
ACTA ARITHMETICA

153.2 (2012)

Independence measures of arithmetic functions II

by

Takao Komatsu (Hirosaki), Vichian Laohakosol (Bangkok) and
Pattira Ruengsinsub (Bangkok)

1. Introduction. In our earlier work, the notion of independence mea-
sure of arithmetic functions was introduced and two main results ([3, Theo-
rems 3.2 and 3.4]) about such measure were proved. These results are proved
under the hypothesis that there is a set of distinct primes for which the set
of vectors of function values at points depending on these primes is linearly
independent over C, and the proofs make use of the first assertion of [3,
Lemma 3.3] where the p-basic derivation is the main tool. Our first objec-
tive here is to improve upon these results by replacing the set of primes
by any set of distinct natural numbers enjoying similar properties. This is
accomplished by making use of the second assertion of [3, Lemma 3.3] where
the log-derivation is employed instead.

To systematize our presentation, we first recall all relevant terminology.
Denote by (A,+, ∗) the unique factorization domain of arithmetic functions
equipped with addition and convolution (or Dirichlet product) defined by

(f + g)(n) := f(n) + g(n), (f ∗ g)(n) =
∑
ij=n

f(i)g(j) (f, g ∈ A, n ∈ N),

and write f∗i = f ∗ · · · ∗ f (i terms). The convolution identity, I, is defined
by I(1) = 1 and I(n) = 0 for all n > 1. An arithmetic function f is called a
unit (in A) if its convolution inverse f−1 exists, and this is the case if and
only if f(1) 6= 0. It is well-known, [8, Chapter 4], that (A,+, ∗) is isomorphic
to (D,+, ·), where

D :=
{
D(s) :=

∞∑
n=1

f(n)
ns

}
is the ring of formal Dirichlet series equipped with addition and multipli-
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cation, through the isomorphism f ↔ D; addition in both domains is the
customary addition while the multiplication of formal Dirichlet series corre-
sponds to the convolution of the appropriate arithmetic functions appearing
as coefficients of formal Dirichlet series. For f ∈ A, its valuation, [8, Chap-
ter 4], is defined as

|f | := 1
O(f)

,

where O(f) is the least integer n for which f(n) 6= 0. Correspondingly, for
a formal Dirichlet series D(s) :=

∑
n≥1 f(n)/ns, its valuation is defined as

|D| = |f |,

where the same symbols are used for convenience. With this valuation, the
isomorphism (A,+, ∗)↔ (D,+, ·) is indeed an isometry. Therefore, we often
refer to these domains interchangeably.

A set of arithmetic functions f1, . . . , fr is said to be algebraically depen-
dent over C or C-algebraically dependent if there exists

P (X1, . . . , Xr) :=
∑
i1,...,ir

ai1,...,irX
i1
1 · · ·X

ir
r ∈ C[X1, . . . , Xr] \ {0}

such that ∑
i1,...,ir

ai1,...,irf
∗i1
1 ∗ · · · ∗ f∗irr ≡ 0,

and C-algebraically independent otherwise. If P is homogeneous of degree
one in each variable, we say that f1, . . . , fr are C-linearly dependent, and
C-linearly independent otherwise.

A derivation, [8], over A is a map d : A → A satisfying

d(f ∗ g) = df ∗ g + f ∗ dg, d(c1f + c2g) = c1df + c2dg,

where f, g ∈ A and c1, c2 ∈ C. Derivations of higher orders are defined in
the usual manner. Two typical examples of derivation are

• the p-basic derivation, p prime, defined by

(dpf)(n) = f(np)νp(np) (n ∈ N),

where νp(m) denotes the exponent of the highest power of p divid-
ing m,
• the log-derivation defined by

(dLf)(n) = f(n) log n (n ∈ N).

Although there are arithmetic sequences f(n) for which the corresponding
Dirichlet series D(s) :=

∑
n f(n)/ns are divergent, through the isometry

betweenA andD, it is legitimate to define the formal derivation d̃ of (formal)
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Dirichlet series via the derivation d of the associated arithmetic function as

d̃ D(s) =
∞∑
n=1

df(n)
ns

.

Thus, the formal differentiation of the formal Dirichlet series, D(s), with
respect to the variable s, i.e.,

D′(s) =
∞∑
n=1

−f(n) log n
ns

=
∞∑
n=1

−(dLf)(n)
ns

,

corresponds to the (negative) log-derivation−dL of the associated arithmetic
function f , and the p-basic derivation dp over A corresponds to the formal
p-basic derivation D̃p over D defined by

d̃pD(s) =
∞∑
n=1

(dpf)(n)
ns

.

For convenience, we use the same derivation symbol d for both the do-
mains A and D. Our investigations concerning Dirichlet series will be for-
mal throughout.

2. Algebraic independence. The following lemma, which plays a vital
role in our investigation of algebraic independence, is Lemma 3.1 in [3].

Lemma 2.1. Let f1, . . . , fr∈A and P (X1, . . . , Xr)∈C[X1, . . . , Xr] \ {0}.
For t = 1, . . . , r, define the following formal Dirichlet series

Dt(s) =
∑
n≥1

ft(n)
ns

,

P (D1, . . . , Dr) =
∑
n≥1

F (n)
ns

,
∂P

∂Xt
(D1, . . . , Dr) =

∑
n≥1

Ft(n)
ns

.

Then for each n ∈ N and for each prime p, we have

F (pn)νp(pn) =
r∑
j=1

∑
k|n

fj(pk)Fj(
n

k
)νp(pk),(2.1)

F (n) log n =
r∑
j=1

∑
k|n

fj(k)Fj(
n

k
) log k,(2.2)

where the Dirichlet series and their operations are considered formally.

Our improvement of [3, Theorem 3.2] is

Theorem 2.2. In the notation of Lemma 2.1, suppose that P (X1, . . . , Xr)
is of total degree degP = g. If there is a set of r positive integers {(1 <) n1 <
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· · · < nr} such that the set of vectors

{(f1(ni), . . . , fr(ni)) : i = 1, . . . , r}
is linearly independent over C, then

|P (D1, . . . , Dr)| ≥ n−gr .

Proof. If degP = 0, then clearly |P (D1, . . . , Dr)| = 1. If degP = 1, then

P (X1, . . . , Xr) = a0I + a1X1 + · · ·+ arXr,

where the coefficients aj (j = 1, . . . , r) do not vanish simultaneously. Equat-
ing coefficients, we get

F (nj) = a1f1(nj) + · · ·+ arfr(nj).

Since the set {(f1(nj), . . . , fr(nj)) : j = 1, . . . , r} is linearly independent
over C, at least one of the values F (n1), . . . , F (nr) must be nonzero, which
renders

|P (D1, . . . , Dr)| ≥ n−1
r .

Now proceed by induction on degP . Let P be of total degree g + 1 ≥ 2,
and assume that the assertion has been proved for polynomials of degree
≤ g. Consider the polynomials ∂P/∂Xt (t = 1, . . . , r), of degree ≤ g. Unless
∂P/∂Xt vanishes identically, by induction we have∣∣∣∣ ∂P∂Xt

(D1, . . . , Dr)
∣∣∣∣ ≥ n−gr ,

which implies that the ngr vectors

(2.3) (F1(1), . . . , Fr(1)), (F1(2), . . . , Fr(2)), . . . , (F1(ngr), . . . , Fr(n
g
r))

cannot all be zero. Let (F1(m), . . . , Fr(m)) be the first nonzero vector in
(2.3) so that

(F1(d), . . . , Fr(d)) = (0, . . . , 0) for d = 1, . . . ,m− 1.

By the minimality of m and Lemma 2.1, for all i = 1, . . . , r we get

F (nim) log(nim) = f1(ni)F1(m) + · · ·+ fr(ni)Fr(m).

Since the set {(f1(nj), . . . , fr(nj)) : j = 1, . . . , r} is linearly independent
over C, at least one of F (n1m), . . . , F (nrm) must be nonzero. This yields

|P (D1, . . . , Dr)| ≥ (mnr)−1 ≥ (ng+1
r )−1.

Recall that a formal Dirichlet series D(s) is said to be differentially
algebraic of order r ∈ N0 if D together with all its derivatives (up to or-
der r) D′, . . . , D(r) (D(0) := D) satisfy a non-trivial algebraic equation with
complex coefficients. When r = 0, differentially algebraic series of order 0
are simply algebraic series. The notion of differentially algebraic arithmetic
functions is defined correspondingly. An immediate consequence of Theorem
2.2 is the following measure of differentially algebraic independence.
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Corollary 2.3. Let D(s) =
∑

n≥1 f(n)n−s ∈ D and P (X0, . . . , Xr) ∈
C[X1, . . . , Xr] \ {0} be of total degree g. For r ∈ N0, if there is a set of
r + 1 natural numbers {(1 <) n1 < n2 < · · · < nr+1} such that f(ni) 6= 0
(i = 1, . . . , r + 1), then

|P (D,D′, . . . , D(r))| ≥ (ngr+1)−1,

where the Dirichlet series, their derivatives and operations are considered
formally.

Proof. Formally differentiating j times the Dirichlet series with respect
to s, we get

D(j)(s) =
∑
n≥1

f(n)(− log n)j

ns
.

For each i ∈ {1, . . . , r + 1}, since f(ni)(− log ni)j 6= 0, the determinant∣∣∣∣∣∣∣∣
f(n1) f(n1)(− log n1) · · · f(n1)(− log n1)r

...
...

f(nr+1) f(nr+1)(− log nr+1) · · · f(nr+1)(− log nr+1)r

∣∣∣∣∣∣∣∣
= f(n1) · · · f(nr+1)

∣∣∣∣∣∣∣∣
1 (− log n1) · · · (− log n1)r
...

...
1 (− log nr+1) · · · (− log nr+1)r

∣∣∣∣∣∣∣∣ ,
being Vandermonde, is nonzero, and so the set of vectors

{(f(n1), f(n1)(− log n1), . . . , f(n1)(− log n1)r), . . . ,
(f(nr+1), f(nr+1) log nr+1, . . . , f(nr+1)(− log nr+1)r)}

is C-linearly independent. The assertion now follows from Theorem 2.2.

Corollary 2.3 reveals an interesting feature of differentially algebraic
arithmetic functions:

Corollary 2.4. Let r ∈ N0. If f ∈ A is differentially algebraic of
order r, then excluding the point 1 it can be nonzero at r distinct points at
most.

Observe that the result of Corollary 2.4 when r = 0 is identical with that
of [3, Proposition 2.1 part 1]. An even more amazing consequence of Corol-
lary 2.4 is the next result which substantially generalizes an old theorem
of Hilbert [1] stating that the Riemann zeta function does not satisfy any
algebraic differential equation over C; Ostrowski [6] showed more generally
that the Riemann zeta function does not satisfy any algebraic differential-
difference equation over C.
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Corollary 2.5. An arithmetic function which is nonzero at infinitely
many points is not differentially algebraic, i.e., it is hyper-transcendental,
or equivalently, every formal Dirichlet series which is not a Dirichlet poly-
nomial is hyper-transcendental.

The next corollary yields a measure of algebraic independence for ap-
propriate lacunary arithmetic functions.

Corollary 2.6. In the notation of Lemma 2.1, suppose that
P (X1, . . . , Xr) is of total degree g. If there is a finite sequence of positive
integers {m1 < · · · < mr} such that for t ∈ {1, . . . , r} we have

ft(mt) 6= 0 but ft(k) = 0 for k ∈ {1, . . . ,mr} \ {mt},

then

|P (D1, . . . , Dr)| ≥ n−gr .

Proof. The result follows from Theorem 2.2 by noting that the set

{(f1(mt), . . . , fr(mt)) : t = 1, . . . , r}

is C-linearly independent.

Corollary 2.6 leads at once to the next result which says that lacunary
arithmetic functions are roughly C-algebraically independent.

Corollary 2.7. Let f1, . . . , fr ∈ A. If there are r sequences of positive
integers

{n(t)
1 < n

(t)
2 < · · · } (t = 1, . . . , r)

such that for t ∈ {1, . . . , r} we have

ft(n
(t)
j ) 6= 0, but

ft(k) = 0 for k ∈ {1, . . . , n(t)
1 − 1} ∪

∞⋃
j=1

{n(t)
j + 1, . . . , n(t)

j+1 − 1},

then f1, . . . , fr are C-algebraically independent.

We end this section by comparing two measures of independence from [3]
with those obtained via Theorem 2.2. Let {Fn}n≥1 be the sequence of Fi-
bonacci numbers defined by

F1 = F2 = 1, Fn+2 = Fn+1 + Fn (n ∈ N).
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The six formal Fibonacci zeta series are defined as (see [2])

F+(s) :=
∞∑
n=1

1
F sn

=
∞∑
n=1

f+(n)
ns

, F+
e (s) :=

∞∑
n=1

1
F s2n

=
∞∑
n=1

f+
e (n)
ns

,

F+
o (s) :=

∞∑
n=1

1
F s2n−1

=
∞∑
n=1

f+
o (n)
ns

, F−(s) :=
∞∑
n=1

(−1)n−1

F sn
=
∞∑
n=1

f−(n)
ns

,

F−e (s) :=
∞∑
n=1

(−1)n−1

F s2n
=
∞∑
n=1

f−e (n)
ns

, F−o (s) :=
∞∑
n=1

(−1)n−1

F s2n−1

=
∞∑
n=1

f−o (n)
ns

,

Let {Ln}n≥1 be the sequence of Lucas numbers defined by

L1 = 1, L2 = 3, Ln+2 = Ln+1 + Ln (n ∈ N).

The six formal Lucas zeta series are defined as

L+(s) :=
∞∑
n=1

1
Lsn

=
∞∑
n=1

`+(n)
ns

, L+
e (s) :=

∞∑
n=1

1
Ls2n

=
∞∑
n=1

`+e (n)
ns

,

L+
o (s) :=

∞∑
n=1

1
Ls2n−1

=
∞∑
n=1

`+o (n)
ns

, L−(s) :=
∞∑
n=1

(−1)n−1

Lsn
=
∞∑
n=1

`−(n)
ns

,

L−e (s) :=
∞∑
n=1

(−1)n−1

Ls2n
=
∞∑
n=1

`−e (n)
ns

, L−o (s) :=
∞∑
n=1

(−1)n−1

Ls2n−1

=
∞∑
n=1

`−o (n)
ns

,

In [3, p. 10], it was shown that

(2.4)
∣∣P (F+,F+

e ,F−o )
∣∣ ≥ 5−g,

for any P (X1, X2, X3) ∈ C[X1, X2, X3] \ {0} of total degree g, and

(2.5) |Q(L+,L−,L−e ,L−o )| ≥ 29−g,

for any Q(X1, X2, X3, X4) ∈ C[X1, X2, X3, X4] \ {0} of total degree g. Since∣∣∣∣∣∣∣
f+(1 = F1) f+(2 = F3) f+(3 = F4)
f+
e (1 = F2) f+

e (2 = F3) f+
e (3 = F4)

f−o (1 = F1) f−o (2 = F3) f−o (3 = F4)

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
2 1 1
1 0 1
1 −1 0

∣∣∣∣∣∣∣ = 2 6= 0,

the set of three vectors

{(f+(1), f+(2), f+(3)), (f+
e (1), f+

e (2), f+
e (3)), (f−o (1), f−o (2), f−o (3))}

is C-linearly independent and Theorem 2.2 yields

(2.6) |P (F+,F+
e ,F−o )| ≥ 3−g,

which is much better than (2.4). A simple example of linear polynomials
such as

P (n) (= P (f+, f+
e , f

−
o )(n)) := f+(n)− 2f+

e (n) + f−o (n)



206 T. Komatsu et al.

shows that P (1) = P (2) = 0, P (3) = −1 6= 0, i.e., the bound in (2.6) is best
possible.

Since∣∣∣∣∣∣∣∣∣∣
`+(1 = L1) `+(3 = L2) `+(4 = L3) `+(7 = L4)
`−(1 = L1) `−(3 = L2) `−(4 = L3) `−(7 = L4)
`−e (1 = L1) `−e (3 = L2) `−e (4 = L3) `−e (7 = L4)
`−o (1 = L1) `−o (3 = L2) `−o (4 = L3) `−o (7 = L4)

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
1 1 1 1
1 −1 1 −1
0 1 0 −1
1 0 −1 0

∣∣∣∣∣∣∣∣∣∣
= 8 6= 0,

the set of four vectors{(
`+(1), `+(3), `+(4), `+(7)

)
,
(
`−(1), `−(3), `−(4), `−(7)

)
,(

`−e (1), `−e (3), `−e (4), `−e (7)
)
,
(
`−o (1), `−o (3), `−o (4), `−o (7)

)}
is C-linearly independent and Theorem 2.2 yields

(2.7) |Q(L+,L−,L−e ,L−o )| ≥ 7−g,

much better than (2.5). Again a simple example of linear polynomials such
as

Q(n) (= Q(`+, `−, `−e , `
−
o )(n)) := `+(n)− `−(n)− 2`−e (n) + 0 · `−o (n)

shows that Q(1) = · · · = Q(6) = 0 and Q(7) = 4 6= 0, i.e., the bound in
(2.7) is best possible.

3. Linear dependence and Wronskian. Motivated by the case of
real functions, in this section, we investigate the connection between linear
dependence and the notion of Wronskian in our arithmetic setting. We start
with a simple proposition, whose converse, which is much more difficult, will
be examined later.

Proposition 3.1. Let f1, . . . , fr ∈ A and let d be a derivation on A. If
f1, . . . , fr are C-linearly dependent, then their Wronskian relative to d,

Wd(f1, . . . , fr) :=

∣∣∣∣∣∣∣∣∣∣
f1 f2 . . . fr

df1 df2 . . . dfr
...

dr−1f1 dr−1f2 . . . dr−1fr

∣∣∣∣∣∣∣∣∣∣
,

vanishes; here and throughout, the multiplication involved in the determinant
expansion is the Dirichlet product.

Proof. Taking the derivations di for i = 1, . . . , r−1 in the linear relation
among f1, . . . , fr, with coefficients c1, . . . , cr not all zero, we get a system



Independence measures of arithmetic functions II 207

of linear equations in the ci’s whose determinant is the Wronskian consid-
ered and the existence of nontrivial solutions forces the vanishing of this
determinant.

The next result gives a sufficient condition for linear dependence.

Theorem 3.2. Let f1, . . . , fr ∈ A. If the set of positive integers {n1 <
· · · < nr} is such that

ft(nt) 6= 0 but ft(k) = 0 for k = 1, . . . , nt − 1 (t = 1, . . . , r),

then the Wronskian (with respect to the log-derivation)

WL(f1, . . . , fr) :=

∣∣∣∣∣∣∣∣∣∣
f1 · · · fr

dLf1 · · · dLfr
...

...
dr−1
L f1 · · · dr−1

L fr

∣∣∣∣∣∣∣∣∣∣
(where the product in the expansion of the determinant is convolution) does
not vanish, and so f1, . . . , fr are C-linearly independent.

Proof. By the minimality of n1, . . . , nr, we get

WL(f1, . . . , fr)(n1 · · ·nr) =

∣∣∣∣∣∣∣∣∣∣
f1 · · · fr

dLf1 · · · dLfr
...

...
dr−1
L f1 · · · dr−1

L fr

∣∣∣∣∣∣∣∣∣∣
(n1 · · ·nr)

=
∑

c1···cr=n1···nr

∣∣∣∣∣∣∣∣∣∣
f1(c1) · · · fr(cr)

f1(c1) log(c1) · · · fr(cr) log(cr)
...

...
f1(c1) logr−1(c1) · · · fr(cr) logr−1(cr)

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
f1(n1) · · · fr(nr)

f1(n1) log(n1) · · · fr(nr) log(nr)
...

...
f1(n1) logr−1(n1) · · · fr(nr) logr−1(nr)

∣∣∣∣∣∣∣∣∣∣
= f1(n1)f2(n2) · · · fr(nr)

∣∣∣∣∣∣∣∣∣∣
1 · · · 1

log(n1) · · · log(nr)
...

...
logr−1(n1) · · · logr−1(nr)

∣∣∣∣∣∣∣∣∣∣
6= 0.
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Recall that the norm N(f) of f ∈ A is defined as

N(f) = min{n ∈ N : f(n) 6= 0}.
Theorem 3.2 simply says that arithmetic functions whose norms are distinct
are necessarily C-linearly independent. This is worth comparing with Theo-
rem 7 of [7] which asserts that the set of nonunit arithmetic functions whose
norms are pairwise relatively prime is C-algebraically independent.

For future use, we pause to establish an identity involving the Wronskian
value evaluated at a general point.

Theorem 3.3. Let f1, . . . , fr ∈ A and let n ∈ N. Then

WL(f1, . . . , fr)(n) :=

∣∣∣∣∣∣∣∣∣∣
f1 · · · fr

dLf1 · · · dLfr
...

...
dr−1
L f1 · · · dr−1

L fr

∣∣∣∣∣∣∣∣∣∣
(n)

=
∑

n1···nr=n;n1<···<nr

( ∏
1≤i<j≤r

(log nj − log ni)
)
∣∣∣∣∣∣∣∣∣∣
f1(n1) · · · f1(nr)
f2(n1) · · · f2(nr)

...
...

fr(n1) · · · fr(nr)

∣∣∣∣∣∣∣∣∣∣
.

Proof. We have

WL(f1, . . . , fr)(n) =

∣∣∣∣∣∣∣∣∣∣
f1 · · · fr

dLf1 · · · dLfr
...

...
dr−1
L f1 · · · dr−1

L fr

∣∣∣∣∣∣∣∣∣∣
(n)

=
∑

c1···cr=n

∣∣∣∣∣∣∣∣∣∣
f1(c1) · · · fr(cr)

f1(c1) log(c1) · · · fr(cr) log(cr)
...

...
f1(c1) logr−1(c1) · · · fr(cr) logr−1(cr)

∣∣∣∣∣∣∣∣∣∣
=

∑
c1···cr=n

f1(c1) · · · fr(cr)

∣∣∣∣∣∣∣∣∣∣
1 · · · 1

log(c1) · · · log(cr)
...

...
logr−1(c1) · · · logr−1(cr)

∣∣∣∣∣∣∣∣∣∣
=

∑
c1···cr=n

f1(c1) · · · fr(cr)
∏

1≤i<j≤r
(log cj − log ci)
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=
∑

n1···nr=n;n1<···<nr

( ∏
1≤i<j≤r

(log nj − log ni)
)

×
∑
i1,...,ir

ε(ni1 , . . . , nir)f1(ni1) · · · fr(nir)

where the inner sum on the right hand side is taken over all permutations
of (n1, . . . , nr) with ε(ni1 , . . . , nir) = 1 for an even permutation and −1 for
an odd one. Thus,

WL(f1, . . . , fr)(n1 · · ·nr)

=
∑

n1···nr=n;n1<···<nr

( ∏
1≤i<j≤r

(log nj − log ni)
)
∣∣∣∣∣∣∣∣∣∣
f1(n1) · · · f1(nr)
f2(n1) · · · f2(nr)

...
...

fr(n1) · · · fr(nr)

∣∣∣∣∣∣∣∣∣∣
.

In the real case it is well-known (see e.g. [4]) that the converse of Proposi-
tion 3.1 is not generally true. This is also the case in the arithmetic function
setting. For example, consider the two arithmetic functions

I(n) =
{

1 if n = 1,
0 otherwise,

g(n) =
{

1 if n = q 6= p,
0 otherwise,

where q 6= p are primes. If c1I + c2g = 0 (c1, c2 ∈ C), then

0 = c1I(1) + c2g(1) = c1, 0 = c1I(q) + c2g(q) = c2,

showing that I and g are C-linearly independent. However, their Wronskian
relative to the p-basic derivation dp does vanish:

W (I, g)(n) =

∣∣∣∣∣ I g

dpI dpg

∣∣∣∣∣ (n)

=
∑
ij=n

{I(i)g(jp)νp(jp)− g(i)I(jp)νp(jp)} = 0 (n ∈ N).

The converse of Theorem 3.1 does indeed hold if we stick to the log-deriva-
tion.

Theorem 3.4. Let f1, . . . , fr ∈ A\{0}. If their Wronskian W = WL(f1,
. . . , fr) relative to the log-derivation vanishes identically, then f1, . . . , fr are
C-linearly dependent.

Proof. For brevity write d for dL. First we consider the case r = 2. We
consider two cases.

Case 1: f1(1) 6= 0. Then f−1
1 , the convolution inverse of f1, exists and

so

0 = WL(f1, f2) = WL(f1 ∗ f1 ∗ f−1
1 , f2 ∗ f1 ∗ f−1

1 ) = f2
1 ∗WL(I, f2 ∗ f−1

1 ),
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yielding
0 = WL(I, f2 ∗ f−1) = d(f2 ∗ f−1

1 ).

Thus, f2 ∗ f−1
1 = cI for some c ∈ C, i.e., f2 = cf1, showing that f1 and f2

are C-linearly dependent.

Case 2: f1(1) = f2(1) = 0. Since f1 6≡ 0, let N > 1 be the least positive
integer for which f1(N) 6= 0. For n ∈ N, we have

0 = WL(f1, f2)(n) =
∑
ab=n

(f1(a)f2(b)− f1(b)f2(a)) log b.

Putting n = 2N , we get

0 = WL(f1, f2)(2N) = f1(N)f2(2)(log 2− logN),

i.e., f2(2) = 0. By induction, for k = 1, . . . , N − 1, we have

0 = WL(f1, f2)(kN) = f1(N)f2(k)(log k − logN),

i.e., f2(k) = 0. Putting n = N2 and using the previously found values, we
get

0 = WL(f1, f2)(N2) = (f1(N)f2(N)− f1(N)f2(N)) logN,

yielding f2(N) arbitrary. Putting n = N(N + 1) and using the previously
found values, we get

0 = WL(f1, f2)(N(N + 1))
= (f1(N)f2(N + 1)− f1(N + 1)f2(N)) log(N + 1),

i.e., f2(N + 1) = f1(N + 1)f2(N)/f1(N). In general, for m ≥ 1, using
previously found values, we have

0 = WL(f1, f2)(N(N +m)) =
∑

ab=N(N+m)

(f1(a)f2(b)− f1(b)f2(a)) log b

=
∑

ab=N(N+m)
a<N

(f1(a)f2(b)− f1(b)f2(a)) log b

+ {f1(N)f2(N +m)− f2(N)f1(N +m)} log(N +m)

+
∑

ab=N(N+m)
N<a≤N+m

(f1(a)f2(b)− f1(b)f2(a)) log b

= {f1(N)f2(N +m)− f2(N)f1(N +m)} log(N +m),

i.e., f2(N + m) = f1(N + m)f2(N)/f1(N). Hence, f2 = cf1, where c :=
f2(N)/f1(N).

Supposing that the assertion of the theorem holds for up to r − 1 (≥ 2)
functions, we proceed to verify it for r functions. We again have two cases.
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Case 1: there is an i ∈ {1, . . . , r} for which fi(1) 6= 0. We may assume
that f1(1) 6= 0. Then f−1

1 exists and so

0 = WL(f1, . . . , fr) = f r1 ∗WL(I, f2 ∗ f−1
1 , . . . , fr ∗ f−1

1 )

= f r1 ∗WL(d(f2 ∗ f−1
1 ), . . . , d(fr ∗ f−1

1 )).

By the induction hypothesis, d(f2 ∗ f−1
1 ), . . . , d(fr ∗ f−1

1 ) are C-linearly de-
pendent, which implies that so are f1, . . . , fr.

Case 2: f1(1) = · · · = fr(1) = 0. For brevity, write

A(i) = (f1(i), . . . , fr(i)).

Thus, A(1) = (0, . . . , 0). Since f1, . . . , fr ∈ A \ {0}, let N1 be the least
positive integer such that

A(N1) 6= (0, . . . , 0).

There are two subcases.

Subcase 1: All the vectors A(n) with n > N1 are C-multiples of A(N1),
so there exist c(n) ∈ C such that A(n) = c(n)A(N1), i.e.,

f1(n) = c(n)f1(N1), . . . , fr(n) = c(n)fr(N1).

Observe that the (single) linear equation in r (≥ 4) unknowns x1, . . . , xr,

0 = x1f1(N1) + · · ·+ xrfr(N1),

has a nontrivial solution (x1, . . . , xr) 6= (0, . . . , 0). This shows that

x1f1(n) + · · ·+ xrfr(n) = 0 for all n ∈ N,
i.e., f1, . . . , fr are C-linearly dependent.

Subcase 2: There exists a least positive integer N2 (> N1) such that
A(N1), A(N2) are C-linearly independent. Again we treat two possibilities.

If all the vectors A(n) with n > N2 are C-linear combinations of A(N1)
and A(N2), so there exist c1(n), c2(n) ∈ C such that A(n) = c1(n)A(N1) +
c2(n)A(N2), i.e.,

f1(n) = c1(n)f1(N1)+c2(n)f1(N2), . . . , fr(n) = c1(n)fr(N1)+c2(n)fr(N2),

then the system of two equations in r (≥ 4) unknowns x1, . . . , xr,

0 = x1f1(N1) + · · ·+ xrfr(N1),
0 = x1f1(N2) + · · ·+ xrfr(N2),

has a nontrivial solution (x1, . . . , xr) 6= (0, . . . , 0). Then

x1f1(n) + · · ·+ xrfr(n) = 0 for all n ∈ N,
showing that f1, . . . , fr are C-linearly dependent.

Otherwise, there exists a least positive integer N3 (> N2 > N1) such
that A(N1), A(N2), A(N3) are C-linearly independent and we continue as
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above. In general, assume that there is a set of 1 ≤ j (≤ r − 1) (lexico-
graphically least) positive integers N1 < · · · < Nj such that the vectors
A(N1), . . . , A(Nj) are C-linearly independent. If all the vectors A(n) with
n>Nj (> Nj−1 > · · · > N1) are C-linear combinations of A(N1), . . . , A(Nj),
so there exist c1(n), . . . , cj(n) ∈ C such that A(n) = c1(n)A(N1) + · · · +
cj(n)A(Nj), i.e.,

f1(n) = c1(n)f1(N1) + · · ·+ cj(n)f1(Nj), . . . ,
fr(n) = c1(n)fr(N1) + · · ·+ cj(n)fr(Nj),

then the system of j (≤ r − 1) equations in r unknowns x1, . . . , xr,

0 = x1f1(N1) + · · ·+ xrfr(N1),
...

0 = x1f1(Nj) + · · ·+ xrfr(Nj),

has a nontrivial solution (x1, . . . , xr) 6= (0, . . . , 0). Then

x1f1(n) + · · ·+ xrfr(n) = 0 for all n ∈ N,
showing that f1, . . . , fr are C-linearly dependent.

There remains the case where there are (lexicographically) least positive
integers N1 < · · · < Nr such that A(N1), . . . , A(Nr) are C-linearly indepen-
dent and so

(3.1)

∣∣∣∣∣∣∣∣∣∣
f1(N1) · · · f1(Nr)
f2(N1) · · · f2(Nr)

...
...

fr(N1) · · · fr(Nr)

∣∣∣∣∣∣∣∣∣∣
6= 0.

Using Theorem 3.3 together with the (lexicographically) minimal property
of N1 < · · · < Nr, the hypothesis that the Wronskian vanishes shows that
so does the determinant on the left hand side of (3.1). This contradiction
finishes the proof.

Proposition 3.1 together with Theorem 3.4 provides us with a satisfac-
tory necessary and sufficient condition for C-linear dependence of arithmetic
functions through the use of Wronskian. This should be compared with the
use of Jacobian for testing C-algebraic independence in [9], which only works
in one direction. Though Proposition 3.1 and Theorem 3.4 are not so easy
to use, they do yield several independence tests; we next give an example.

Theorem 3.5. Let α, β ∈ N and

S = {s1, . . . , sα} ⊆ C, K = {0 ≤ k1 ≤ · · · ≤ kβ} ⊆ N0,

T = {fs,k : s ∈ S, k ∈ K} ⊆ A,
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with fs,k(1) 6= 0 (s ∈ S, k ∈ K). Assume that for all sufficiently large
primes p,

(1) fs,k(p) 6= 0 (s ∈ S, k ∈ K);

(2) lim
p→∞

fs,ki(p)
fs,ku(p)

= 0 for 1 ≤ i < u ≤ β;

(3) lim
p→∞

fsj ,ka(p)
fsv ,kb(p)

= 0 for 1 ≤ j < v ≤ α and a, b ∈ {1, . . . , β}.

Then the elements of T are C-linearly independent.

Proof. Suppose that the elements of T are C-linearly dependent and so
their Wronskian vanishes by Proposition 3.1. Write W for

WL(fs1,k1 , . . . , fs1,kβ , . . . , fsα,k1 , . . . , fsα,kβ ).

Let A(i) = (fs1,k1(i) · · · fs1,kβ (i) · · · fsα,k1(i) · · · fsα,kβ (i)), and

det(A(i0), A(i1), · · · , A(ir−1))

:=

∣∣∣∣∣∣∣∣∣∣
fs1,k1(i0) . . . fs1,kβ (i0) . . . fsα,k1(i0) . . . fsα,kβ (i0)
fs1,k1(i1) . . . fs1,kβ (i1) . . . fsα,k1(i1) . . . fsα,kβ (i1)

...
fs1,k1(ir−1) . . . fs1,kβ (ir−1) . . . fsα,k1(ir−1) . . . fsα,kβ (ir−1)

∣∣∣∣∣∣∣∣∣∣
,

where r = αβ. Then, for ν ∈ N,

W (ν) =∑
i0i1···ir−1=ν

(log i1)(log i2)2 . . . (log ir−1)r−1 det(A(i0), A(i1), · · · , A(ir−1)).

Taking ν = p1 · · · pr−1, where p1 < · · · < pr−1 are distinct primes, we get

W (p1 · · · pr−1) = C(p1, . . . , pr−1) det(A(1), A(p1), . . . , A(pr−1)),

where C(p1, . . . , pr−1) 6= 0 is the Vandermonde determinant defined by

(3.2) C(i1, . . . , ir−1) =

∣∣∣∣∣∣∣∣∣∣
log i1 log i2 . . . log ir−1

(log i1)2 (log i2)2 . . . (log ir−1)2
...

(log i1)r−1 (log i2)r−1 . . . (log ir−1)r−1

∣∣∣∣∣∣∣∣∣∣
=
∑
σ

sgn(σ)(log iσ(1))
1(log iσ(2))

2(log iσ(3))
3 · · · (log iσ(r−1))

r−1,

where the summation is over all permutations σ of {1, . . . , r − 1} with
sgn(σ) = ±1 depending on whether σ is even or odd. Since C(i1, . . . , ir−1)
is a Vandermonde determinant, we have C(i1, . . . , ir−1) 6= 0 if and only if
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i1, . . . , ir−1 are distinct and not equal to 1. We wish to derive a contradiction
by showing that there are primes p1, . . . , pr−1 such that

D := det(A(1), A(p1), . . . , A(pr−1)) 6= 0.

For primes p1, . . . , pr−1 sufficiently large, since the function values are non-
zero by condition (1), we can write

D = fsα,kβ (pr−1)fsα,kβ (pr−2) · · · fsα,kβ (p1)fsα,kβ (1)D∗,

where

D∗ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

fs1,k1 (1)

fsα,kβ (1) · · ·
fs1,kβ (1)

fsα,kβ (1) · · · fsα,k1 (1)

fsα,kβ (1) · · ·
fsα,kβ−1

(1)

fsα,kβ (1) 1
fs1,k1 (p1)

fsα,kβ (p1) · · ·
fs1,kβ (p1)

fsα,kβ (p1) · · · fsα,k1 (p1)

fsα,kβ (p1) · · ·
fsα,kβ−1

(p1)

fsα,kβ (p1) 1
...

fs1,k1 (pr−2)

fsα,kβ (pr−2) · · ·
fs1,kβ (pr−2)

fsα,kβ (pr−2) · · ·
fsα,k1 (pr−2)

fsα,kβ (pr−2) · · ·
fsα,kβ−1

(pr−2)

fsα,kβ (pr−2) 1
fs1,k1 (pr−1)

fsα,kβ (pr−1) · · ·
fs1,kβ (pr−1)

fsα,kβ (pr−1) · · ·
fsα,k1 (pr−1)

fsα,kβ (pr−1) · · ·
fsα,kβ−1

(pr−1)

fsα,kβ (pr−1) 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

It thus suffices to show that D∗ 6= 0. Expanding D∗ along the last row,
keeping p1, . . . , pr−2 fixed for the moment and letting pr−1 → ∞, by the
asymptotic assumptions (2) and (3), we see that

D∗ = D1 + o(pr−1),

where

D1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣

fs1,k1 (1)

fsα,kβ (1) · · ·
fs1,kβ (1)

fsα,kβ (1) . . .
fsα,k1 (1)

fsα,kβ (1) . . .
fsα,kβ−1

(1)

fsα,kβ (1)

fs1,k1 (p1)

fsα,kβ (p1) · · ·
fs1,kβ (p1)

fsα,kβ (p1) . . .
fsα,k1 (p1)

fsα,kβ (p1) . . .
fsα,kβ−1

(p1)

fsα,kβ (p1)

...
fs1,k1 (pr−2)

fsα,kβ (pr−2) · · ·
fs1,kβ (pr−2)

fsα,kβ (pr−2) . . .
fsα,k1 (pr−2)

fsα,kβ (pr−2) . . .
fsα,kβ−1

(pr−2)

fsα,kβ (pr−2)

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Observe that D1 is independent of pr−1 and dimD1 = dimD− 1. It is thus
enough to show that D1 6= 0. Now we repeat the above steps by writing

D1 =
fsα,kβ−1

(pr−2)
fsα,kβ (pr−2)

· · ·
fsα,kβ−1

(p1)
fsα,kβ (p1)

fsα,kβ−1
(1)

fsα,kβ (1)
D∗1,

where

D∗1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣

fs1,k1 (1)

fsα,kβ−1
(1) · · ·

fs1,kβ (1)

fsα,kβ−1
(1) · · · fsα,k1 (1)

fsα,kβ−1
(1) · · ·

fsα,kβ−2
(1)

fsα,kβ−1
(1) 1

fs1,k1 (p1)

fsα,kβ−1
(p1) · · ·

fs1,kβ (p1)

fsα,kβ−1
(p1) · · ·

fsα,k1 (p1)

fsα,kβ−1
(p1) · · ·

fsα,kβ−2
(p1)

fsα,kβ−1
(p1) 1

...
fs1,k1 (pr−2)

fsα,kβ−1
(pr−2) · · ·

fs1,kβ (pr−2)

fsα,kβ−1
(pr−2) · · ·

fsα,k1 (pr−2)

fsα,kβ−1
(pr−2) · · ·

fsα,kβ−2
(pr−2)

fsα,kβ−1
(pr−2) 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
.
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It thus suffices to show that D∗1 6= 0. Expanding D∗1 along the last row,
keeping p1, . . . , pr−3 fixed for the time being and letting pr−2 → ∞, by the
asymptotic assumptions (2) and (3), we get

D∗1 = D2 + o(pr−2),

where

D2 =

∣∣∣∣∣∣∣∣∣∣∣∣∣

fs1,k1 (1)

fsα,kβ−1
(1) · · ·

fs1,kβ (1)

fsα,kβ−1
(1) · · · fsα,k1 (1)

fsα,kβ−1
(1) · · ·

fsα,kβ−2
(1)

fsα,kβ−1
(1)

fs1,k1 (p1)

fsα,kβ−1
(p1) · · ·

fs1,kβ (p1)

fsα,kβ−1
(p1) · · · fsα,k1 (p1)

fsα,kβ−1
(p1) · · ·

fsα,kβ−2
(p1)

fsα,kβ−1
(p1)

...
fs1,k1 (pr−3)

fsα,kβ−1
(pr−3) · · ·

fs1,kβ (pr−3)

fsα,kβ−1
(pr−3) · · ·

fsα,k1 (pr−3)

fsα,kβ−1
(pr−3) · · ·

fsα,kβ−2
(pr−3)

fsα,kβ−1
(pr−3)

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Observe again that D2 is independent of pr−2 and dimD2 = dimD1 − 1. It
is again enough to show that D2 6= 0. Repeating the same reduction steps,
we finally reach a nonzero determinant of dimension 1 as desired.

Theorem 3.5 yields another proof of the following, slightly modified,
Lemma 3 of Lucht–Schmalmack [5].

Corollary 3.6. Let α ∈ N, S = {s1, . . . , sα} ⊆ C with <(s1) < · · ·
< <(sα), and let K = {0, 1, . . . , β} ⊆ N0 := N∪{0}. For a fixed a ∈ N\{1},
let T = {aν : ν ∈ N} be a geometric progression such that ns 6= ns

′
for all

n ∈ T and distinct s, s′ ∈ S. Then the set

{Is logk |T : s ∈ S, k ∈ K}

of arithmetic functions (Is logk)(n) := ns(log n)k, whose domain is restricted
to the set T , is C-linearly independent.

Proof. This follows immediately from Theorem 3.5 applied to the arith-
metic functions

fsk(ν) = (Is logk)(aν) = aνs(log aν)k (ν ∈ N).

In contrast to the C-linear independence over the domain T , it is known
(see e.g. [9] or [7]) that the functions Is logk are indeed C-algebraically in-
dependent over the whole N.
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