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1. Introduction. Let L/K be a finite Galois extension of number fields
with Galois group G. Then by a theorem of Noether it is well known that
the ring of integers OL is a projective module over the group ring OKG
if and only if L/K is tamely ramified. If OL is in fact free (necessarily of
rank 1) over OKG, then L/K is said to have a normal integral basis.

A number field K is called a Hilbert–Speiser field if every finite abelian
tamely ramified extension L/K has a normal integral basis. The celebrated
Hilbert–Speiser Theorem says that Q is such a field, and the main result of
[GRRS99] is that Q is in fact the only such field. By fixing a finite abelian
group G one can consider a finer problem: given a number field K, does every
tame G-Galois extension L/K have a normal integral basis? If so, K is said
to be a Hilbert–Speiser field of type G. The simplest case to consider is
when G = Cp, the cyclic group of prime order p. This has been studied,
for instance, in [Car03], [Car04], [Her05], [Ich02], [Ich04], [Ich07a], [Ich07b]
and [IST07]. We continue the investigation of this case by establishing the
following result, the proof of which is based on a detailed analysis of locally
free class groups and ramification indices.

Theorem 1.1. Let K be a totally real number field and let p ≥ 5 be
prime. Suppose that K/Q is ramified at p. If p = 5 and [K(ζ5) : K] = 2,
assume further that there exists a prime p of K above p such that the rami-
fication index of p in K/Q is at least 3. Then K is not Hilbert–Speiser of
type Cp.

Remark 1.2. Some extra conditions in the case p = 5 and [K(ζ5) : K]
= 2 are required because, for example, as noted in [Ich07a, Remark 1],
K = Q(

√
5) is in fact Hilbert–Speiser of type C5.
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Theorem 1.1 can be seen as an analogue of the following result of Herreng
(see [Her05, §3]). The authors are grateful to Nigel P. Byott for pointing out
that the original hypothesis that K/Q is Galois can be weakened as below.

Theorem 1.3 (Herreng). Let K be a totally imaginary number field and
let p be an odd prime. Suppose that every prime p of K above p is ramified.
If

(a) p > [K : Q], or
(b) p ≥ 5 and ζp ∈ K, or
(c) p ≥ 7 and the ramification index in K/Q of every prime p of K

above p is at least 3,

then K is not Hilbert–Speiser of type Cp.

Combining Theorems 1.1 and 1.3(a) we immediately obtain the following
result, which in many (but not all) respects is a significant sharpening of
[Ich07a, Theorems 1 and 2].

Theorem 1.4. Let K be a Hilbert–Speiser field of type Cp for some odd
prime p. If either

(a) K is totally real and p ≥ 7, or
(b) K is totally imaginary and p > [K : Q],

then K ∩Q(ζpn) = Q for all n ≥ 1.

2. Realizable classes. We briefly recall the work of McCulloh on re-
alizable classes in the special case of cyclic extensions of prime degree (see
[McC83] for further details).

Let K be a number field and let p be a prime. Let ∆ ' (Z/pZ)× be the
group of automorphisms of Cp. Then the locally free class group Cl(OKCp)
is a ∆-module. As L/K varies over all tame Cp-Galois extensions of K, the
class (OL) of OL varies over a subset R(OKCp) of Cl(OKCp). This subset
is in fact a subgroup which can be described explicitly.

Let Cl(OK) denote the ideal class group of K and let Cl′(OKCp) be the
kernel of the map Cl(OKCp) → Cl(OK) induced by augmentation. Let J
be the Stickelberger ideal in Z∆ (the definition of J will be given later).
The key result of relevance to the present paper is that R(OKCp) is the sub-
group Cl′(OKCp)J of Cl(OKCp) where Cl′(OKCp)J = {cα : c ∈ Cl′(OKCp),
α ∈ J }.

3. The proof of Theorem 1.1. Let K be a totally real number field
and let p ≥ 5 be prime. Let p be some prime of K above p and let e denote
the ramification index of p in K/Q. We will assume that p is ramified in
K/Q and so p can be chosen such that e ≥ 2. Under these hypotheses we
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shall show that K is not Hilbert–Speiser of type Cp (note that in the case
p = 5 and [K(ζp) : K] = 2 we shall have to assume that e ≥ 3).

The basic idea of the proof will be to construct certain OK-algebras
Γ and S such that Γ ⊆ S with S/Γ ' OK/p as OK-modules. Together,
S and Γ will be used to construct a non-trivial subgroup of the realizable
classes R(OKCp) = Cl′(OKCp)J described in Section 2, thereby giving the
desired result. At all primes q 6= p of K the completions Sq and Γq will be
equal, so the essential part of the argument will be local at p.

Let φp(z) be the pth cyclotomic polynomial. Then Γ := OK [z]/(φp(z))
is an OK-algebra, but is a domain if and only if [K(ζp) : K] = p − 1. The
group ∆ := (Z/pZ)× acts on Γ in the following way: to each ā ∈ ∆ we
associate an automorphism σa of Γ defined by σa(z) = za, where the image
of z in Γ is again written z. Let ω : ∆→ Z×p be the Teichmüller character,
so that ω(σa) = ã where ãp−1 = 1, and ã ≡ a (mod p).

There exists an element λ such that Zp[ζp] = Zp[λ] with λp−1 = −p, λ ≡
1− ζp (mod (1− ζp)2) (see, for example, [Lan90, Chapter 14, Lemma 3.1]).
Furthermore,∆ acts on λiZp through the character ωi with i ∈ {0, . . . , p−2}.
Note that Γp = OKp⊗ZpZp[ζp], for which {1, λ, λ2, . . . , λp−2} is anOKp-basis.
Let π denote a parameter of OKp and define the element x := (1/π)⊗ λp−2

in Kp ⊗Qp Qp(ζp) = KpΓ (we will abuse notation and write x = λp−2/π).

Lemma 3.1. We have x2, x3, λx, πx ∈ Γp.

Proof. Since e ≥ 2, we have p/π2 ∈ OKp . Hence

x2 =
λ2p−4

π2
=
−pλp−3

π2
and x3 =

(−p)2λp−4

π3

are both in Γp (we have used p ≥ 5 here). Furthermore, it is clear that

λx =
λp−1

π
=
−p
π

and πx = λp−2

are both in Γp.

We shall now consider three cases, the first two of which overlap.

3.1. The case [K(ζp) : K] > 2. A consequence of Lemma 3.1 is that the
OKp-module T := Γp + xOKp is in fact an OKp-algebra. Furthermore, we
have

πT = πΓp + λp−2OKp ⊆ Γp ⊆ T
since λp−2 is part of an OKp-basis of Γp. We now let S be the OK-order
defined by

Sq = Γq (q 6= p), Sp = T.

We find that Γ ⊆ S and πS ⊆ Γ (note that we have abused notation in
the obvious way here). Furthermore, the ring S̄ := S/πS is isomorphic to
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Sp/πSp = T/πT . Let Γ̄ be the image of Γ under the canonical map S → S̄.
We have a Milnor square

Γ ↪→ S

↓ ↓
Γ̄ ↪→ S̄

where the horizontal arrows are the natural inclusions and the vertical ar-
rows are the natural projections (note that this is a special case of a fiber
product). Note that we have δ(λp−2) ≡ ωp−2(δ)λp−2 modulo pZp[ζp] for ev-
ery δ ∈ ∆, so δ(x) ∈ x + Γ ⊂ S. Hence ∆ acts on S and so acts on each
of the rings in the Milnor square. By [CR87, p. 242] we have the following
exact sequence

K1(S)×K1(Γ̄ )→ K1(S̄)→ Cl(Γ )→ Cl(S)→ 0.

As all the rings above are commutative, this becomes

S× × Γ̄× → S̄× → Cl(Γ )→ Cl(S)→ 0.

Hence we have an embedding of ∆-modules

N :=
S̄×

Γ̄× · im(S×)
↪→ Cl(Γ ),

where im(S×) is the image of S× under the map S → S̄.
For every ∆-module X, let X− and Xω−1

denote the minus part and the
ω−1-part of Zp ⊗Z X, respectively. Then Xω−1 ⊆ X−. We will show that
Nω−1

contains a submodule M of order p. Note that by the definition of x
and the action of ∆, we have x ∈ Sω−1

. We define x̄ ∈ S̄ to be the image of
x ∈ T under the natural projection T → T/πT ' S̄ and note that x̄ ∈ S̄ω−1

.
Let [exp](z) :=

∑p−1
i=0 (1/i!)zi denote the truncated exponential series.

Whenever the ideal (a, b) generated by a and b satisfies (a, b)p = 0, we have
[exp](a + b) = [exp](a) · [exp](b) (see the proof of [CGM+98, p-elementary
group schemes—constructions and Raynaud’s theory, Remark 1.1]). Let y :=
[exp](x̄) ∈ S̄. Since yp = [exp](px̄) = [exp](0) = 1, we have y ∈ S̄×. We note
that y /∈ Γ̄ (the summand with i = 1 is x̄ and hence plainly outside Γ̄ ,
and all other summands are in Γ̄ by Lemma 3.1). Moreover, as [exp] is
compatible with the ∆-action, we have y ∈ (S̄×)ω

−1
= S̄× ∩ S̄ω−1

.

Lemma 3.2. We have (Γ̄× · im(S×))ω
−1

= (Γ̄×)ω
−1

.

Proof. Let M denote the maximal order in KS = KΓ . Then M =
ind∆∆0

OK(ζp) with ∆0 = Gal(K(ζp)/K). We consider S×− ⊆ M×
−; since

K is totally real, complex conjugation j ∈ ∆0 acts on each factor of M
separately, and we see thatO×−K(ζp) is the multiplicative group of roots of unity
〈ζpf 〉 for some f ≥ 1 (see [Was97, Theorem 4.12]). Hence M×

− = ind∆∆0
〈ζpf 〉.
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Suppose that f = 1. Then ∆0 acts on ζp via ω|∆0 , and from the Frobenius
reciprocity theorem one deduces that ind∆∆0

〈ζp〉 has non-trivial ω−1-part if
and only if ω−1|∆0 = ω|∆0 , that is, if and only if ω2 is trivial on ∆0. But this
is not the case since [K(ζp) : K] = |∆0| > 2 by hypothesis. Now suppose
f > 1. Then considering the short exact sequence

1→ ind∆∆0
〈ζpf−1〉 → ind∆∆0

〈ζpf 〉 → ind∆∆0
〈ζp〉 → 1,

we see that the middle term has trivial ω−1-part if and only if the same is
true of both the outer terms. It now follows by induction on f that M×

− =
ind∆∆0

〈ζpf 〉 has trivial ω−1-part. Hence (S×)ω
−1

is trivial, and the lemma is
proved.

Let ȳ denote the projection of y to N . If ȳ were trivial in N , then y

would have to be in (Γ̄× · im(S×))ω
−1

= (Γ̄×)ω
−1

. However, we have already
noted that y is not even in Γ̄ . Hence M := 〈ȳ〉 is a non-trivial ∆-submodule
of N with Mω−1

= M .

3.2. The case e ≥ 4. Let x1 = x = λp−2/π = (1/π)⊗ λp−2 be as above
and define x2 = λp−2/π2 = (1/π2)⊗ λp−2.

Lemma 3.3. We have x2
2, x

3
2, λx2, π

2x2, x1x2, x
2
1x2, x1x

2
2 ∈ Γp.

Proof. We use the assumption that p ≥ 5 without further mention. Since
e ≥ 4, we have p/π4 ∈ OKp . Hence

x2
2 =

λ2p−4

π4
=
−pλp−3

π4
and x3

2 =
p2λp−4

π6

are both in Γp. Furthermore, it is clear that

λx2 =
λp−1

π2
=
−p
π2

and π2x2 = λp−2

are both in Γp. Finally,

x1x2 =
λ2p−4

π3
=

(−p)λp−3

π3
, x2

1x2 =
λ3p−6

π4
=

(−p)2λp−4

π4
, and

x1x
2
2 =

λ3p−6

π5
=

(−p)2λp−4

π5

are all in Γp.

A consequence of Lemmas 3.1 and 3.3 is that the OKp-module T :=
Γp + x1OKp + x2OKp is in fact an OKp-algebra. Furthermore, we have

π2T = π2Γp + πλp−2OKp + λp−2OKp = π2Γp + λp−2OKp ⊆ Γp ⊆ T
since λp−2 is part of an OKp-basis of Γp. We now let S be the OK-order
defined by

Sq = Γq (q 6= p), Sp = T.
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Then Γ ⊆ S and π2S ⊆ Γ . The same argument as in the previous case gives
an embedding of ∆-modules

N :=
S̄×

Γ̄× · im(S×)
↪→ Cl(Γ ).

By definition of x1, x2 and the action of ∆, we have x1, x2 ∈ Sω
−1

. Let
y1 = [exp](x̄1), y2 = [exp](x̄2) ∈ S̄ = S/π2S. As in the previous case, both
y1, y2 are elements of order p in (S̄×)ω

−1
.

Lemma 3.4. (S×)ω
−1

is cyclic.

Proof. Let M denote the maximal order in KS = KΓ . As S ⊆ M, we
have (S×)ω

−1 ⊆ (M×)ω
−1

, and so it suffices to show that (M×)ω
−1

is a cyclic
group.

By the same argument as for Lemma 3.2, we obtain M×
− = ind∆∆0

〈ζpf 〉.
Furthermore, as ω−1 is an odd character, we have (M×)ω

−1 ⊆ M×
−. Now

〈ζpf 〉 is trivially cyclic as a Zp[∆0]-module; hence

M×
− = ind∆∆0

〈ζpf 〉 = Zp[∆]⊗Zp[∆0] 〈ζpf 〉

is cyclic as a Zp[∆]-module. Thus (M×)ω
−1

= Zp(ω−1)⊗Zp[∆] M
×− is cyclic

as a Zp(ω−1)-module, where Zp(ω−1) is the ring extension of Zp obtained
by adjoining the image of ω−1. However, ω−1 takes its values in Z×p , and so
Zp(ω−1) = Zp. Therefore (M×)ω

−1
is cyclic as a Zp-module, and hence is

cyclic as a group.

Let ỹ1, ỹ2 ∈ (S̄×/Γ̄×)ω
−1

be the images of y1, y2 under the natural pro-
jection. Since y1, y2 /∈ Γ̄ (the summand with i = 1 is outside Γ̄ and all
others are in Γ̄ by Lemmas 3.1 and 3.3), ỹ1, ỹ2 are also each of order p.
Suppose that ỹk11 ỹ

k2
2 is trivial for some k1, k2 ∈ {1, . . . , p − 1}. This would

mean that [exp](k1x̄1 + k2x̄2) is in Γ̄ . By virtue of Lemma 3.3, we have
[exp](k1x̄1 + k2x̄2) ≡ 1 + k1x̄1 + k2x̄2 modulo Γ̄ . Therefore we would ob-
tain k1x̄1 + k2x̄2 ∈ Γ̄ and so k1x1 + k2x2 ∈ Γp, which is impossible. Hence
the subgroup 〈ỹ1, ỹ2〉 ' 〈y1, y2〉 ' Z/pZ × Z/pZ is non-cyclic. Let ȳ1, ȳ2 be
the projections of ỹ1, ỹ2 to N and let M := 〈ȳ1, ȳ2〉 ⊆ Nω−1

. Note that M
is non-trivial because (im(S×))ω

−1
is cyclic by Lemma 3.4, but 〈ỹ1, ỹ2〉 is

non-cyclic. Hence M is a non-trivial ∆-submodule of N with Mω−1
= M .

3.3. The case [K(ζp) : K] = 2 and e = 2 or 3. Note that the condition
[K(ζp) : K] = 2 implies that (p− 1)/2 divides e. Hence we are reduced
to considering the cases p = 5 and p = 7 (since p ≥ 11 forces e ≥ 5). If
p = 5, then e must be even and so in fact e = 2. However, this case is
excluded by hypothesis. If p = 7, then we must have e = 3. In this case, we
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let x1 = λ5/π, x2 = λ5/π2 and x3 = λ4/π. It is straightforward to check
that the OKp-module T := Γp + x1OKp + x2OKp + x3OKp is in fact an
OKp-algebra. The result is then given by a slight variant of the proof of the
previous case (note that x1, x2 ∈ Sω

−1
but x3 /∈ Sω

−1
).

3.4. The proof of Theorem 1.1. In each of the above cases, we have
shown that there exists a non-trivial ∆-submodule M of Cl(Γ ) such that
Mω−1

= M .

Proof of Theorem 1.1. Recall that the Stickelberger ideal is defined to
be J = Z∆ ∩ θ · Z∆ = Ann∆(〈ζp〉) · θ where θ is the Stickelberger el-
ement p−1

∑p−2
j=1 jσ

−1
j . Let Jp ⊆ Zp∆ be the p-completion of J . Then

ω−1(Jp) = ω−1(Ann∆(〈ζp〉)) ·ω−1θ. The second factor of the last expression
is the generalized Bernoulli number B1,ω. Since p ≥ 5, the first factor is Zp.
By [Was97, Corollary 5.15] we have B1,ω ≡ B2/2 = 1/12 (mod p). Hence,
MJ = Mω−1(Jp) = MZp = M and therefore Cl(Γ )J 6= 0.

Let Σ denote the sum of the elements of Cp. Consider the following
Milnor square:

OKCp
α→ OKCp/OKΣ =: Λ

↓ β ↓ γ
OK → OK/pOK

where the horizontal maps are the natural projections, β is the augmentation
map, and γ is the map induced by augmentation. The resulting map

Cl(OKCp)
(α,β)−−−→ Cl(Λ)× Cl(OK)

is surjective (see, for instance, [CR87, Corollary 49.28]). It follows immedi-
ately that

Cl′(OKCp)→ Cl(Λ)

is surjective. However, Cl(Λ) ' Cl(Γ ) since Λ ' Γ , and so Cl(Λ)J 6= 0.
Therefore Cl′(OKCp)J = R(OKCp) 6= 0, and so K is not a Hilbert–Speiser
field of type Cp.
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