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1. Introduction. Ramanujan, in [6], [7, pp. 232–238], established the
following famous congruences for p(n), the number of partitions of n:

p(5n+ 4) ≡ 0 (mod 5),

p(7n+ 5) ≡ 0 (mod 7),

p(11n+ 6) ≡ 0 (mod 11).

In calculating the coefficients of certain quotients of the Eisenstein series

P (q) := 1− 24
∞∑

k=1

kqk

1− qk = 1− 24
∞∑

n=1

σ(n)qn,(1.1)

Q(q) := 1 + 240
∞∑

k=1

k3qk

1− qk = 1 + 240
∞∑

n=1

σ3(n)qn,(1.2)

R(q) := 1− 504
∞∑

k=1

k5qk

1− qk = 1− 504
∞∑

n=1

σ5(n)qn,(1.3)

studied in [1] and [2], where |q| < 1, we noticed that for some quotients
of Eisenstein series the coefficients in certain arithmetic progressions are
divisible by prime powers, usually a power of 3. In view of Ramanujan’s
famous congruences for p(n), it seemed natural for us to systematically
investigate congruences of this type for Eisenstein series. In some cases, it
was very easy to establish our observations, but in other cases, the task was
considerably more difficult.

We summarize our findings in the table below. In general, write F (q) :=∑∞
n=0 αnq

n.
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F (q) n ≡ 2 (mod 3) n ≡ 4 (mod 8)

1/P (q) αn ≡ 0 (mod 34)

1/Q(q) αn ≡ 0 (mod 32)

1/R(q) αn ≡ 0 (mod 33) αn ≡ 0 (mod 72)

P (q)/Q(q) αn ≡ 0 (mod 33)

P (q)/R(q) αn ≡ 0 (mod 32) αn ≡ 0 (mod 7)

Q(q)/R(q) αn ≡ 0 (mod 33)

P 2(q)/R(q) αn ≡ 0 (mod 35)

To prove our observations, we need to carefully examine σk(n), the sum
of the kth powers of the divisors of the positive integer n, for odd k. In
Section 2, we calculate σk(n) for n ≡ 2 (mod 3), and state congruences and
equalities for σk(n) established by D. B. Lahiri in [4] and [5]. In Section 3,
congruences for the coefficients of 1/Q(q), 1/R(q), P (q)/Q(q), P (q)/R(q),
and Q(q)/R(q) are proved very easily. We show the congruences for the
coefficients of 1/P (q) and P 2(q)/R(q) in Sections 4 and 5, respectively.

2. Preliminaries. In what follows, let k be an odd positive integer,
and we write σ(n) for σ1(n). We examine σk(pr), where p is a prime. We
consider 3 cases: (i) p = 3x− 1 and r is odd, (ii) p = 3x− 1 and r is even,
and (iii) p = 3x+ 1.

Case (i): p = 3x − 1 and r is odd. It follows easily from elementary
considerations below that

σk(pr) ≡ 0 (mod 3).(2.1)

Moreover,
σ3(pr) ≡ 0 (mod 32).(2.2)

However, we need a more refined congruence in some of our applications.
To that end, write

σk(pr) = 1 + pk + . . .+ prk(2.3)

= (1 + pk)(1 + p2k + . . .+ p(r−1)k)

≡ (1 + (3x− 1)k)(ak + 3bk + 32ck) (mod 34),

where

ak :=
(r−1)/2∑

j=0

(−1)2jk =
r + 1

2
,(2.4)

bk :=
(r−1)/2∑

j=0

(−1)2jk−1
(

2jk
1

)
x = −x r

2 − 1
4

k,(2.5)
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ck :=
(r−1)/2∑

j=0

(−1)2jk−2
(

2jk
2

)
x2 =

(r2 − 1)r
12

x2k2 − r2 − 1
8

x2k(2.6)

=: uk2 + vk.

Case (ii): p = 3x− 1 and r is even. Recall that k is odd. Then

σk(pr) = 1 + pk + . . .+ prk ≡ (Ak + 3Bk + 32Ck) (mod 33),(2.7)

where

Ak :=
r∑

j=0

(−1)jk = 1,(2.8)

Bk :=
r∑

j=0

(−1)jk−1
(
jk

1

)
x = −r

2
xk,(2.9)

Ck :=
r∑

j=0

(−1)jk−2
(
jk

2

)
x2(2.10)

=
( r∑

j=0

(−1)j
j2

2
x2
)
k2 −

( r∑

j=0

(−1)j
j

2
x2
)
k =: ukk2 + vkk.

Case (iii): p = 3x+ 1. Then

σk(pr) = 1 + pk + . . .+ prk ≡ (Ak + 3Bk + 32Ck) (mod 33),(2.11)

where

Ak :=
r∑

j=0

1 = r + 1,(2.12)

Bk :=
r∑

j=0

(
jk

1

)
x =

r(r + 1)
2

xk,(2.13)

Ck :=
r∑

j=0

(
jk

2

)
x2(2.14)

=
r(r + 1)(2r + 1)

12
x2k2 − r(r + 1)

4
x2k =: ukk2 + vkk.

We need a congruence for σk(n) for n ≡ 2 (mod 3). There is at least one
prime factor p of n such that p ≡ 2 (mod 3), and the maximum power of p
is odd for any n ≡ 2 (mod 3). Let n = prpr11 p

r2
2 . . . prmm , where p ≡ 2 (mod 3),

r is odd, and pr11 p
r2
2 . . . prmm ≡ 1 (mod 3). Since σk is multiplicative, we see

by (2.1) and (2.2) that

σk(n) ≡ 0 (mod 3) and σ3(n) ≡ 0 (mod 32).(2.15)
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Now, we consider σk(p
r1
1 p

r2
2 . . . prmm ). Let

σk(p
ri
i ) :≡ Aki + 3Bki + 32Cki (mod 33),(2.16)

for i = 1, . . . ,m, and set, as in (2.10) or (2.14), Cki = ukik
2 + vkik. Then

σk(p
r1
1 p

r2
2 . . . prmm ) = σk(p

r1
1 )σk(p

r2
2 ) . . . σk(prmm )(2.17)

≡ Âk + 3B̂k + 32Ĉk (mod 33),

where

Âk :=
m∏

i=1

Aki,(2.18)

B̂k := Âk

m∑

i=1

Bki
Aki

,(2.19)

Ĉk := Âk

m∑

i=1

Cki
Aki

+ Âk

m∑

i=1

m∑

j=1
j 6=i

BkiBkj
AkiAkj

.(2.20)

Then we easily see by elementary calculations on σk(p
ri
i ) that

Âk = Â1,(2.21)

B̂k = kB̂1,(2.22)

Ĉk = k2U + kV,(2.23)

where

U = Â1

m∑

i=1

u1i

A1i
+ Â1

m∑

i=1

m∑

j=1
j 6=i

B1iB1j

A1iA1j
and V = Â1

m∑

i=1

v1i

A1i
.(2.24)

Necessary for our proofs are certain identities and congruences for σk(n).
Before stating them, recall that Ramanujan’s tau function τ(n) is defined
by ∞∑

n=1

τ(n)qn := q

∞∏

n=1

(1− qn)24 for |q| < 1.

Lahiri [4], [5] established many identities and congruences for σk(n) and
τ(n). Among them we state the identities and congruences we use in the
remainder of the paper. Thus,

(2.25) 22 · 3
n−1∑

k=1

σ(k)σ(n− k) = 5σ3(n)− (6n− 1)σ(n),

(2.26) 26 · 3
n−1∑

k1+k2=1

σ(k1)σ(k2)σ(n− k1 − k2)

= 7σ5(n) + (10− 30n)σ3(n) + (1− 12n+ 24n2)σ(n),
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(2.27) 24 · 32 · 5 · 7
n−1∑

k=1

σ3(k)σ5(n− k) = 11σ9(n)− 3 · 7σ5(n) + 2 · 5σ3(n),

(2.28) 23 · 32 · 7
n−1∑

k=1

kσ(k)σ5(n− k) = 5nσ7(n)− 2 · 3n2σ5(n) + nσ(n),

(2.29) 22 · 32 · 7 · 691
n−1∑

k=1

σ5(k)σ5(n− k)

= −22 · 33 · 7τ(n) + 5 · 13σ11(n) + 691σ5(n),

(2.30) −22 · 33 · 7τ(n) + 5 · 13σ11(n) ≡ 691{20σ7(n)− 2(21n− 10)σ5(n)

− 105σ3(n) + 2(63n− 10)σ(n)} (mod 24 · 34 · 52 · 7 · 691).

The most thorough examination of divisor sum identities like those in
(2.25)–(2.29) has been given by J. G. Huard, Z. M. Ou, B. K. Spearman,
and K. S. Williams in [3].

By combining (2.29) and (2.30), we obtain

(2.31) 22 · 32 · 7
n−1∑

k=1

σ5(k)σ5(n− k) ≡ 20σ7(n)− 2(21n− 10)σ5(n)

−105σ3(n) + 2(63n− 10)σ(n) + σ5(n) (mod 24 · 34 · 52 · 7).

We need more congruences, which are found in [4] and [5], namely,

(2.32) nσ7(n) ≡ 14nσ5(n)− (24n2 − 11n)σ3(n) (mod 25 · 32 · 5),

(2.33) 11σ9(n) ≡ 50(30n− 2)σ7(n)− 30(24n2 − 28n+ 7)σ5(n)

+ 20(72n3 − 108n2 + 45n− 5)σ3(n)

− (864n4 − 1440n3 + 720n2 − 120n+ 5)σ(n) (mod 212 · 34).

3. Coefficients of 1/R, 1/Q, P/Q, P/R, and Q/R. In this section,
we show that the coefficient of qn in 1/R(q) is divisible by 33 and 72 for
n ≡ 2 (mod 3) and n ≡ 4 (mod 8), respectively. Since the proofs of the
assertions for 1/Q(q), P (q)/Q(q), P (q)/R(q), and Q(q)/R(q) are similar,
we omit them.

Theorem 3.1. In each case, set F (q) =
∑∞

n=0 αnq
n, |q| < 1. Let n ≡

2 (mod 3).

(a) If F (q) = 1/R(q), then αn ≡ 0 (mod 33);
(b) if F (q) = 1/Q(q), then αn ≡ 0 (mod 32);
(c) if F (q) = P (q)/Q(q), then αn ≡ 0 (mod 33);
(d) if F (q) = P (q)/R(q), then αn ≡ 0 (mod 32);
(e) if F (q) = Q(q)/R(q), then αn ≡ 0 (mod 33).
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Let n ≡ 4 (mod 8).

(f) If F (q) = 1/R(q), then αn ≡ 0 (mod 72);
(g) if F (q) = P (q)/R(q), then αn ≡ 0 (mod 7).

Proof of (a). For sufficiently small |q|, from (1.3), we consider the geo-
metric series expansion of 1/R(q). Then

1
R(q)

= 1 + 504
∞∑

n=1

σ5(n)qn + 5042
∞∑

n=2

n−1∑

k=1

σ5(k)σ5(n− k)qn + . . .

=:
∞∑

n=0

αnq
n.

Since σk(n) is divisible by 3 when n is congruent to 2 modulo 3, as we noted
in (2.15), we can easily see that

αn ≡ 0 (mod 33) if n ≡ 2 (mod 3).

Proof of (f). To show that αn ≡ 0 (mod 72) when n ≡ 4 (mod 8), we need
to calculate σ5(8y + 4):

σ5(8y + 4) = σ5(22)σ5(2y + 1) = (1 + 25 + 210)σ5(2y + 1) ≡ 0 (mod 7).

This implies that αn ≡ 0 (mod 72) when n ≡ 4 (mod 8).

4. Coefficients of 1/P . We prove the congruence for the coefficients
of qn for 1/P (q).

Theorem 4.1. Set 1/P (q) =
∑∞

n=0 αnq
n, |q| < 1. Then

αn ≡ 0 (mod 34) for n ≡ 2 (mod 3).

Proof. For sufficiently small |q|, from (1.1), we take the geometric series
expansion of 1/P (q). Then

1
P (q)

= 1 + 24
∞∑

n=1

σ(n)qn + 242
∞∑

n=2

n−1∑

k=1

σ(k)σ(n− k)qn

+ 243
∞∑

n=3

n−1∑

k=2

k−1∑

k1=1

σ(k1)σ(k − k1)σ(n− k)qn + . . .

So, for n ≡ 2 (mod 3),

αn ≡ 3 · 8σ(n) + 32 · 82
n−1∑

k=1

σ(k)σ(n− k)(4.1)

+ 33 · 83
n−1∑

k=2

k−1∑

k1=1

σ(k1)σ(k − k1)σ(n− k) (mod 34).
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By (2.25), (2.26), (2.15) and (4.1), we see that for n ≡ 2 (mod 3),

αn ≡ 3 · 8(10σ3(n) + 3(1− 4n)σ(n)) + 32 · 8(7σ5(n) + σ(n)) (mod 34).

So we only need to show that for n ≡ 2 (mod 3),

8(10σ3(n) + 3(1− 4n)σ(n)) ≡ 0 (mod 33),(4.2)

7σ5(n) + σ(n) ≡ 0 (mod 32).(4.3)

Since n ≡ 2 (mod 3), it has at least one prime factor p that is congruent
to 2 modulo 3 and whose power r in n is odd. Furthermore, the number of
such prime factors must be odd since n ≡ 2 (mod 3). Suppose that there
are more than two prime factors of n that are congruent to 2 modulo 3 and
with powers in n that are odd. Then the congruence (4.2) can be achieved
easily by (2.1) and (2.2), since σk(n) is multiplicative. So we can suppose
that there is only one prime factor p ≡ 2 (mod 3) whose power in n is odd.
Let n = pr(3N + 1), where p = 3x− 1, r is odd, and N is nonnegative. By
substituting pr(3N + 1) for n in (4.2), we obtain

(4.4) 8(10σ3(n) + 3(1− 4n)σ(n)) ≡ 8(10σ3(pr)σ3(3N + 1)

+ 3(1− 4pr(3N + 1))σ(pr)σ(3N + 1)) (mod 33).

We replace p by 3x− 1 and simplify it using (2.1). Then (4.4) is equivalent
to

(4.5) 8(10σ3(n) + 3(1− 4n)σ(n)) ≡ 8(10σ3((3x− 1)r)σ3(3N + 1)

+ 15σ((3x− 1)r)σ(3N + 1)) (mod 33).

By (2.3) and (2.21), we see that (4.5) is equivalent to

(4.6) 40(2 · 32x · a3Â3 + 3 · 3x · a1Â1)

≡ 40 · 32x(2a1Â1 + a1Â1) ≡ 0 (mod 33),

since Â3 = Â1. By (4.4)–(4.6), the congruence (4.2) is derived. In a similar
way, we can show (4.3). Thus the proof of Theorem 4.1 is complete.

5. Coefficients of P 2/R. In this section, we prove the congruence for
the coefficients of qn for P 2(q)/R(q).

Theorem 5.1. Set P 2(q)/R(q) =
∑∞

n=0 αnq
n, |q| < 1. Then

αn ≡ 0 (mod 35) for n ≡ 2 (mod 3).

Proof. As we did in the previous sections, for sufficiently small |q|, from
(1.1) and (1.3), we take the geometric series expansion of P 2(q)/R(q),
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P 2(q)
R(q)

=
(

1− 48
∞∑

n=1

σ(n)qn + 242
∞∑

n=2

n−1∑

k=1

σ(k)σ(n− k)qn
)

×
(

1 + 504
∞∑

n=1

σ5(n)qn + 5042
∞∑

n=2

n−1∑

k=1

σ5(k)σ5(n− k)qn + . . .
)

=
(

1− 48
∞∑

n=1

σ(n)qn + 48
∞∑

n=1

(5σ3(n)− (6n− 1)σ(n))qn
)

×
(

1 + 504
∞∑

n=1

σ5(n)qn + 5042
∞∑

n=2

n−1∑

k=1

σ5(k)σ5(n− k)qn + . . .
)
,

where the last step is obtained by (2.25). Then, for n ≡ 2 (mod 3),

αn ≡ −48σ(n) + 48(5σ3(n)− (6n− 1)σ(n)) + 504σ5(n)(5.1)

+ 5042
n−1∑

k=1

σ5(k)σ5(n− k)− 48 · 504
n−1∑

k=1

σ(k)σ5(n− k)

+ 48 · 504
n−1∑

k=1

(5σ3(k)− (6k − 1)σ(k))σ5(n− k) (mod 35)

≡ 48(5σ3(n)− 6nσ(n)) + 504σ5(n) + 5042
n−1∑

k=1

σ5(k)σ5(n− k)

+ 48 · 504
n−1∑

k=1

5σ3(k)σ5(n− k)

− 48 · 504
n−1∑

k=1

6kσ(k)σ5(n− k) (mod 35).

By (2.27), (2.28), and (5.1), we see that

αn ≡ 24 · 3(5σ3(n)− 6nσ(n)) + 23 · 32 · 7σ5(n)

+ 26 · 34 · 72
n−1∑

k=1

σ5(k)σ5(n− k) + 23 · 3(11σ9(n)− 3 · 7σ5(n)

+ 2 · 5σ3(n))− 25 · 32(5nσ7(n)− 2 · 3n2σ5(n) + nσ(n)) (mod 35).

By (2.31) and simplification, we see that

αn ≡ −26 · 32 · 5 · 7σ(n) + 25 · 32 · 439nσ(n)− 24 · 3 · 5 · 439σ3(n)

+ 24 · 33 · 72σ5(n)− 25 · 33 · 72nσ5(n) + 26 · 33n2σ5(n)

+ 26 · 32 · 5 · 7σ7(n)− 25 · 32 · 5nσ7(n) + 23 · 3 · 11σ9(n) (mod 35).
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By (2.33), we see that

αn ≡ (−23 · 3 · 5 · 132 + 25 · 32 · 449n− 27 · 33 · 5 · n2 + 28 · 33 · 5n3

− 28 · 34n4)σ(n) + (−24 · 3 · 5 · 449 + 25 · 33 · 52n− 27 · 34 · 5 · n2

+ 28 · 33 · 5n3)σ3(n) + (28 · 32 · 7− 25 · 32 · 7 · 11n− 26 · 35n2)σ5(n)

+ (25 · 3 · 5 · 37 + 28 · 33 · 5n)σ7(n) (mod 35).

We use (2.32) to obtain the equivalent congruence

αn ≡ (22 · 3 · 11 + 22 · 32n+ 23 · 33n2 + 2 · 33n3 + 2 · 34n4)σ(n)

+ (22 · 3 · 11 + 34n− 34n2 + 2 · 33n3)σ3(n)

+ (2 · 32 · 5 + 32 · 23n)σ5(n) + 3 · 7σ7(n) (mod 35).

Since n ≡ 2 (mod 3), terms with a factor of 34σ(n), 33σ3(n), 34σ5(n) and
34σ7(n) cancel by (2.15). Next, setting n = 3k − 1 everywhere, expanding
all powers of 3k − 1, and using (2.15), we find that

αn ≡ (24 + 9n)σ(n) + 24σ3(n) + (63 + 18n)σ5(n) + 21σ7(n) (mod 35).

Therefore, when n ≡ 2 (mod 3),

αn ≡ 3{(8 + 3n)σ(n) + 8σ3(n) + (21 + 6n)σ5(n) + 7σ7(n)} (mod 35).

So we only need to show that

(8 + 3n)σ(n) + 8σ3(n) + (21 + 6n)σ5(n) + 7σ7(n) ≡ 0 (mod 34).(5.2)

Since n ≡ 2 (mod 3), it has at least one prime factor p that is congruent
to 2 modulo 3 and whose power r in n is odd. Furthermore, the number of
such prime factors must be odd since n ≡ 2 (mod 3). Suppose that there are
more than three prime factors of n that are congruent to 2 modulo 3 and
with powers in n that are odd. Then the congruence (5.2) can be achieved
easily by (2.1), since σk(n) is multiplicative. So we can suppose that there
are at most three prime factors congruent to 2 modulo 3 whose powers in n
are odd. Let n = prpr11 . . . prmm . We consider two cases: (i) there are exactly
three primes p, p1, p2 ≡ 2 (mod 3) whose powers r, r1, r2 in n are odd, (ii)
there is only one prime p ≡ 2 (mod 3) whose power r in n is odd. We use
ak, bk, ck, Âk, B̂k, and Ĉk as defined in Section 2.

Case (i): n = prpr11 . . . prmm , where p = 3x−1, r is odd, and pi = 3xi−1,
ri is odd for i = 1, 2. Let pr11 . . . prmm = 3N + 1. By substituting pr(3N + 1)
for n in (5.2), the congruence becomes

(8 + 3pr + 32prN)σ(n) + 8σ3(n) + (21 + 6pr + 18prN)σ5(n)

+ 7σ7(n) ≡ 0 (mod 34),

which is equivalent to

8σ(n) + 8σ3(n) + 7σ7(n) ≡ 0 (mod 34),(5.3)
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since σk(n) is multiplicative and σk(pr), σk(p
r1
1 ) and σk(p

r2
2 ) are divisible by

3 by (2.1). Furthermore, σ3(pr) is divisible by 32 by (2.2). So, we see that
σ3(n) ≡ 0 (mod 34). Hence, (5.3) is equivalent to

8σ(n) + 7σ7(n) = 8σ(pr)σ(3N + 1) + 7σ7(pr)σ7(3N + 1)(5.4)

≡ 8σ(pr)(Â1 + 3B̂1 + 32Ĉ1)

+ 7σ7(pr)(Â7 + 3B̂7 + 32Ĉ7) (mod 34),

where Âk, B̂k, and Ĉk are defined by (2.18)–(2.20). We see that Âk and B̂k,
k = 1, 7, are zero since p1 ≡ p2 ≡ 2 (mod 3) and r1 ≡ r2 ≡ 1 (mod 2). By
(2.3), we see that (5.4) is equivalent to

8 · 33xa1Ĉ1 + 72 · 33xa7Ĉ7 ≡ 33xa1(8 + 73)Ĉ1 ≡ 0 (mod 34),

since a1 = a7 and Ĉ1 = 7Ĉ7 by (2.23).

Case (ii): n = prpr11 . . . prmm , where p = 3x−1 and r is odd. Let pr11 . . . prmm
= 3N + 1. Then, by substituting pr(3N + 1) for n, (5.2) becomes

(8 + 3pr + 32prN)σ(pr)σ(3N + 1) + 8σ3(pr)σ3(3N + 1)

+ (21 + 6pr + 18prN)σ5(pr)σ5(3N + 1) + 7σ7(pr)σ7(3N + 1) ≡ 0 (mod 34),

which, by (2.17), is equivalent to

(5.5) (8 + 3pr + 32prN)σ(pr)(Â1 + 3B̂1 + 32Ĉ1)

+ 8σ3(pr)(Â3 + 3B̂3 + 32Ĉ3)

+ (21 + 6pr + 18prN)σ5(pr)(Â5 + 3B̂5 + 32Ĉ5)

+ 7σ7(pr)(Â7 + 3B̂7 + 32Ĉ7) ≡ 0 (mod 34).

By (2.21)–(2.23), congruence (5.5) is equivalent to

(5.6) {(8 + 3pr)σ(pr) + 8σ3(pr) + (21 + 6pr)σ5(pr) + 7σ7(pr)}Â1

+ {(8 + 3pr)σ(pr) + 3 · 8σ3(pr) + 5(21 + 6pr)σ5(pr) + 72σ7(pr)}3B̂1

+ {(8 + 3pr)σ(pr) + 32 · 8σ3(pr) + 52(21 + 6pr)σ5(pr) + 73σ7(pr)}32U

+ {(8 + 3pr)σ(pr) + 3 · 8σ3(pr) + 5(21 + 6pr)σ5(pr) + 72σ7(pr)}32V

+ 32prN{σ(pr) + 2σ5(pr)}Â1 ≡ 0 (mod 34).

To show (5.6), we examine carefully each expression in curly brackets in
(5.6). Since p = 3x− 1, we see that

pr ≡ −1 + 3rx (mod 32).
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By (2.3) we see that

(5.7) (8 + 3pr)σ(pr) + 8σ3(pr) + (21 + 6pr)σ5(pr) + 7σ7(pr)

≡ (5 + 32rx)(3x)(a1 + 3b1 + 32c1) + 8 · 32x(1− 3x+ 3x2)(a3 + 3b3 + 32c3)

+ (15 + 2 · 32rx)(15x)(1− 6x+ 18x2)(a5 + 3b5 + 32c5)

+ 72 · 3x(1− 9x+ 45x2)(a7 + 3b7 + 32c7) (mod 34).

By (2.4)–(2.6), after reducing some coefficients modulo 34, we see that (5.7)
is equivalent to

(5.8) 27x(2 + x2)
r + 1

2
+ 27x2(2r + 1)

r + 1
2
− 27x2 r

2 − 1
4

+ (5 + 74)33xu+ (5 + 73)33xv

≡ 27x(2 + x2)
r + 1

2
+ 27x2 (r + 1)(3r + 3)

4

≡ 0 (mod 34),

since x(2 + x2) ≡ 0 (mod 3).
We next examine the coefficient of 3B̂1 in (5.6). By the congruence pr ≡

−1 + 3rx (mod 32) and (2.3)–(2.5), we see that

(5.9) (8 + 3pr)σ(pr) + 3 · 8σ3(pr) + 5(21 + 6pr)σ5(pr) + 72σ7(pr)

≡ (5 + 32rx)(3x)(a1 + 3b1 + 32c1) + 33 · 8x(1− 3x+ 3x2)(a3 + 3b3 + 32c3)

+ 52(15 + 2 · 32rx)(3x)(1− 6x+ 18x2)(a5 + 3b5 + 32c5)

+ 73 · 3x(1− 9x+ 45x2)(a7 + 3b7 + 32c7)

≡ 15xa1 + 32 · 5xb1 + 32 · 53xa5 + 3 · 73xa7 + 32 · 73xb7 ≡ 9xa1 (mod 33).

Using the congruence pr ≡ −1 + 3rx (mod 32), (2.3), and (2.4), we find
that the coefficient of 32U in (5.6) is

(5.10) (8 + 3pr)σ(pr) + 32 · 8σ3(pr) + 52(21 + 6pr)σ5(pr) + 73σ7(pr)

≡ (5 + 32rx)(3x)(a1 + 3b1 + 32c1) + 34 · 8x(1− 3x+ 3x2)(a3 + 3b3 + 32c3)

+ 53(15 + 2 · 32rx)(3x)(1− 6x+ 18x2)(a5 + 3b5 + 32c5)

+ 74 · 3x(1− 9x+ 45x2)(a7 + 3b7 + 32c7)

≡ 15xa1 + 3 · 74xa7 ≡ 0 (mod 32).

By (5.9), we see that the coefficient of 32V in (5.6) is

(5.11) (8 + 3pr)σ(pr) + 32 · 8σ3(pr)

+ 52(21 + 6pr)σ5(pr) + 73σ7(pr) ≡ 0 (mod 32).
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We examine the coefficient of the last term in (5.6). By (2.3), we see that

32prN(σ(pr) + 2σ5(pr)) ≡ 9prN(3xa1 + 30xa5)(5.12)

≡ 27xa1N (mod 34).

By combining (5.8)–(5.12), we see that (5.6) is equivalent to

(5.13) 33xa1B̂1 + 33xa1Â1N ≡ 0 (mod 34).

By (2.8), (2.9), (2.12), (2.13), and (2.19), we see that (5.13) is equivalent to

33xa1Â1

(
3
m1∑

j=1

−rj
2

xj + 3
m∑

j=m1+1

rj
2
xj

)
≡ 0 (mod 34),

where m1 is the number of pi ≡ 2 (mod 3) in 3N + 1, and Â1rj/2 is an
integer since Â1 =

∏m
j=m1+1(rj + 1).

This then completes the proof of (5.6) and hence also of (5.2) in Case (ii).
The proof of Theorem 5.1 is thus complete.
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