χ (mod q)

χ̄(a(q))χ(d)
∑
b≤x/d

χ(b)
(

log
x

bd

)4

− x

qd

=
1

24φ(q)

∑
χ (mod q)
χ 6=χ0

χ̄(a(q))χ(d)
∑
b≤x/d

χ(b)
(

log
x

bd

)4

+O

(
xδ

q

)

for (d, q) = 1. Since D < x1−ε, it suffices to show that

(5.4)
∑

q∈Sf (Q)\F (Q)

∑
χ (mod q), χ 6=χ0

∣∣∣∣ ∑
D1<d≤D

udχ(d)
∑
b≤x/d

χ(b)
(

log
x

bd

)4∣∣∣∣
� |Sf (Q)|x1−δ.

We now use the integral representation

(5.5)
�

(1/2)

ys

s5
ds =

{
(log y)4 if y > 1,
0 if y ≤ 1

(e.g. Montgomery and Vaughan [14, p. 143]). This gives∑
D1<d≤D

udχ(d)
∑
b≤x/d

χ(b)
(

log
x

bd

)4

=
�

(1/2)

xs
∑

D1<d≤D
udχ(d)d−s

∑
b≤x/D1

χ(b)b−s
ds

s5
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and ∑
q∈Sf (Q)\F (Q)

∑
χ (mod q)
χ 6=χ0

∣∣∣∣ ∑
D1<d≤D

udχ(d)
∑
b≤x/d

χ(b)
(

log
x

bd

)4∣∣∣∣
� x1/2

�

(1/2)

∑
q∈Sf (Q)\F (Q)

∑
χ (mod q)
χ 6=χ0

∣∣∣ ∑
D1<d≤D

udχ(d)d−s
∣∣∣ |B(s, χ)| |ds|

|s|5
.

Now (5.4) follows from Proposition 1.

Proof of Theorem 1. Let a(q) be an integer coprime to q for which
I(s; q, a) is maximal. The left-hand side of (3.2) is∑

q∈Sf (Q)\F (Q)

∣∣∣ ∑
m,n≤Z

Λ(m)µ(n)r(x, q, a(q),mn)
∣∣∣.

We recall Heath-Brown’s decomposition [8] of Λ(m) and the slight variant,
used e.g. in [4], for the arithmetic function µ(n). Taking k = 4 in both cases,
we see that

Λ(m) =
∑

(I1,...,I8)

∑
mi∈Ii

m1...m8=m

(logm1)µ(m5)µ(m6)µ(m7)µ(m8) (1 ≤ m ≤ Z),

µ(n) =
∑

(J1,...,J7)

∑
ni∈Ii

n1...n7=n

µ(n4) . . . µ(n7) (1 ≤ n ≤ Z).

Here Ii = (ai, 2ai], Jj = (bj , 2bj ],
∏
i ai < Z,

∏
j bj < Z, 2ai ≤ Z1/4 if

i > 4, 2bj ≤ Z1/4 if j > 3. Some of the intervals Ii, Jj may contain only the
integer 1. There are O((log x)8) tuples (I1, . . . , I8) and O((log x)7) tuples
(J1, . . . , J7) in these expressions. Now write µ(m) = a(m) + b(m) where
a(m) = max(µ(m), 0). Then∑

m≤Z, n≤Z
Λ(m)µ(n)r0(x, q, a(q),mn)

=
∑

(I1,...,I8)

∑
(J1,...,J7)

∑
mi∈Ii, nj∈Jj

(logm1)(a(m5) + b(m5))

× . . . (a(n7) + b(n7))r0(x, q, a(q),m1 . . .m8 n1 . . . n7).

This splits in an obvious way into O((log x)15) sums with an attached ±
sign, in each of which the coefficients are nonnegative. Now (3.2) follows
on applying Lemma 18 to each of the sums. This completes the proof of
Theorem 1.

In just the same way, Theorem 2 follows from Proposition 2 and Theo-
rem 3 follows from Proposition 3.



Primes in arithmetic progressions 157

6. A maximal variant of Theorems 1, 2 and 3

Theorem 4. The results of Theorems 1 and 2 remain valid when E(x, q)
is replaced by

max
1≤y≤x

E(y, q).

The result of Theorem 3 remains valid when E(x, p2) is replaced by

max
1≤y≤x

E(y, p2).

Proof. As above, we write θ = 9/20 − ε (Theorem 1), θ = 43/90 − ε
(Theorem 2).

We write
v = x/(log x)A.

For q < x1/2, 1 ≤ t ≤ x, we have

(6.1) max
(a,q)=1

|{p : p ≡ a (mod q), t < p ≤ t+ v}| � v

φ(q) log x
.

This can easily be deduced from [7, Theorem 2.2], for example.
Let v = x0, x1, . . . , xN be a sequence of equally spaced positive numbers,

(6.2) xj − xj−1 = v (j = 1, . . . , N), x ≤ xN < x+ v.

By Theorem 1 or 2, for Q < xθ,

(6.3)
∑

q∈Sf (Q)

E(xj , q)�
xj |Sf (Q)|

Q(log x)3A+1
(0 ≤ j ≤ N).

Let

Gj =
{
q ∈ Sf (Q) : E(xj , q) >

xj
Q(log x)A+1

}
.

From (6.3),

|Gj | �
|Sf (Q)|

(log x)2A
.

The union G =
⋃N
j=1Gj thus satisfies

|G| �
N |Sf (Q)|
(log x)2A

� x

v

|Sf (Q)|
(log x)2A

�
|Sf (Q)|
(log x)A

(6.4)

from (6.2).
Now suppose that q ∈ Sf (Q) \G and let 1 ≤ y ≤ x. If y < v, then (6.1)

yields
E(y, q)� v

φ(q) log x
.

If v < y ≤ x, then y ∈ (xj−1, xj ] for some j, 1 ≤ j ≤ N . Thus, for some λ



158 R. C. Baker

in (0, 1],

|{p : p ≡ a (mod q), p ≤ y}|
= |{p : p ≡ a (mod q), p ≤ xj−1}|

+ λ|{p : p ≡ a (mod q), xj−1 < p ≤ xj}|

=
xj−1

φ(q) log xj−1
+O

(
x

Q(log x)A+1

)
+O

(
v

φ(q) log x

)
by (6.1) and the condition q ∈ Sf (Q) \Gj . After an application of the mean
value theorem, we obtain

|{p : p ≡ a (mod q), p ≤ y}| = y

φ(q) log x
+O

(
v

φ(q) log x

)
.

We have established that, for q ∈ Sf (Q) \G,

max
1≤y≤x

E(y, q)� v

φ(q) log x
,

and so ∑
q∈Sf (Q)\G

max
1≤y≤x

E(y, q)� v

log x

∑
q∈Sf (Q)

1
φ(q)

(6.5)

�
v|Sf (Q)|log log x

Q log x
�

x|Sf (Q)|
Q(log x)A

.

On the other hand, for q ∈ G,

max
1≤y≤x

E(y, q)� x

φ(q) log x
� x log log x

Q log x

from (5.1). Recalling (6.4), we get

(6.6)
∑
q∈G

max
1≤y≤x

E(y, q)� |G|x log log x
Q log x

�
x|Sf (Q)|
Q(log x)A

.

The maximal variant of Theorems 1 and 2 follows on combining (6.5), (6.6).
The maximal variant of Theorem 3 is proved in similar fashion.
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