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1. Introduction and results. A function f : N→ C is called additive
if

f(mn) = f(m) + f(n)(1)

for all coprime m,n ∈ N. If (1) holds for all pairs of integers m,n ∈ N, we say
that f is completely additive. A function g : N → C is called multiplicative
(resp. completely multiplicative) if

g(mn) = g(m)g(n)(2)

for all coprime m,n ∈ N (resp. for all m,n ∈ N).
Because of the canonical representation

n =
∏

p prime

pαp with pαp ‖n(3)

of n ∈ N we have f(n) =
∑

pprime f(pαp) (resp. g(n) =
∏
p prime g(pαp)).

An additive f can be extended uniquely to an “additive” function f ∗ :
Q+ → C, where Q+ = {a/b : (a, b) = 1; a, b ∈ N}, by f ∗(a/b) = f(a)− f(b).
In a similar manner we get an extension g∗ of a multiplicative function g
by g∗(a/b) = g(a)/g(b) in case g(b) 6= 0 for all b ∈ N. In the following we
denote by A the set of all additive f : Q+ → C and by M the set of all
multiplicative g : Q+ → C with g(b) 6= 0 for all b ∈ N. We write A0 (resp.
M0) for the subsets of completely additive (resp. completely multiplicative)
functions in A (resp. M).

2000 Mathematics Subject Classification: 11E25, 11M25, 11M36, 11M37.
Key words and phrases: sums of two squares, sets of uniqueness, lower sieve estimates,

binary quadratic forms, additive and multiplicative functions.
Research of the first author supported by the DFG (Deutsche Forschungsgemein-

schaft).
Research of the second author supported by the DFG (Deutsche Forschungsgemein-

schaft) and by the grant no. 99-01-00070 from the Russian Foundation for Basic Research.

[295]



296 K.-H. Indlekofer and N. M. Timofeev

Definitions. Let A = {an} ⊂ Q+. We say that A is a

(a) U-set for A in case f ∈ A, f(A) = {0} implies f = 0,
(b) U-set for M in case g ∈ M, g(A) = {1} implies g = 1,
(c) C-set for A in case f ∈ A, limn→∞ f(an) = 0 implies f = 0,
(d) C-set for M in case g ∈ M, limn→∞ g(an) = 1 implies g = 1.

In an obvious manner U-sets and C-sets are defined for A0 (resp. M0).
Wolke [18], Dress and Volkmann [1] and Indlekofer [8] (see also [4])

showed: In order that the set A = {an} should be a U-set for A0, it is both
necessary and sufficient that every positive integer n has a representation

n =
l∏

i=1

aαii where αi ∈ Q (i = 1, . . . , l).

On the other hand, to the subset A ⊂ Q+ there corresponds the subgroup
Γ = 〈A〉 of Q+ generated by A. From this observation Indlekofer ([8, The-
orem 2]) deduced the following:

Let A = {an} ⊂ Q+. Then the following two assertions are equivalent:

(I) A is a U-set for M0.
(II) Every positive integer n has a representation

n =
l∏

i=1

aεii where εi ∈ {−1, 1} (i = 1, . . . , l) and l = l(n).

Obviously this is equivalent to Q+/Γ = {1}.
Kátai introduced the notion of U-sets for A in his paper [12] and showed

that the set A containing the prime divisors of k and the arithmetic pro-
gression {l + jk : j = 0, 1, . . .} is a U-set for A0. Further examples may be
found in [13], [6] and [8].

In [13] Kátai proved that the set {p + 1} of shifted primes is a set of
“quasiuniqueness”, i.e. the union of {p + 1} and some finite set is a U-set
for A0. In 1974 Elliott [2] showed that {p+ 1} is in fact a U-set for A0.

It is still unknown whether {p+1} is a U-set forM0. If Γ = 〈{p+1}〉 then
Elliott [3] proved |Q+/Γ | ≤ 3. This means that f ∈ M0 and f(p+1) = 1 for
all primes p implies the existence of an integer 0 < k ≤ 3 such that f k = 1.
A famous conjecture of Schinzel implies that every positive integer n can be
written as

n =
p+ 1
q + 1

(p, q prime)

and, in addition, there are infinitely many such representations of n. The
case n = 2 corresponds to the existence of infinitely many Sophie Germain
primes p and q = 2p+ 1 (see also Indlekofer and Járai [10]).
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In this paper we deal with the set B ⊂ N of natural numbers which can
be represented as a sum of two squares of integers.

It is well known (see, for example, [9], [14]) that n ∈ B if and only if n
has the form

n = 2sn1n
2
3(4)

where s ≥ 0 and all prime divisors of n1 and n3 are≡ 1 mod 4 and≡ 3 mod 4,
respectively.

For such B-numbers Landau [14] showed (c > 0)∑

n≤x
n∈B

1 ∼ c x√
log x

,

and it turns out that some conjectured properties for primes are valid for
B-numbers. For example, it is known that there are infinitely many B-twins
and, moreover, the estimates ∑

n≤x
n∈B, n+1∈B

1 � x

log x

hold true (Indlekofer [7]). Further, here we prove that the set B+1 = {b+1 :
b ∈ B} of shifted B-numbers is a U-set forM0. In addition we give the exact
lower bound of the number of factors which are needed in the representation

n =
l∏

i=1

(bi + 1)εi , εi = ±1, bi ∈ B (i = 1, . . . , l),(5)

and prove that there are infinitely many representations (5) for every n. In
particular, there are infinitely many representations

n =
a+ 1
b+ 1

, a, b ∈ B,
if n is odd or n = 2m and m is odd.

Remark 1. Kátai [13] showed that {p : p ≡ 3 mod 4 prime} ∪ {n2 + 1 :
n ∈ N} is a U-set for A0. Using an idea of his paper Fehér, Indlekofer and
Timofeev [5] proved that the sets B + 1 and {n2 + 2m2 + 1 : m,n ∈ Z} are
also U-sets for A0.

The key result of this paper is a lower sieve estimate contained in

Theorem 1. Let c be a non-zero integer and a, b ∈ N such that (a, b) = 1
and (ab, 2c) = 1. Further , let

S(x) := ]{n : n ≤ x, a(n+ c) = b(m+ c), (a, n+ c) = 1, n,m ∈ B}.
Then there exists a positive constant ϑ = ϑ(a, b, c) such that

S(x) ≥ ϑ x

log x
(6)

for x ≥ x0 = x0(a, b, c).
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Remark 2. We have two possibilities to prove the lower estimate (6).
One is to apply the linear sieve in a similar way to what has been done
in [7], but here we shall use the half-dimensional sieve details of which are
given in [11]. The upper bound result S(x) � x/log x follows immediately
from standard (upper) sieve estimates.

Applying Theorem 1 we prove

Theorem 2. Let c be a non-zero integer. Then B+c is a C-set forM0.
In particular , B + c is a U-set for M0.

This implies the following:

Corollary 1. Let c be a non-zero integer. Then Q+ = 〈B+c〉. Further ,
for each n ∈ N there exists κ = κ(n) such that n can be expressed as a product

n =
k∏

i=1

(ni + c)εi , εi = ±1, ni ∈ B (i = 1, . . . , k),

infinitely often where k ≤ κ.

Directly from Theorem 1 follows

Corollary 2. Let c be a non-zero integer. Then

B + c ∪ {pr : p | 2c, r = 1, 2, . . .}
is a U-set for A and M.

Let us now consider the special case c = 1. Theorem 1 yields infinitely
many representations

a

b
=
m+ 1
n+ 1

, where m,n ∈ B,
for natural numbers a and b which are odd and coprime. Now, we shall show
that the equation

2a
b

=
m+ 1
2n+ 1

holds true infinitely often in case (2, ab) = (a, b) = 1 with suitablem, 2n ∈ B.
This result is a consequence of

Theorem 3. Let a, b ∈ N be odd with (a, b) = 1, and define S̃(x) by

S̃(x) := ]{n : n ≤ x, 2a(2n+ 1) = b(m+ 1), n,m ∈ B}.
Then there exists a positive constant ϑ = ϑ(a, b) such that

S̃(x) ≥ ϑ x

log x
for x ≥ x0 = x0(a, b).

Since 2 = 12 + 02 + 1, Corollary 2 implies

Corollary 3. B + 1 ∪ {2r : r = 2, 3, . . .} is a U-set for A and M.
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Every a ∈ N can be represented as a finite product

a = (n1 + 1)ε1 · · · (ns + 1)εs(7)

where εi = ±1, ni ∈ B (i = 1, . . . , s). Defining s(a) as the smallest s such
that (7) holds we shall prove

Theorem 4. Let a = 2rb where 0 ≤ r and (2, b) = 1.

(i) If 0 ≤ r ≤ 1 then

s(a) =
{

1 if a− 1 ∈ B,

2 otherwise,

and there are infinitely many representations (7) of a with s = 2.
(ii) If r ≥ 2 then s(a) = r or s(a) = r+1, and both cases occur. Further ,

there are infinitely many representations (7) of a with s = r + 1.

Remark 3. Let f(x, y) = ax2 +bxy+cy2, where a, b, c ∈ Z, (a, b, c) = 1,
be a primitive, positive-definite binary quadratic form with discriminant
D = b−4ac. We believe that results similar to Theorems 1, 2 and Corollaries
1, 2 are true for the set Bf + d, where Bf := {n : n = f(x, y), x, y ∈ Z} and
d is a non-zero integer.

The discriminant D = −4 corresponds to the representation as a sum of
two squares. We now describe, as an example, how our method works in the
case D = −8, i.e. f(x, y) = x2 + 2y2. Putting

B(2) := {n : n = x2 + 2y2, x, y ∈ Z}
we prove

Theorem 5. Let c be a non-zero integer. Let a, b ∈ N such that (a, b) = 1
and (ab, 2c) = 1. Further , let

˜̃S(x) := ]{n : n ≤ x, a(n+ c) = b(m+ c), (n+ c, a) = 1, m, n ∈ B(2)}.
Then there exists a positive constant ϑ = ϑ(a, b, c) such that

˜̃S(x) ≥ ϑ x

log x

for x ≥ x0 = x0(a, b, c).

An immediate application of Theorem 5 yields

Theorem 6. Let c be a non-zero integer. Then B(2) + c is a C-set
for M0. In particular , B(2) + c is a U-set for M0.

This, together with Theorem 5, gives

Corollary 4. Let c be a non-zero integer. Then Q+ = 〈|B(2) + c|〉.
Further , for each n ∈ N there exists κ = κ(n) such that n can be expressed
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as a product

n =
k∏

i=1

(ni + c)εi , εi = ±1, ni ∈ B(2) (i = 1, . . . , k),

infinitely often where k ≤ κ.

Theorem 5 implies

Corollary 5. Let c be a non-zero integer. Then

B(2) + c ∪ {pr : p | 2c, r = 1, 2, . . .}
is a U-set for A and M.

2. Proofs of Theorem 2 and Corollaries 1, 2. We assume that g is
completely multiplicative with limi→∞ g(ni + c) = 1 where ni runs through
the set B.

If p is prime, p - 2c, then, by Theorem 1,

p =
m+ c

n+ c
for infinitely many m,n ∈ B,

and thus g(p) = 1.
Next we show g(2) = 1. Assume that c = 2rc1 where r ≥ 0 and (c1, 2)

= 1. First suppose c1 ≡ 1 mod 4. We choose a prime p ≡ 1 mod 4 such that
p - c. Since 2rp ∈ B we conclude

2rp+ c = 2r(p+ c1) = 2r+1a where (a, 2c) = 1.

Thus g(2r+1) = g(2rp+ c), and choosing p large enough leads to

g(2r+1) = 1.(8)

If r > 0 we let p be as before and obtain, since 2r+2p ∈ B,

2r+2p+ c = 2r(4p+ c1) with (4p+ c1, 2c) = 1,

which implies
g(2r) = 1.(9)

Now, (8) and (9) prove g(2) = 1 if c1 ≡ 1 mod 4.
If c1 ≡ −1 mod 4 we choose large primes p1 and p2 by

p1 ≡ −c1 + 4 mod 8, p2 ≡ −c1 + 8 mod 16

and obtain

2rp1 + c = 2r(p1 + c1) = 2r+2a1 with (a1, 2c) = 1,

2rp2 + c = 2r(p2 + c1) = 2r+3a2 with (a2, 2c) = 1.

This implies
g(2r+2) = g(2r+3) = 1,

and thus g(2) = 1.
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Now, let p be a prime divisor of c different from 2, and put c = 2sprc1
with (c1, 2p) = 1, where s ≥ 0 and r ≥ 1.

If r is odd choose an arbitrary prime p1 ≡ 1 mod 4, p1 - c. Then 2s+1pr+1p1
∈ B and

2s+1pr+1p1 + c = 2spr(2pp1 + c1) where (2pp1 + c1, 2c) = 1,

which shows
g(pr) = 1 if r is odd.

Let now r be even. Then, if c1 ≡ l mod 4p with (l, 2p) = 1, choose a
prime p1 ≡ 1 mod 4, p1 - c, satisfying

p1 ≡ 1 + 4l1 mod 4p,

where l1 is taken such that

1 + 4l1 + l 6≡ 0 mod p.

For example, if p - (1 + l) put l1 = p. If p | (1 + l) and p 6= 5 put l1 = 1, and
if p = 5 and p | (1 + l) let l1 = −1. Then 2sprp1 ∈ B and

2sprp1 + c = 2spr(p1 + c1) = 2s
′
pra with (a, 2c) = 1.

Thus
g(pr) = 1 if r is even.

In the next step we show g(pr−1) = 1 if r is odd and g(pr+1) = 1 if r is
even. Let r be odd and r ≥ 3. Then 2spr−1p1 with p1 ≡ 1 mod 4, p1 - c, is
an element of B, and thus in the same way as above

g(pr−1) = 1 if r is odd.

In the other case let the prime p1 ≡ 1 mod 4 (p1 - c) satisfy

p1 + c1 ≡ 0 mod p, p1 + c1 6≡ 0 mod p2.(10)

This choice is possible. For, if c1 = l + 4p2k, (l, 2p) = 1, let p1 ≡ 1 +
4l1 mod 4p2 such that 1 + 4l1 + l ≡ 0 mod p but 1 + 4l1 + l 6≡ 0 mod p2. If
c1 = l + 4pk, (p, k) = 1, choose p1 ≡ 1 + 4l1 mod 4p2, where 1 + 4l1 + l ≡
0 mod p2. Thus, by (10),

2sprp1 + c = 2s
′′
pr+1a′ with (a′, 2c) = 1,

which gives
g(pr+1) = 1 if r is even.

This ends the proof of Theorem 2.

The first part of Corollary 1 holds since B + c is a U-set for M0. Next,
each n ∈ N can be written in the form n = n′a, where (a, 2c) = 1 and all
prime divisors of n′ divide 2c. Applying Theorem 1 to a gives the second
assertion of Corollary 1.
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Corollary 2 follows directly from Theorem 1, since if (a, 2c) = 1, then
f(B + c) = {0} (f ∈ A) and g(B + c) = {1} (g ∈ M) implies f(a) = 0 and
g(a) = 1, respectively.

3. The half-dimensional sieve. First we recollect the notations and
some facts on the half-dimensional sieve. For details see [11].

Let A be a finite set of positive integers and let P be a set of primes.
The sieve problem is to sift a certain sequence A by a truncation (at z) of P,
that is, to estimate the sifting function

S(A,P, z) := ]{a : a ∈ A, (a, P (z)) = 1}
with

P (z) :=
∏

p<z
p∈P

p.

Let % be a multiplicative function such that

0 ≤ %(p) < p and %(p) = 0 for p 6∈ P,(11)

and, for some positive constant K,
∣∣∣∣
∑

p≤z
p∈P

%(p)
p− %(p)

log p− 1
2

log z

∣∣∣∣ ≤ K(12)

for any real number z ≥ 2. Further, we put

V (z) :=
∏

p<z

(
1− %(p)

p

)

and, for squarefree numbers d,

Ad := {a ∈ A : a ≡ 0 mod d}, R(A, d) := ]Ad −
%(d)
d

X

where X ≥ 1 is a good approximation to ]A. Thus we have (cf. [11, Theo-
rem 1])

Lemma 1. Let A be a finite sequence of integers, % be a multiplicative
function such that (11) and (12) are satisfied. Then for all z ≥ 2, y ≥ 2 we
have

S(A,P, z) ≤ XV (z){F (s) +O(log−1/5 y)}+
∑

d<y
d|P (z)

|R(A, d)|,(13)

S(A,P, z) ≥ XV (z){f(s) +O(log−1/5 y)} −
∑

d<y
d|P (z)

|R(A, d)|,(14)
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where s = log y/log z and the functions f(s), F (s) are the continuous solu-
tions of the system of differential-difference equations

(15) f(s) = 0, F (s) = 2
(
eγ

πs

)1/2

for 0 < s ≤ 1,

(16) 2s1/2(s1/2f(s))′ = F (s− 1), 2s1/2(s1/2F (s))′ = f(s− 1) for s > 1,

with γ denoting Euler’s constant. For s > 1 we have

0 < f(s) < 1 < F (s), F ′(s) < 0 < f ′(s),

and , for 1 ≤ s ≤ 2,

f(s) =

√
eγ

π

1√
s

s�

1

dt√
t(t− 1)

, F (s) = 2

√
eγ

π

1√
s
.(17)

To estimate the error terms of the sieve we shall apply the results of [15].
There the following notations have been used:

∑
(x, f, k, s) =

∑

n≤x
n≡smod k

f(n)− 1
ϕ(k)

∑

n≤x
(n,k)=1

f(n),

δ(x, f, k) = max
(s,k)=1

max
y≤x

∣∣∣
∑

(y, f, k, s)
∣∣∣, ∆(Q, f,E) =

∑

k≤Q
k∈E

δ(x, f, k),

∆1(Q, f,E) =
∑

k≤Q
k∈E

max
(s,k)=1

max
y≤x

∣∣∣∣
∑

p≤y
p≡smod k

f(p) log p− 1
ϕ(k)

∑

p≤y
p-k

f(p) log p

∣∣∣∣.

We shall deal with multiplicative functions described in the following

Definition. A multiplicative function f belongs to Mα(D) if
∑

n≤x
|f(n)|4 � x log4α x, α ≥ 0,

and if for all primitive characters χ∗d mod d, where d ∈ D, d ≤ logc1 x, we
have ∑

z<p≤y
χ∗d(p)f(p) log p� y log−B x,(18)

where

log z = (log x)Θ, Θ = 1− log log log x
log log x

, y ≤ x,

c1 and B are arbitrary constants, and D is a subset of the natural numbers.

Then the following holds true.

Lemma 2 (see [15, Theorem 4]). If f ∈ Mα(D) and ∆1(Q, f,E) �
x log−3B x, where E is a set of natural number whose divisors belong to D,
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then
∆(Q1, f, E)� x(log x)−B+5/6+4α/3(log log x)2+α,

with Q1 = min(Q(x),
√
x (log x)−3B−3/2−2α(log log x)−5/4).

Using the theorem of Vinogradov–Bombieri we prove

Lemma 3. Let f be a completely multiplicative function such that f(p)=1
for p ≡ 1 mod 4 and f(p) = 0 otherwise. Then for any A > 0 there exists
B = B(A) such that

∑

d≤√x log−B x
(d,2)=1

max
(s,d)=1

max
y≤x

∣∣∣∣
∑

n≤y
n≡smod d

f(n)− 1
ϕ(d)

∑

n≤y
(n,d)=1

f(n)
∣∣∣∣� x log−A x.

Proof. It is easy to see that f ∈ M0(E), where E is the set of odd
numbers. To verify condition (18) we use the theorem of Siegel–Walfisz (see,
for example, [16, Chapter IV, Theorem 8.3]) for characters of the form χ4χ

∗
d,

where d ∈ E. Then

∆1(Q, f,E) =
∑

k≤Q
(k,2)=1

max
(s,k)=1

max
y≤x

∣∣∣∣
∑

p≤y
p≡1 mod 4
p≡smod k

log p− 1
ϕ(k)

∑

p≤y
p≡1 mod 4

p-k

log p
∣∣∣∣

≤
∑

k≤Q
(k,2)=1

max
(s,2k)=1

max
y≤x

∣∣∣∣ψ(y, 4k, s)− y

ϕ(4k)

∣∣∣∣

+
∑

k≤Q

1
ϕ(k)

max
y≤x

∣∣∣∣ψ(y, 4, 1)− y

2

∣∣∣∣+
∑

k≤Q

log k
ϕ(k)

.

By Vinogradov–Bombieri’s theorem we conclude that

∆1

( √
x

logB x
, f,E

)
� x

logA x
.

Applying Lemma 2 finishes the proof.

The next result is due to E. Landau ([14, §183]).

Lemma 4. Let λ(x) be the number of odd integers n with 1 ≤ n ≤ x
which do not have any prime factors of the form 4n+ 3. Then

λ(x) =
cx√
log x

+O

(
x

log x

)

with some c > 0.

For the proof see, for example, [17, pp. 183–185].
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4. Proof of Theorem 1. Let us assume that c = 2rc1, (c1, 2) = 1. Put
n = 2rn1, m = 2rm1, where n,m, n1,m1 ∈ B. Then

S(x) = ]{n : n ≤ x, a(n+ c) = b(m+ c), (a, n+ c) = 1, n,m ∈ B}
≥ ]{n1 : n1 ≤ x/2r, a(n1 + c1) = b(m1 + c1),

(a, n1 + c1) = 1, n1,m1 ∈ B},
and obviously it is enough to prove (6) in the case when c is an odd number.

Let P := {2} ∪ {p : p ≡ 3 mod 4}. For a real number x > 1 let P (x) :=∏
p<x, p∈P p. We know that n ∈ B if and only if n = 2αpα1

1 · · · pαtt , where αi
is an even number in case pi ≡ 3 mod 4. Hence

S(x) ≥ S1(x) := ]
{
n : n ≤ x, n ≡ −c mod b, (a, n+ c) = 1,(19)

(n, P (x)) = 1,
(
a
b (n+ c)− c, P (Y )

)
= 1
}
,

where Y = a
b (x+ c)− c. Let α be a real number, 1/3 < α < 1/2. Then we

can show that

S1(x) ≥ S2(x)− S3(x) +O(x1−α),(20)

where

S2(x) := ]
{
n : n ≤ x, n ≡ −c mod b, (a, n+ c) = 1, (n, P (x)) = 1,(

a
b (n+ c)− c, P (Y α)

)
= 1
}
,

S3(x) := ]
{
n : n ≤ x, n ≡ −c mod b, (a, n+ c) = 1, (n, P (x)) = 1,

a
b (n+ c)− c = p1p2m, Y

α ≤ p1 < p2 ≤ Y 1−α, p1 ≡ 3 mod 4,

p2 ≡ 3 mod 4, (m,P (Y )) = 1
}
.

Indeed, it is easy to see that

S1(x) = S2(x)− S3(x)− S4(x) +O

( ∑

p>Y α

x

p2

)
,

where

S4(x) := ]
{
n : n ≤ x, n ≡ −c mod b, (a, n+ c) = 1, (n, P (x)) = 1,

a
b (n+ c)− c = pm, Y α ≤ p, p ≡ 3 mod 4, (m,P (Y )) = 1

}
.

Since (abc, 2) = 1 and (n, P (x)) = 1, (m,P (Y )) = 1 we get n ≡ 1 mod 4,
m ≡ 1 mod 4, a

b (n + c) − c ≡ (1 + c) − c ≡ 1 mod 4 or a
b (n + c) − c ≡

3(1 + c)− c ≡ 1 mod 4. Therefore S4(x) = 0 and (20) holds.
Using Lemma 1 we shall prove lower bounds for S2(x). We choose

X = X1 := ]{n : n ≤ x, n ≡ −c mod b, (a, n+ c) = 1, (n, P (x)) = 1},

z = Y α, y =
√
x

logB x
and
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%(d)
d

=

{
ϕ(b)
ϕ(bd)

if d |P (z), (d, ac(a− b)) = 1,

0 otherwise.
Hence %(p)/p = 0 if p | ac(a − b) or p ≡ 1 mod 4, %(p)/p = 1/(p− 1) if
p ≡ 3 mod 4, p - b and %(p)/p = 1/p if p ≡ 3 mod 4, p | b. So conditions (11),
(12) are fulfilled. We have

log y
log Y α

=
1

2α
+O

(
log log x

log x

)
.

So, by Lemma 1,

S2(x) ≥
∏

p<Y α

p≡3 mod 4
p-ac(a−b)

(
1− ϕ(b)

ϕ(bp)

)
X1

{
f

(
1

2α

)
+O(log−1/5 x)

}

−
∑

d≤√x/logB x
d|P (Y α)

(d,ac(a−b))=1

∣∣∣∣]{n : n ≤ x, (a, n+ c) = 1, (n, P (x)) = 1,

n ≡ −c+ ca∗b mod db} − ϕ(b)
ϕ(bd)

X1

∣∣∣∣,

where a∗a ≡ 1 mod db. Since (a, b) = 1 we see that

S2(x) ≥ 1
ϕ(b)

∏

p<Y α

p≡3 mod 4
p-ac(a−b)

(
1− ϕ(b)

ϕ(bp)

)∑

ν|a

µ(ν)
ϕ(ν)

]{n : n ≤ x, (n, νbP (x)) = 1}

×
(
f

(
1

2α

)
+O(log−1/5 x)

)

+O

( ∑

νd≤a√x/logB x
ν|a, d|P (Y α)

(d,ac(a−b))=1

∣∣∣∣]{n : n ≤ x, (n, P (x)) = 1,

n ≡ −c+ ca∗ν∗bν mod dbν}

− 1
ϕ(dνb)

]{n : n ≤ x, (n, νbP (x)) = 1}
∣∣∣∣
)
,

where ν∗ν ≡ a mod db. Because of (n, P (x)) = 1 and d |P (Y α) we have
(n, d) = 1. By Lemma 3,

S2(x) ≥ f(1/2α)
ϕ(b)

∑

ν|a

µ(ν)
ϕ(ν)

]{n : n ≤ x, (n, νbP (x)) = 1}(21)

×
∏

p<Y α

p≡3 mod 4
p-ac(a−b)

(
1− ϕ(b)

ϕ(bp)

)
+O(x log−6/5 x).
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Concerning the sum S3(x) we have

S3(x) ≤ S5(x) := ]
{
mp1p2 : mp1p2 ≤ Y, (m,P (Y )) = 1, p1 ≡ 3 mod 4,

p2 ≡ 3 mod 4, Y α ≤ p1 < p2 ≤ Y 1−α, mp1p2 ≡ c mod a,(
b
a(mp1p2 + c)− c, P (Y α/3)

)
= 1
}

≤
∏

p<Y α

p≡3 mod 4
p-ac(a−b)

(
1− ϕ(b)

ϕ(bp)

)
1

ϕ(a)
]{mp1p2 : mp1p2 ≤ Y, (m,P (Y )) = 1,

Y α ≤ p1 < p2 ≤ Y 1−α, p1 ≡ p2 ≡ 3 mod 4}

× (F (1) +O(log−1/5 x))

+
∑

d≤Y α/3
d|P (Y α/3)

(d,bc(a−b))=1

∣∣∣∣]{mp1p2 : mp1p2 ≤ Y, (m,P (Y )) = 1,

Y α ≤ p1 < p2 ≤ Y 1−α, p1 ≡ p2 ≡ 3 mod 4,

mp1p2 ≡ −c+ cb∗a mod da}
− 1
ϕ(da)

]{mp1p2 : mp1p2 ≤ Y, (m,aP (Y )) = 1,

Y α ≤ p1 < p2 ≤ Y 1−α, p1 ≡ p2 ≡ 3 mod 4}
∣∣∣∣,

where b∗b ≡ 1 mod da. Since p1 > Y α and d ≤ Y α/3 we can apply the
Vinogradov–Bombieri theorem to the sum on the right hand side. Thus for
any A > 0 we obtain

S3(x) ≤
√
eγ

π

2
ϕ(a)

∏

p<Y α/3

p-bc(a−b)

(
1− ϕ(a)

ϕ(ap)

)

× ]{mp1p2 : mp1p2 ≤ Y, (m,P (Y )) = 1,

Y α ≤ p1 < p2 ≤ Y 1−α, p1 ≡ p2 ≡ 3 mod 4}
+O(x log−A x).

Hence (21), (20) and (19) yield

S(x) ≥
√
eγ

π

∏

p<Y α/3

p-bc(a−b)
p≡3 mod 4

(
1− 1

p

){ √
3

ϕ(b)

√
2α

1/2α�

1

dt√
t(t− 1)

×
∑

ν|a

µ(ν)
ϕ(ν)

]{n : n ≤ x, (n, νbP (x)) = 1}
∏

p|b
p≡3 mod 4

(
1− 1

p− 1

)
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− 1
ϕ(a)

∏

p|a
p≡3 mod 4

(
1− 1

p− 1

)
]{mp1p2 : mp1p2 ≤ Y, (m,P (Y )) = 1,

Y α ≤ p1 < p2 ≤ Y 1−α}
}

+O(x log−6/5 x).

By Lemma 4 we have
∑

ν|a

µ(ν)
ϕ(ν)

]{n : n ≤ x, (n, νbP (x)) = 1}

=
∑

ν|a

µ(ν)
ϕ(ν)

∏

p|νb
p≡1 mod 4

(
1− 1

p

)
c

x√
log x

+O

(
x

log x

)
.

Since p2 > Y α the inequalities mp1 ≤ Y 1−α and m ≤ Y 1−2α hold. Hence

]{mp1p2 : mp1p2 ≤ Y, (m,P (Y )) = 1, Y α ≤ p1 < p2 ≤ Y 1−α}

≤
∑

m≤Y 1−2α

(m,P (Y ))=1

∑

Y α≤p1≤
√
Y

2Y
mp1 log Y α

� x

log x
exp

( ∑

m≤Y 1−2α

p≡1 mod 4

1
p

)
log

1
2α

� x√
log x

√
1− 2α log

(
1 +

1− 2α
2α

)
.

From this we conclude that

S(x) ≥ c1
x

log x
(
√

1− 2α− c2
√

1− 2α (1− 2α)),

where c1, c2 are positive constants depending only on a, b, c. Choosing a
suitable real number 1/3 < α < 1/2 gives

√
1− 2α− c2

√
1− 2α (1− 2α) ≥ c3 > 0.

This ends the proof of Theorem 1.

5. Proof of Theorem 3. As in the proof of Theorem 1 we start with
the obvious lower estimate

S̃(x) := ]{n : n ≤ x, 2a(2n+ 1) = b(m+ 1), m, n ∈ B}

≥ S̃1(x) := ]
{
n : n ≤ x, (n, P (x)) = 1, 2n+ 1 ≡ 0 mod b,

(2a
b (2n+ 1)− 1, P (Y )

)
= 1
}

with Y = 2a
b (2x + 1). Since (ab, 2) = 1 and (n, P (x)) = 1 we obtain n ≡

1 mod 4 and 2a
b (2n+1)−1 ≡ 1 mod 4. Therefore, in the same way as before

we have
S̃(x) ≥ S̃2(x)− S̃3(x) +O(x1−α)

where 1/3 < α < 1/2 and
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S̃2(x) := ]
{
n : n ≤ x, 2n+ 1 ≡ 0 mod b, (n, P (x)) = 1,(2a

b (2n+ 1)− 1, P (Y )
)

= 1
}
,

S̃3(x) := ]
{
n : n ≤ x, 2n+ 1 ≡ 0 mod b, (n, P (x)) = 1,

2a
b (2n+ 1)− 1 = mp1p2, Y

α ≤ p1 < p2 ≤ Y 1−α,

p1 ≡ p2 ≡ 3 mod 4, (m,P (Y )) = 1
}
.

Using Lemmas 1 and 3 we get the lower estimate

S̃2(x) ≥ 1
ϕ(b)

f

(
1

2α

)
]{n : n ≤ x, (n, P (x)) = 1}

×
∏

p<Y α

p≡3 mod 4
p-2a(2a−b)

(
1− ϕ(b)

ϕ(bp)

)
+O(x log−6/5 x)

and the upper estimates

S̃3(x) ≤ ]
{
mp1p2 : mp1p2 ≤ Y, (m,P (Y )) = 1, p1 ≡ p2 ≡ 3 mod 4,

Y α ≤ p1 < p2 ≤ Y 1−α, mp1p2 + 1 ≡ 0 mod 2a,(1
2

(
b

2a(mp1p2 + 1)− 1
)
, P (Y α/3)

)
= 1
}

≤
∏

p<Y α/3

p∈P
p-b(2a−b)

(
1− ϕ(2a)

ϕ(2ap)

)
1

ϕ(2a)
]{mp1p2 : mp1p2 ≤ Y, (m,P (Y )) = 1,

Y α ≤ p1 < p2 ≤ Y 1−α, p1 ≡ p2 ≡ 3 mod 4}
× (F (1) +O(log−1/5 x))

+
∑

d≤Y α/3
d|P (Y α/3)

(d,b(2a−b))=1

∣∣∣∣ ]{mp1p2 : mp1p2 ≤ y, (m,P (Y )) = 1,

Y α ≤ p1 < p2 ≤ Y 1−α,

p1 ≡ p2 ≡ 3 mod 4, bmp1p2 ≡ 2a− b mod 4ad}

− 1
ϕ(4ad)

]{mp1p2 : mp1p2 ≤ Y, (m,P (Y )) = 1,

Y α ≤ p1 < p2 ≤ Y 1−α, p1 ≡ p2 ≡ 3 mod 4}
∣∣∣∣.

Collecting the estimates yields, as in the proof of Theorem 1,

S̃2(x) ≥ c1
√

1− 2α
x

log x
, S̃3(x) ≤ c2(1− 2α)3/2 x

log x
,

where c1 > 0 and 1/3 < α < 1/2. This leads to

S̃(x) ≥ ϑ x

log x
,

which ends the proof of Theorem 3.
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6. Proof of Theorem 4. Let a = 2rb where b is odd, and let s(a) be
the smallest s such that the representation (7) holds.

If 0 ≤ r ≤ 1 then, by Theorems 2 and 3, s(a) = 1 or 2, and s(a) = 1
holds if and only if a− 1 ∈ B.

Suppose now r ≥ 2. By the representation (4) every n ∈ B is either an
even number or n ≡ 1 mod 4, and therefore n+1 is odd or n+1 = 2(2k+1).
Hence s(2rb) ≥ r.

Assume that s(2rb) = r, i.e.

2rb = (n1 + 1) · · · (nr + 1) (ni ∈ B, i = 1, . . . , r).

Obviously this is equivalent to the existence of odd numbers b1, . . . , br
such that

(i) b = b1 · · · br,
(ii) 2bi − 1 ∈ B, i = 1, . . . , r.

If these conditions do not hold then s(2rb) ≥ r + 1. On the other hand, by
Theorem 3,

2rb = (12 + 02 + 1)r−1 · m+ 1
n+ 1

with m,n ∈ B,

and thus s(2rb) = r + 1.
As an example consider a = 2r ·29, r ≥ 2. We have 2 ·29−1 = 3 ·19 6∈ B.

Therefore s(2r · 29) > r and

2r · 29 = (12 + 02 + 1)r−1 · 152 + 82 + 1
22 + 02 + 1

,

i.e. s(2r · 29) = r + 1. This proves Theorem 4.

7. Proofs of Theorems 5 and 6. It is well known that n ∈ B(2) if
and only if

n = 2sn1n
2
2,

where s ≥ 0 and all prime divisors of n1 and n2 are ≡ 1 or 3 mod 8 and ≡ 5
or 7 mod 8, respectively.

The proof of Theorem 5 follows the same lines as that of Theorem 1.
Therefore we indicate only the necessary modifications.

Let

P1 := {2} ∪ {p : p prime, p ≡ 5 or 7 mod 8}, P1(x) :=
∏

p≤x
p∈P1

p.

As before we may assume that c is an odd integer. We have
˜̃S(x) ≥ S4(x) := ]

{
n : n ≤ x, n ≡ −c mod b, n ≡ δ(c) mod 8, (n+ c, a) = 1,

(n, P1(x)) = 1,
(
a
b (n+ c)− c, P1(Y )

)
= 1
}
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where δ(c) = 1 or 3 and δ(c) ≡ −c mod 4, Y = (a/b)(x + c) − c. If n ≡
δ(c) mod 8 then

a

b
(n+ c)− c ≡ a

b
(δ(c) + c)− c ≡ δ(c) mod 8.

Hence, if 1/3 < α < 1/2,

˜̃S(x) ≥ S5(x)− S6(x) +O(x1−α)

where

S5(x) := ]
{
n : n ≤ x, n ≡ −c mod b, n ≡ δ(c) mod 8,

(n+ c, a) = 1, (n, P1(x)) = 1,
(
a
b (n+ c)− c, P1(Y α)

)
= 1
}
,

S6(x) := ]
{
n : n ≤ x, n ≡ −c mod b, (n, P1(x)) = 1,

a
b (n+ c)− c = mp1p2, Y

α ≤ p1 < p2 ≤ Y 1−α,

p1 ≡ 5 or 7 and p2 ≡ 5 or 7 mod 8, (m,P1(Y )) = 1
}
.

Using Lemmata 1, 3 and 4 and the Vinogradov–Bombieri theorem we
prove as before

S5(x) ≥ c3(1− 2α)1/2 x

log x
, S6(x) ≤ c4(1− 2α)3/2 x

log x

with some positive constant c3. Choosing α close to 1/2 and such that c3 −
c4(1− 2α) > 0 gives the assertion of Theorem 5.

For the proof of Theorem 6 we proceed in the same manner as in §2. We
assume that g is completely multiplicative with limi→∞ g(ni+ c) = 1, where
ni runs through the set B(2).

If p is prime, p - 2c, then, by Theorem 5,

p =
m+ c

n+ c
for infinitely many m,n ∈ B(2),

which implies g(p) = 1.
Thus we only have to show that g(2) = 1 and g(p) = 1 for all primes

p | c.
We leave the case p = 2 to the reader and outline the proof for odd prime

divisors p of c.
Assume g(2) = 1 and suppose c = 2sprc1, s ≥ 0, r ≥ 1 and (c1, 2p) = 1.

If r is even define l by c1 = l + 4pk, (l, 2p) = 1. Choose m,n ∈ Z such that
m2 + 2n2 = 2sprp1 where p1 is prime, p1 - 2c and p1 = 1 + 8l1 + 8pt with
p - (1 + 8l1 + l). This choice is possible: if p - (1 + l) put l1 = p; if p | (1 + l)
and p 6= 3 let l1 = 1, and if p = 3 | (1 + l) let l1 = −1.

Thus we obtain m2 + 2n2 + c = 2spr(p1 + c1) = 2s
′
prc2 with (c2, 2c) = 1.

Then choosing p1 large enough leads to

g(pr) = 1.
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Next we show g(pr+1) = 1, which implies g(p) = 1. For this let m,n ∈ Z
satisfy m2 + 2n2 = 2sprp2 where the prime p2 is chosen such that p2 ≡
1 mod 8, p2 - 2c, p2 + c1 ≡ 0 mod p and p2 - (p2 + c1). Again, this choice is
possible: if c1 = l + 4p2k, (l, 2p) = 1, we put p2 = 1 + 8l1 + 8p2t, where
1 + 8l1 + l ≡ 0 mod p and 1 + 8l1 + l 6≡ 0 mod p2; if c1 = l+ 4kp, (k, p) = 1
we let p2 = 1 + 8l1 + 8p2t, where 1 + 8l1 + l ≡ 0 mod p2.

Now m2 + n2 + c = 2s1pr+1c2 with (c2, 2c) = 1. Hence g(2s1c2) = 1 and
again, since p2 can be chosen arbitrarily large,

g(pr+1) = 1.

The case of r odd can be handled in a similar way, and this proves
Theorem 6.
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