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On the independence of σ(φ(n)) and φ(σ(n))

by

Mohand-Ouamar Hernane (Alger) and Florian Luca (Morelia)

1. Introduction. In [3], two arithmetic functions f(n) and g(n) are
called independent if for every positive integer k and any two permutations
i1, . . . , ik and j1, . . . , jk of {1, . . . , k} there exist infinitely many positive in-
tegers n such that

f(n+ i1) < f(n+ i2) < · · · < f(n+ ik)

and
g(n+ j1) > g(n+ j2) > · · · > g(n+ jk).

In [3], it was shown that the number of distinct prime factors ω(n) of n and
the number of divisors τ(n) of n are independent. In [2], it was shown that
the Euler function φ(n) and the Carmichael function λ(n) are independent.
We recall that φ(n) is the cardinality of the group of invertible elements
modulo n, while λ(n) is the exponent (maximal order of elements) of this
group. In this paper, we prove that the compositions σ(φ(n)) and φ(σ(n))
are independent in the above sense.

Theorem 1. The functions σ(φ(n)) and φ(σ(n)) are independent.

We recall that the compositions σ ◦ φ and φ ◦ σ have already been in-
vestigated in a series of papers [7], [1], [6]. A similar method can be used to
prove that φ ◦ φ and σ ◦ σ are independent. We do not enter into details.
On the other hand, it would be interesting to find an effective version of the
above theorem, namely to find explicit sequences of n’s tending to infinity
with k for which the two inequalities

(1) σ(φ(n+ i1)) < σ(φ(n+ i2)) < · · · < σ(φ(n+ ik))

and

(2) φ(σ(n+ j1)) > φ(σ(n+ j2)) > · · · > φ(σ(n+ jk))

hold. We leave this as a challenge to the reader.
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Throughout this paper, we use the Vinogradov symbols � and � as
well as the Landau symbol O with their usual meanings. All the implied
constants depend at most on the number k. Sometimes we will emphasize
this dependence by writing Ok, etc.

2. The proof. We assume that k ≥ 2, as otherwise there is nothing to
prove. We take K = k!2 and let λ1, . . . , λk be k distinct primes > k2. We put
Λ =

∏k
i=1 λi, N = KΛ and let n0 (mod N) be the solution of the system of

congruences

n ≡ 0 (mod K), n+ i ≡ λi (mod λ2
i ) for all i = 1, . . . , k.

The congruence class n0 (mod N) exists by the Chinese Remainder Lemma.
We assume that n0 > 0 is the smallest positive integer in its congruence
class modulo N .

If n ≡ n0 (mod N), then there exists a positive integer m such that
n = Nm+ n0. Furthermore,

n+i = (Nm+n0)+i = iλi

(
N

iλi
m+

n0 + i

iλi

)
:= iλi(aim+bi), i = 1, . . . , k.

For a positive integer m we write p(m) for the smallest prime factor of m.
We let x > N , u a positive integer depending on k to be determined later

and put

(3) E(x) = {1 ≤ m ≤ x : p(aim+ bi) > x1/u for all i = 1, . . . , k}.

Lemma 1. There exist constants u0 ≥ 3, c1, c2, x0 depending on k such
that if x > x0, u > u0 and x1/u > N2, then

#E(x) = c(x)
xuk

(log x)k
for some c(x) ∈ [c1, c2].

Proof. This follows easily from the Fundamental Lemma of the Combi-
natorial Sieve. Indeed, let

Fi(m) = aim+ bi for i = 1, . . . , k,

and put

F (m) =
k∏
i=1

Fi(m).

For a prime number p put ρ(p) = #{1 ≤ m ≤ p − 1 : F (m) ≡ 0 (mod p)}.
Note that, if p |N , then p | ai for all i = 1, . . . , k but p - bi for any i = 1, . . . , k.
Thus, ρ(p) = 0 for such primes p. On the other hand, if p - N , then p - ai for
any i = 1, . . . , k. In particular, m ≡ bia−1

i (mod p) is a solution of F (m) ≡ 0
(mod m). Let us show that these solutions are distinct. If not, there are i 6= j
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such that

p | aibj − ajbi =
1

ijλiλj
(N(n0 + j)−N(n0 + i)) =

N(j − i)
ijλiλj

∣∣N2,

therefore p |N , which is a contradiction. Thus, ρ(p) = k for all p - N . The
version of the Fundamental Lemma of the Combinatorial Sieve appearing on
page 85 in [5] (Theorem 2.6) together with the remarks on the bottom of
page 86 there show that for x1/u > N2, we have

(4) #E(x)

= x
∏

p≤x1/u

(
1− ρ(p)

p

)
{1 +Ok(exp(−u(log u− log log 3u− k − 2)))}

+Ok

(
x

exp(
√

log x)

)
.

Since x1/u > N2, we have

∏
p≤x1/u

(
1− ρ(p)

p

)
=

∏
k<p≤x1/u

(
1− k

p

) k∏
i=1

(
1− k

λi

)−1

.

Note that for the second product above, since λi > k2 for i = 1, . . . , k, we
have

(5) 1 <
k∏
i=1

(
1− k

λi

)−1

<

(
1− 1

k

)−k
≤ 4,

whereas for the first, we have∏
k<p<x1/u

(
1− k

p

)
= exp

( ∑
k<p<x1/u

log
(

1− k

p

))
(6)

= exp
(
−

∑
k<p<x1/u

k

p
+O

(∑
p>k

k

p2

))

= exp
(
−k(log log x1/u − log log k) +O

(
k

log k

))
= exp(k log u− k log log x+O(k log log k))

=
uk

(log x)k
exp(O(k log log k)).

We now choose u0 := u0(k) ≥ 3 such that for u > u0,

1 +Ok(−u(log u− log log(3u)− k − 2)) ∈ [1/2, 2].
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Next, we note that by inequalities (5), (6) and estimate (4),

#E(x) = c1(x)
xuk

(log x)k
+Ok

(
x

exp(
√

log x)

)
,

where c1(x) ∈ [α, β], with α < β some positive constants depending on k.
Taking now x0 sufficiently large with respect to k, since u ≥ 3, it follows
that the desired estimate holds with c1 = α/2 and c2 = 2β.

We now shrink E(x) by removing some of its elements. Recall that for a
positive integer m its Möbius function is µ(m) = (−1)ω(m) if m is squarefree
and µ(m) = 0 otherwise. Let

E1(x) = {m ∈ E(x) : µ(Fi(m)) = 0 for some i = 1, . . . , k},
E2(x) = {m ∈ E(x) : Fi(m) is prime for some i = 1, . . . , k}.

Next we give upper bounds for the cardinalities of Ei(x) for i = 1, 2.

Lemma 2. We keep the notations and hypothesis of Lemma 1. Then

(i) There exists a positive constant c3 depending on k such that

#E1(x) ≤ c3x1−1/u.

(ii) There exists a positive constant c4 depending on k such that

#E2(x) ≤ c4
xuk−1

(log x)k
.

Proof. (i) Assume that m ∈ E(x) and p2 |Fi(m) for some i = 1, . . . , k.
Fix i and p. Then m ≡ −bia−1

i (mod p2). Since m ≤ x, the number of
such m is ≤ bx/p2c + 1 ≤ x/p2 + 1. Note that since x1/u > N2, we get
aim+bi ≤ Nm+n0+k ≤ 3Nm ≤ 3x1+1/2u < x1+1/u, and since p2 | aim+bi,
we obtain p ≤ x1/2+1/2u < x2/3. Thus, summing up over all possible values
of i ∈ {1, . . . , k} and p ∈ (x1/u, x2/3) yields

#E1(x) ≤ kx
∑

p>x1/u

1
p2

+ kπ(x2/3) ≤ c3x1−1/u,

where c3 > 0 is some constant depending on k, as desired.
(ii) This follows easily from Brun’s sieve. Indeed, let us fix i ∈ {1, . . . , k}

and estimate the cardinality of the subset of m ∈ E(x) such that Fi(m)
is prime. This set is contained in the set of those m ≤ x such that either
m < x1/2, or

p(Fi(m)) > x1/2 and p(Fj(m)) > x1/u for all j 6= i ∈ {1, . . . , k}.
This last problem is a sieving problem. In this case, ρ(p) = #{0 ≤ m ≤
p− 1 : F (m) ≡ 0 (mod p)} equals 0 if p |N , k if p - N and p < x1/u, and 1
if x1/u ≤ x ≤ x1/2. By the Brun sieve (see Theorem 2.4 on page 76 in [5]),



Independence of σ(φ(n)) and φ(σ(n)) 341

the number of such m ∈ [x1/2, x] is

(7) � x
∏

k<p<x1/u

p-N

(
1− k

p

) ∏
x1/u<p<x1/2

(
1− 1

p

)
,

where the implied constant is absolute. The proof of Lemma 1 shows that
the first product is Ok(uk/(log x)k). Mertens’ formula shows that the second
product is

(8)
log(x1/u)

log x

(
1 +O

(
1

log(x1/u)

))
= u−1

(
1 +O

(
u

log x

))
.

Thus,

#{m ∈ E(x) : Fi(m) is prime} ≤
√
x+Ok

(
xuk−1

(log x)k

)
.

Summing up the above inequality over k implies the desired estimate.

It follows from Lemmas 1 and 2 that the set of m ∈ E(x) such that Fi(m)
is squarefree for each i = 1, . . . , k and none is a prime, denoted by E3(x), has
cardinality

≥ c1
ukx

(log x)k
− c3x1−1/u − c4xu

k−1

(log cx)k
,

where c1, c3 and c4 depend only on k. We see therefore that there exists
u1 ≥ max{3, 2c4/c1} and x1 depending on k such that for u = u1 and
x ≥ x1, the above number is ≥ (c1/2)uk1x/(log x)k. From now on, we shall
assume that u = u1 and that x ≥ x1, so that

#E3(x) ≥ c5
xk

(log x)k
,

where we put c5 = c1/2.
Now let δ > 0 be some parameter depending on k, to be fixed later. We

need the following result concerning the distribution of primes p such that
either p− 1 has a large divisor sum, or p+ 1 has a small Euler function.

Lemma 3.

(i) Let δ > 1 and Pδ = {p : σ(p− 1) > δ(p− 1)}. Then

Pδ(x) := #(Pδ ∩ [1, x]) = O(π(x)/log δ).

(ii) Let δ > 1 and Qδ = {p : φ(p+ 1) < δ−1(p+ 1)}. Then

Qδ(x) := #(Qδ ∩ [1, x]) = O(π(x)/log δ).

Proof. (i) We put

h(n) =
∑
p|n

1
p− 1

.
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Observe that for p ∈ Pδ we have

δ <
σ(p− 1)
p− 1

<
p− 1

φ(p− 1)
=
∏
q|p−1

(
1 +

1
q − 1

)
< exp(h(p− 1)),

therefore h(p− 1) > log δ. Next, put

S(x) =
∑
p≤x

h(p− 1) =
∑
p≤x

∑
q|p−1

1
q − 1

.

We interchange the order of summation above and get

S(x) =
∑
q≤x

1
q − 1

∑
p≤x

p≡1 (mod q)

1 =
∑
q≤x

π(x; 1, q)
q − 1

,

where, as usual, we write π(x; a, b) for the number of primes p ≤ x in the
arithmetic progression p ≡ a (mod b). We split the above sum at x1/2. In
the lower range, we use the Montgomery–Vaughan [8] estimate

π(x; 1, q) ≤ 2x
log(x/q)

≤ 4x
log x

,

while in the upper range we use the trivial inequality π(x; 1, q) ≤ x/q. We
get

S(x) ≤
∑

q≤x1/2

4x
q(q − 1) log x

+ x
∑

x1/2<q<x

1
q(q − 1)

� x

log x
+ x1/2 � π(x).

On the other hand, it is clear that S(x) ≥ #Pδ(x) log δ. Hence,
#Pδ(x) log(δ)� π(x),

which implies the desired estimate.
(ii) Since φ(m)/m > (6/π2)m/σ(m), it follows that if φ(p+ 1)/(p+ 1)

< δ−1, then σ(p+ 1)/(p+ 1) > 6δ/π2. Now the conclusion follows by typo-
graphical changes from the preceding argument (say, replace p− 1 above by
p+ 1).

We are now ready to remove some more elements from E(x).
Lemma 4. Let δ > 1. There exists a constant c6 which depends only on

k such that if

E4(x) := {m ∈ E(x) : p |F (m) for some p ∈ Pδ ∪Qδ},
then

#E4(x) ≤ c6
xk

(log δ)(log x)k
.

Proof. We fix i = 1, . . . , k and assume that m ∈ E3(x) and that p | Fi(m)
for some p ∈ Pδ ∪ Qδ. We fix p. The congruence aim + bi ≡ 0 (mod p)
puts m in the congruence class −bia−1

i modulo p. Let mp be the smallest
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positive integer m in this congruence class and write m = pl + mp. Note
that aim+ bi < 3Nm < 3x1+1/2u and ω(aim+ bi) ≥ 2. Hence, (aim+ bi)/p
is divisible by a prime q > x1/u, giving 3x1+1/2u/p > x1/u, therefore x/p >
x1/2u/3 > x1/4u, where the last inequality holds because x1/2u > N > 32.
Observe that since m ≤ x, we get l < x/p. Hence, we are led to count the
number of nonnegative integers l ≤ x/p such that ail + (bi + mp)/p and
Fj(m) = aipl+ (aimp + bi) for j 6= i are k linear forms in l all free of factors
< x1/u. By the Brun sieve, the number of such l’s is

� x

p(log(x/p))k
� x

p(log(x1/4u))k
� x(4u)k

(log x)k
.

Since u depends on k, we conclude that the above number is�k x/p(log x)k.
Summing up over i = 1, . . . , k and then over p ∈ Pδ ∪Qδ, we get

(9) #E4(x)�k
x

(log x)k
∑

x1/u<p<x1+1/u

p∈Pδ∪Qδ

1
p
.

Lemma 3 and Abel’s summation formula show that uniformly in 3 ≤ y < z
we have ∑

y<p<z
p∈Pδ∪Qδ

1
p
� #Pδ(y) + #Qδ(y)

y
+
z�

y

d(Pδ ∪Qδ)(t)
t

� π(y)
(log δ)y

+
z�

y

dπ(t)
(log δ)t

� 1
log δ

(
1 +

z�

y

dt

t log t

)
≤ 1

log δ
(1 + log log z − log log y).

With y = x1/u, z = x1+1/u, we get∑
x1/u<p<x1+1/u

p∈Pδ∪Qδ

1
p
� 1

log δ
(1 + log log(x1+1/u)− log log x1/u)

=
1

log δ
(1 + log(u+ 1))�k

1
log δ

,

where the last inequality follows from the fact that u is fixed in terms of k.
The above estimate together with estimate (9) completes the proof of the
lemma.

Lemma 4 shows that if we choose δ = δ1 = exp(2c6/c5), then the set
E5(x) of m ∈ E3(x) such that no prime factor of Fi(m) for i = 1, . . . , k is in
Pδ ∪Qδ, has cardinality

≥ c7
x

(log x)k
, where c7 = c5/2.

From now on, we work with this value of δ.



344 M.-O. Hernane and F. Luca

Let x be large and m ∈ E5(x). With n = Nm+ n0, we have

n+ i = iλi(aim+ bi) = iλip
(i)
1 · · · p

(i)
si ,

where since aim+ bi < 3Nm < x1+1/u but each p(j)
l > x1/u, we have si ≤ u.

Thus,

φ(n+ i) = φ(i)(λi − 1)
si∏
l=1

(p(i)
l − 1), σ(n+ i) = σ(i)(λi + 1)

si∏
l=1

(p(i)
l + 1).

Observe that since aσ(b) ≤ σ(ab) ≤ σ(a)σ(b), we have

σ(λi − 1)φ(i)
si∏
l=1

(p(i)
l − 1) ≤ σ(φ(n+ i)) ≤ σ(λi − 1)σ(φ(i))

si∏
l=1

σ(p(i)
l − 1)

for all i = 1, . . . , k. Thus,

σ(λi − 1)φ(i)
λii

si∏
l=1

(
1− 1

p
(i)
l

)
≤ σ(φ(n+ i))

n+ i

≤ σ(λi − 1)σ(φ(i))
λii

si∏
l=1

σ(p(i)
l − 1)

p
(i)
l

for all i = 1, . . . , k. We put ci = φ(i)/i and di = σ(φ(i)) for i = 1, . . . , k.
Since p(1)

i , . . . , p
(si)
i are all primes > x1/u and not in Pδ, the above inequality

yields

(10) ci
σ(λi − 1)

λi

(
1− 1

x1/u

)u
≤ σ(φ(n+ i))

n+ i
≤ di

σ(λi − 1)
λi

δu.

A similar argument based on the inequality φ(a)φ(b) ≤ φ(ab) ≤ φ(a)b shows
that

(11) ei
φ(λi + 1)

λi
δ−u ≤ φ(σ(n+ i))

n+ i
≤ fi

φ(λi + 1)
λi

(
1 +

1
x1/u

)u
,

where ei = φ(σ(i))/i and fi = σ(i)/i for all i = 1, . . . , k.
The above inequalities show that it suffices to construct primes λ1, . . . , λk

such that

(12) dil
σ(λil − 1)

λil
δu < cil+1

σ(λil+1
− 1)

λil+1

for all l = 1, . . . , k − 1, and also

(13) ejl
φ(λjl + 1)

λjl
δ−u > fjl+1

φ(λjl+1
+ 1)

jl+1

for all l = 1, . . . , k − 1. Indeed, once these inequalities hold, for large x in-
equalities (10) and (11) will show that (1) and (2) are satisfied for n ∈ E5(x).
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But this is easy. Namely, we start by constructing inductively pairs
(Ai, Bi) of integers such that 12 |Ai, Bi ≡ 2 (mod 12), gcd(Ai, Bi) = 2
and furthermore

(14) dil
σ(Ail)
Ail

δu < cil+1

σ(Ail+1
)

Ail+1

for all l = 1, . . . , k − 1 and

(15) ejl
φ(Bjl)
Bjl

δ−u > fjl+1

φ(Bjl+1
)

Bjl+1

for all l = 1, . . . , k − 1. The fact that this is possible follows from a result
of Erdős and Schinzel [4] (see also the recent paper of Wong [9]). Let z be
larger than max{Ai, Bi : i = 1, . . . , k} and let Qi be the product of all
primes p ≤ z which do not divide AiBi. Consider the arithmetic progression
λi ≡ 1 + Ai (mod A2

i ), λi ≡ −1 + Bi (mod B2
i ) and λi ≡ 2 (mod Q2

i ).
This progression is solvable by the Chinese Remainder Lemma and yields
a residue class modulo M = 22

∏
p≤z p

2 which is coprime to the modulus.
Moreover, if λi is in the above progression modulo M , then (λi − 1)/Ai
and (λi + 1)/Bi are both integers coprime to all primes p < z. We use
Linnik’s theorem to find such a prime λi ≤ MOk(1) = eOk(z) (the implied
constant might depend on k since we need to ensure that λ1, . . . , λk end
up being different primes). Since ω(m) � logm/log logm for all positive
integers m, the number of prime factors of either (λi − 1)/Ai or (λi + 1)/Bi
is �k logMO(1)/log logMO(1) �k z/log z. Since the smallest such prime is
> z, we have that

σ(λi − 1)
λi − 1

=
σ(Ai)
Ai

∏
pαp‖(λi−1)/Ai

(
1 +

1
p

+ · · ·+ 1
pαp

)

=
σ(Ai)
Ai

(
1 +O

(
1
z

))Ok(z/log z)

=
σ(Ai)
Ai

(
1 +Ok

(
1

log z

))
,

and similarly
φ(λi + 1)
λi + 1

=
φ(Bi)
Bi

(
1 +Ok

(
1

log z

))
.

Thus, the above estimates show that for z large in terms of k estimates (12)
and (13) are consequences of (14) and (15).

This completes the proof of our theorem.
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