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On the structure of the Selberg class, VI:
non-linear twists

by

J. Kaczorowski (Poznań) and A. Perelli (Genova)

1. Introduction. In the first paper of the series, [7], we investigated
the analytic properties of the linear twists

F (s, α) =
∞∑

n=1

a(n)
ns

e(−nα), e(x) = e2πix, α ∈ R, σ > 1,(1.1)

of functions F (s) of degree 1 in the extended Selberg class S ]. Precisely,
denoting by qF and θF respectively the conductor and the shift of F (s) (see
below for definitions) and writing nα = qFα, we proved that for α > 0
the twist F (s, α) has meromorphic continuation to σ > 0, and it has a
simple pole at s = 1 − iθF if and only if nα ∈ N and a(nα) 6= 0 (see
Theorem 7.1 of [7]). In [7] we exploited such analytic properties in order to
characterize the functions of degree 1 in S ]. In particular, we proved that
the only functions of degree 1 in the Selberg class S are the Riemann zeta
function ζ(s) and the shifted Dirichlet L-functions L(s+ iθ, χ), with θ ∈ R
and primitive characters χ.

It turns out that Theorem 7.1 of [7] is a special case of a general result
for functions in S] of any degree d > 0. To see this, for d > 0, α ∈ R and
F ∈ S] with degree d we consider the non-linear twist

F (s, α) =
∞∑

n=1

a(n)
ns

e(−n1/dα), σ > 1;(1.2)

note that F (s, α) in (1.2) becomes the linear twist in (1.1) when d = 1. In
this paper we first obtain the basic analytic properties of F (s, α) and some
uniform bounds on vertical strips, and then we turn to various applications.

We refer to the survey paper [8] and to [7] for the basic notation and
properties of the Selberg class S and the extended class S ]. Here we recall
that S denotes the class of Dirichlet series F (s) satisfying the following five
axioms: (i) the abscissa of absolute convergence σa(F ) satisfies σa(F ) ≤ 1;
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(ii) (s−1)mF (s) is an entire function of finite order for some integer m ≥ 0;
(iii) F (s) satisfies a functional equation of the form

Φ(s) = ωΦ(1− s)
where |ω| = 1, f(s) = f(s) and

Φ(s) = Qs
r∏

j=1

Γ (λjs+ µj)F (s) = γ(s)F (s),

say, with Q > 0, λj > 0 and <µj ≥ 0; (iv) the Dirichlet coefficients a(n)
of F (s) satisfy the Ramanujan conjecture a(n) � nε for every ε > 0; (v)
logF (s) is a Dirichlet series with coefficients b(n) satisfying b(n) = 0 unless
n = pm, m ≥ 1, and b(n)� nϑ for some ϑ < 1/2. Moreover, S] denotes the
extended Selberg class, consisting of the non-zero functions satisfying only
the first three axioms, mF ≥ 0 denotes the order of pole at s = 1 of F ∈ S ]
and γ(s) is called a γ-factor. We also recall that the degree, ξ-invariant,
conductor and root number of F ∈ S] are defined by

dF = 2
r∑

j=1

λj , ξF = 2
r∑

j=1

(
µj −

1
2

)
= ηF + iθF ,

qF = (2π)dFQ2
r∏

j=1

λ
2λj
j , ω∗F = ωe−i

π
2 (ηF+1)

(
qF

(2π)dF

)i θF
dF

r∏

j=1

λ
−2i=µj
j ,

respectively, and that Sd (resp. S]d) denotes the subclass of S (resp. S])
consisting of the functions of given degree d. Further, we will use f(x) � g(x)
to mean g(x)� f(x)� g(x) and s = σ + it, and the value of the constant
c below will not necessarily be the same at each occurrence.

For d > 0, F ∈ S]d and α > 0 we write

nα = qFd
−dαd, a(nα) =

{
0 if nα 6∈ N,

a(nα) if nα ∈ N.

The basic analytic properties of F (s, α) are given by the following general
version of Theorem 7.1 of [7].

Theorem 1. Let d > 0, F ∈ S]d and α > 0. Then F (s, α) has mero-
morphic continuation to C. Moreover , F (s, α) is entire if a(nα) = 0, while
if a(nα) 6= 0 then F (s, α) has at most simple poles at the points

sk =
d+ 1

2d
− k

d
− i θF

d
, k = 0, 1, . . . ,

with non-vanishing residue at s0.

It is well known that S]d = ∅ for 0 < d < 1 (see for example Corollary 5
below). Nevertheless, we still consider the case 0 < d < 1 since Theorem 1
allows us to obtain a simple new proof of the non-existence of functions
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F ∈ S]d with d in that range (see again Corollary 5 below). Moreover, we
remark that it is in principle possible to check the vanishing or non-vanishing
of the residue at each point sk, but there are non-trivial complications in
details (see Lemmas 2.4, 2.5 and the proof of Theorem 1 below).

With applications in mind, we now turn to certain uniform bounds for
F (s, α). To this end we call a family F of L-functions in S ] admissible if
every F ∈ F has dF � 1, mF � 1, a γ-factor with

Q� 1, λj � 1, µj � 1

and, moreover, satisfies ∑

n≤x
|a(n)| � x1+ε,(1.3)

where the implied constants in the�-symbols depend on the family F . Note
that each F ∈ F has qF �F Q2 and dF > 0 (and hence dF ≥ 1 by, e.g.,
Corollary 5 below). We remark that, conjecturally, dF � 1 implies mF � 1,
and every F ∈ F has a γ-factor with Q � 1 and λj � 1. Moreover, if all
F ∈ F ⊂ S have polynomial Euler product with uniformly bounded degree,
then (1.3) is automatically satisfied and mF � 1. Examples of admissible
families are a single F ∈ S] with dF ≥ 1, the set of Dirichlet L-functions
associated with primitive characters, the set of normalized L-functions as-
sociated with modular forms of bounded weight, and the set of Dedekind
zeta functions of number fields with bounded degree. Note, however, that
for a fixed primitive Dirichlet character χ the set {L(s+ ik, χ)}k∈Z is not an
admissible family, nor is the set of all Dedekind zeta functions or even the
set of integer multiples of ζ(s).

Let F be an admissible family and ∆ ≥ 2. We remark here that for
|s − 1| ≥ 1/4 the functional equation and the Phragmén–Lindelöf theorem
imply the bound

F (s)�F ,∆ qc−σF (|t|+ 2)c∆(1.4)

uniformly for F ∈ F and −∆ ≤ σ ≤ 2, where c = c(F).
Given F ∈ S] we denote by 〈x〉 the distance of x from the nearest integer

n such that a(n) 6= 0. Moreover, for α > 0 we write

δ(α) =
{
α if a(nα) 6= 0,

α/〈nα〉 if a(nα) = 0.

The required uniform bounds on vertical strips are given by

Theorem 2. Let F be an admissible family , α > 0, ∆ ≥ 2 and sk be as
in Theorem 1 (k = 0, 1, . . .). Then for |s− sk| ≥ 1/4dF we have

F (s, α)�F ,∆ qc−σF (|t|+ 2)c∆δ(α)c∆(1.5)
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uniformly for F ∈ F , −∆ ≤ σ ≤ 2 and nα �F 1, where c = c(F). Moreover

ress=sk F (s, α) = ω∗F a(nα)q1/2−sk
F nsk−1

α ck(F ), k = 0, 1, . . . ,

where ck(F ) = OF ,k(1) uniformly for F ∈ F and c0(F ) 6= 0.

We remark here that the main goal of this paper is the description of the
analytic structure of F (s, α) presented in Theorem 1, and that we do not
attempt to get sharp uniform bounds for F (s, α). Sharper bounds than (1.5),
especially in the α-aspect, can be obtained by refining the arguments in
Sections 2 and 3 below.

Our first application deals with the following non-linear exponential sum
associated with the coefficients of F ∈ S]d. Let φ(u) be a smooth function on
(0,∞) with compact support, φ̃(s) its Mellin transform, α > 0, x > 1 and

SF (x) = SF (x, α;φ) =
∞∑

n=1

a(n)e(−n1/dα)φ
(
n

x

)
.

A standard application of Theorem 2 gives

Corollary 1. Let F be an admissible family and α > 0. Then for
every A > 0 we have

SF (x) = ω∗F
a(nα)
nα

q
1/2
F

∑

0≤k≤dFA+(dF+1)/2

ck(F )φ̃(sk)
(
xnα
qF

)sk

+OF ,φ,A(qc+AF δ(α)cAx−A)

uniformly for F ∈ F and nα �F 1, where c = c(F).

Corollary 1 should be compared with the results on the corresponding
non-linear exponential sum

Sq(x) =
∞∑

n=1

ane(−2
√
nq)φ

(
n

x

)
, q > 0,(1.6)

obtained in Appendix C of Iwaniec–Luo–Sarnak [6], and in particular with
the asymptotic formula (C.17) of [6] where the coefficients an come from a
degree 2 L-function. Note that the parameter q in (1.6) corresponds to our
parameter α. Apart from the degree of uniformity in α (but see the remark
after Theorem 2), Corollary 1 improves and extends such results. Note also
that our approach is different from [6], and that in view of the pole of
F (s, α) at s = s0, Theorem 1 gives some further support to the conditional
asymptotic formula (C.33) of [6], dealing with a non-linear exponential sum
similar to (1.6), but over primes.

The next application deals with an Ω-result for

AF (x) =
∑

n≤x
a(n)

for any F ∈ S]d with d ≥ 1.
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Corollary 2. Let F ∈ S]d with d ≥ 1. Then for every polynomial
P ∈ C[x] we have

AF (x) = xP (log x) +Ω(x(d−1)/2d).

Clearly, the interesting case in Corollary 2 is when P (logx) is chosen
as in (4.2) below. We remark that Corollary 2 can possibly be proved in a
classical way by means of Voronöı-type expansions, although we could not
trace this result (in the full generality of the class S ]) in Chandrasekharan–
Narasimhan [3] and related papers. Moreover, the proof of Corollary 2 clearly
shows that the exponent in the Ω-estimate is caused by the pole of F (s, α)
(with a suitable choice of α) at s = s0.

Let σc(F ) denote the abscissa of convergence of F ∈ S ]d. We have

Corollary 3. Let F ∈ S]d with d ≥ 1. Then

σc(F ) ≥ d− 1
2d

.

In the same way as Corollary 3 we can prove the following generalization.
For F ∈ S]d with d ≥ 1 and any polynomial Q ∈ C[x], the abscissa of
convergence σc(F,Q) of the series

∞∑

n=1

a(n)−Q(logn)
ns

satisfies σc(F,Q) ≥ (d− 1)/2d.

Corollary 3, our result that S]d = ∅ for 1 < d < 5/3 (see [9]) and the
description of the functions of degree 1 in S (see above and Theorem 3
of [7]) allow us to obtain the following characterizations of the Riemann
zeta function and of the Dirichlet L-functions. Our proof is quite indirect,
and we wonder if there exists a simpler and direct proof.

Corollary 4. Let F ∈ Sd with d ≥ 1. If the series
∞∑

n=1

a(n)− 1
ns

(
resp.

∞∑

n=1

a(n)
ns

)

converges for σ > 1/5− δ with some δ > 0, then F (s) = ζ(s) (resp. F (s) =
L(s+ iθ, χ) with some θ ∈ R and a primitive Dirichlet character χ).

Our last application is another proof of the well known result assert-
ing that there are no functions in S]d with 0 < d < 1; see Richert [11],
Bochner [1], Conrey–Ghosh [4] and Molteni [10] for several proofs.

Corollary 5. S]d = ∅ for 0 < d < 1.

In fact, suppose that there exists F ∈ S]d with 0 < d < 1 and let a(m) 6= 0
for some integer m. Choosing α such that nα = m, from Theorem 1 we
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deduce that F (s, α) has a pole at s0 = (d+ 1)/2d− iθF /d with <s0 > 1, a
contradiction since F (s, α) is absolutely convergent for σ > 1. We remark
that the nature of this proof is different from those quoted above. Indeed,
our proof depends on the polar structure of the associated non-linear twist
F (s, α), while all the above quoted proofs depend on the behavior of the
coefficients a(n) of F (s).

Acknowledgments. This research was partially supported by Istituto
Nazionale di Alta Matematica, by a MURST grant and by KBN grant
1 PO3A 008 26.

2. Hypergeometric functions. Let λ = (λ1, . . . , λr) with λj > 0,
µ = (µ1, . . . , µr) with µj ∈ C, d = 2

∑r
j=1 λj and K ≥ 1 be an integer. We

consider the incomplete Fox hypergeometric function

HK(z, s) = HK(z, s;λ,µ) =
1

2πi

�

(−K−1/2)

h(w, s)zw dw,(2.1)

where h(w, s) = h(w, s;λ,µ) = h∗(w, s)Γ (w),

h∗(w, s) = h∗(w, s;λ,µ) =
r∏

j=1

Γ
(
λj(1− s) + µj − λj

d w
)

Γ
(
λjs+ µj + λj

d w
)

and zw = ewl(z), l(z) denoting the branch of log z on C \ (−∞, 0] satisfying
|=l(z)| < π. In Sections 4–6 of [7] we studied the analytic properties of the
functions HK(z, s) for 0 < σ < 2, in the case d = 1 and <µj ≥ 0. In order
to prove Theorems 1 and 2 we need to extend the study of HK(z, s) to the
half-plane σ < 2 and to obtain uniform bounds on vertical strips, in the
general case d > 0 and <µj ≥ 0.

We first remark that a simple transformation shows that the general case
d > 0 can be reduced to the case d = 1. In fact, writing

s̃ = ds− d− 1
2

, λ̃j =
λj
d
, µ̃j = µj +

λj
2

(
1− 1

d

)
,

d̃ = 2
r∑

j=1

λ̃j = 1, λ̃ = (λ̃1, . . . , λ̃r), µ̃ = (µ̃1, . . . , µ̃r),
(2.2)

we have
HK(z, s;λ,µ) = HK(z, s̃; λ̃, µ̃),(2.3)

thanks to the identities

λ̃j(1− s̃) + µ̃j −
λ̃j

d̃
w = λj(1− s) + µj −

λj
d
w,

λ̃j s̃+ µ̃j +
λ̃j

d̃
w = λjs+ µj +

λj
d
w.
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Note that d̃ = 1 and λ̃j > 0, while the <µ̃j ’s are not necessarily non-negative
when 0 < d < 1, even if <µj ≥ 0. However, the non-negativity of the µ-data
is not important in our study of the hypergeometric functions, and hence
(2.3) shows that we may restrict ourselves to the study of HK(z, s) in the
case d = 1 and µj ∈ C. Therefore, unless explicitly remarked, in the rest of
this section we will assume that d = 1 but we will not assume the condition
<µj ≥ 0 for j = 1, . . . , r.

Since in view of transformation (2.3) we need to obtain the analytic
properties of HK(z, s) in the half-plane σ < R with a suitable constant
R ≥ 2, we require that the poles of h(w, s) have positive distance from the
line <w = −K − 1/2 for every s with σ ≤ R. Clearly, the choice

K =
[

max
j=1,...,r

1 + 2|µj|
2λj

+ 2
r∑

j=1

(
|µj|+

1
2

)
+R

]
+ 1(2.4)

ensures this (note that the full force of this choice will be used later on,
especially in Lemma 2.4 below). Moreover, with abuse of notation, in analogy
with the definition of an admissible family F ⊂ S ] we say that a family F
of data (λ,µ) is admissible if d = 1, λj � 1 and µj � 1, where the
implied constants depend on F . Clearly, by (2.2) every admissible family of
L-functions in S] induces an admissible family of data (λ̃, µ̃).

For clarity of exposition, we recall here the basic result on the analytic
continuation of HK(z, s) obtained in [7]. Let

β =
r∏

j=1

λ
−2λj
j(2.5)

be the β-parameter of HK(z, s) and

A = {z ∈ C : <z > 0},
Bβ = {z ∈ C : |z| < 1/β} \ (−1/β, 0],

Cβ = {z ∈ C : |z| > 1/β},
Dβ = A ∪Bβ ∪ Cβ.

Lemma 2.1. Let d = 1, R ≥ 2 and K be as in (2.4). Then integral (2.1)
is absolutely and uniformly convergent on compact sets of A×{σ < R} and
HK(z, s) has holomorphic continuation to Dβ × {σ < R} as a single-valued
function.

Proof. This is essentially Theorem 4.1 of [7], with the domain Ω replaced
by the half-plane {σ < R} and µj ∈ C; the proof is exactly the same.

In particular, from Lemma 2.1 we see that the function HK(−iy, s) is
holomorphic for σ < R, provided y > 0 with y 6= 1/β. Since in our appli-
cations to the study of the non-linear twist F (s, α) we need to have control
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on HK(−iy, s) for every y > 0, for σ < R we write

HK(−i/β, s) = lim
z→−i/β

HK(z, s),

where the limit is taken along a path where <z > 0. In Sections 5 and 6 of [7]
we proved, in the restricted range 0 < σ < 2, that the limit exists and does
not depend on the path. Moreover, we studied the function HK(−i/β, s) in
the strip 0 < σ < 2, and in particular its polar structure (see Theorems 5.1
and 6.1 of [7]). In order to extend such results and to get uniform bounds we
need several lemmas. Although Lemma 2.1 already shows that HK(−iy, s)
is holomorphic for σ < R if y > 0 with y 6= 1/β, for completeness we include
a sketch of proof.

For K as in (2.4) and z = −iy we write

I(V ; z, s) =
1

2πi

−K−1/2+iV�

−K−1/2−iV
h(w, s)zw dw,

J±(V ; z, s) =
1

2πi

−K−1/2±iV�

−∞±iV
h(w, s)zw dw,

J̃±(V ; z, s) =
1

2πi

∞±iV�

−K−1/2±iV
h(w, s)zw dw,

and prove

Lemma 2.2. Let F be an admissible family of data, L ≥ 2, y > 0,
R = R(F) ≥ 2, K be as in (2.4) and V > 0 be sufficiently large. Then
for (λ,µ) ∈ F the integral I(V ;−iy, s) is holomorphic for σ ≤ R, while
J±(V ;−iy, s) (with y > 1/β) and J̃±(V ;−iy, s) (with 0 < y < 1/β) are
holomorphic for −L ≤ σ ≤ R and t ∈ R satisfying V ≥ c(|t| + L)3 with a
suitable c = c(F). Moreover , for V ≥ c(|t|+ L)3 we have

I(V ;−iy, s)�F ,L V cLy−K−1/2,

J±(V ;−iy, s)�F ,L
V cLy−K−1/2

log βy

if y > 1/β and V ≥ c log−6 βy, and

J̃±(V ;−iy, s)�F ,L
V cLy−K−1/2

|log βy|
if 0 < y < 1/β, uniformly for (λ,µ) ∈ F and −L ≤ σ ≤ R, where c = c(F).

Proof. We first remark that the constants implied in the �-symbols
below may depend on F and L. Moreover, in view of (2.4) and condition
V ≥ c(|t|+L)3, the paths in the integrals under consideration have positive
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distance from the poles of h(w, s). Further, we only prove the bounds for
such integrals, since their holomorphy follows by the same argument.

We start with the I-integral. Writing w = −K − 1/2 + iv with −V ≤
v ≤ V , by the identity

Γ (z)Γ (1− z) =
π

sinπz
we get

h∗(w, s)�
r∏

j=1

Γ (λj(1− s) + µj − λjw)Γ (1− λjs− µj − λjw)

× sinπ(λjs+ µj + λjw)

=
r∏

j=1

Γ (aj − iλj(t+ v))Γ (bj − iλj(t+ v)) sinπ(cj + iλj(t+ v)),

where aj = λj(K + 3/2 − σ) + µj , bj = λj(K + 1/2 − σ) + 1 − µj , cj =
λj(σ −K − 1/2) + µj . Note that for σ ≤ R we have <aj ,<bj > 0 by (2.4).
Clearly

sinπ(cj + iλj(t+ v))� eπλj |t+v|

and by Stirling’s formula

Γ (aj − iλj(t+ v))Γ (bj − iλj(t+ v))� e−πλj |t+v|(1 + |t+ v|)cL

uniformly for (λ,µ) ∈ F and −L ≤ σ ≤ R, where c = c(F). Therefore,
recalling that the value of c is not necessarily the same at each occurrence,
we have

h∗(w, s)� (1 + |t+ v|)cL

and hence, again by Stirling’s formula,

I(V ;−iy, s)�
V�

−V
(1+|t+v|)cL(1+|v|)ce−π2 |v|y−K−1/2e

π
2 |v|dv � V cLy−K−1/2

provided V ≥ c(|t|+ L)3, say, as required.
Now we turn to the J±-integrals; we consider only the J+-integral since

both the treatment of the J−-integral and the resulting bound are the same.
Also, by the same reason we assume that t ≥ 0. Writing w = u + iV with
u ≤ −K − 1/2, arguing as for the I-integral and recalling that d = 1 we
have

h∗(w, s)� e
π
2 (t+V )

r∏

j=1

|Γ (λj(1− s) + µj + λj(|u| − iV ))

× Γ (1− λjs− µj + λj(|u| − iV ))|.
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Here we use the following form of Stirling’s formula:

logΓ (z + a) = (z + a− 1/2) log z − z +O(1)(2.6)

for |z| sufficiently large, uniformly for |a| ≤ |z|1/3 and |arg z| ≤ π − ε,
for any fixed ε > 0. Since (2.6) can be proved starting with the classical
Stirling formula and performing standard manipulations, we omit the proof.
Taking z = λj(|u| − iV ) and a = λj(1 − s) + µj or a = 1 − λjs − µj we
have |arg z| ≤ π/2 and, in view of the assumption V ≥ c(|t| + L)3, also
|a| ≤ |z|1/3. Hence from (2.5), (2.6) and d = 1 we get

h∗(w, s)� e
π
2 (t+V )β−|u|(u2 + V 2)

1
2 (|u|+1/2−σ)e

−(V+t) arctan V
|u| e−|u|

uniformly for (λ,µ) ∈ F and −L ≤ σ ≤ R. Moreover, by the same argument
we also have

Γ (w)� e−πV

|Γ (1 + |u| − iV )| � e−πV (u2 + V 2)−
1
2 (|u|+1/2)e

V arctan V
|u| e|u|.

Therefore, recalling that y > 1/β, t ≤ cV 1/3 and V ≥ c log−6 βy, substitut-
ing u→ −u we get

J+(V ;−iy, s)�
∞�

K+1/2

(βy)−u(u2 + V 2)−σ/2et(
π
2−arctan V

u
) du

=
( √

V�

K+1/2

+
∞�
√
V

)
(βy)−u(u2 + V 2)−σ/2et(

π
2−arctan V

u
) du

� V cLy−K−1/2

log βy
+

V cL

log βy
e
π
2 t−
√
V log βy � V cLy−K−1/2

log βy
,

as required.
Dealing with the J̃±-integrals, as before we consider only the J̃+-integral

and t ≥ 0. Writing w = u + iV with u ≥ −K − 1/2 and arguing as before,
from (2.6) we get

h∗(w, s)� e−
π
2 (V+t)

r∏

j=1

|Γ (λjs+ µj + λjw)Γ (1−λj(1− s)−µj + λjw)|−1

� e−
π
2 (V+t)βueu(u2 + V 2)−

1
2 (u+σ−1/2)e(V+t) arg(u+iV )

uniformly for (λ,µ) ∈ F and −L ≤ σ ≤ R. Moreover, by Stirling’s formula
we have

Γ (w)� (u2 + V 2)
1
2 (u−1/2)e−V arg(u+iV )e−u.

Therefore, recalling that 0 < y < 1/β and observing that arg(u + iV ) ≤
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π/2 + c/V for −K − 1/2 ≤ u <∞, we obtain

J̃+(V ;−iy, s)�
∞�

−K−1/2

(βy)u(u2 + V 2)−σ/2et(arg(u+iV )−π/2) du

�
( √

V�

−K−1/2

+
∞�
√
V

)( 1
βy

)−u
(u2 + V 2)−σ/2 du

� V cLy−K−1/2

|log βy| ,

and the lemma follows.

Lemma 2.3. Let F be an admissible family of data, L ≥ 2, y > 0 with
y 6= 1/β, R = R(F) ≥ 2 and K be as in (2.4). Then for any (λ,µ) ∈ F the
function HK(−iy, s) is holomorphic for σ ≤ R. Moreover

HK(−iy, s)� (|t|+ 2)cLy−K−1/2(1 + |log βy|−cL)

uniformly for (λ,µ) ∈ F and −L ≤ σ ≤ R, where c = c(F).

Proof. We give only a sketch of proof since the basic argument and
the technical details are similar to those in Theorem 4.1 of [7] (see also
Lemma 2.1) and in Lemma 2.2, respectively.

Let (λ,µ) ∈ F , V > 0 be sufficiently large and s belong to the rectangle
R defined by −L ≤ σ ≤ R and V ≥ c(|t|+ L)3. Assume first that y > 1/β
and consider the contour C consisting of the vertical segment [−K−1/2−iV,
−K−1/2+iV ] and of the two horizontal half-lines (−∞±iV,−K−1/2±iV ].
Moreover, for z = −iy let

HC(z, s) =
1

2πi

�

C
h(w, s)zw dw.

Clearly

HC(−iy, s) = I(V ;−iy, s) + J−(V ;−iy, s) + J+(V ;−iy, s),
where the integrals on the RHS are those in Lemma 2.2, and henceHC(−iy, s)
is holomorphic for s ∈ R by Lemma 2.2. Now we apply Cauchy’s theorem
to the two closed contours obtained by joining the half-lines (−K−1/2± iV,
−K − 1/2 ± i∞) and (−∞± iV,−K − 1/2 ± iV ] by two arcs of the circle
|w| = U with U →∞. Note that the region delimited by such closed contours
does not contain poles of h(w, s)(−iy)w if s ∈ R. Moreover, by estimates
similar to those in Lemma 2.2 we can show that the integral of h(w, s)(−iy)w

over such arcs tends to 0 as U →∞. Therefore

HC(−iy, s) = HK(−iy, s),
and hence HK(−iy, s) is holomorphic for s ∈ R. Since L and V are arbitrary,
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we see that HK(−iy, s) is holomorphic for σ ≤ R in this case. Moreover, for
−L ≤ σ ≤ R we have

HK(−iy, s) = I(V ;−iy, s) + J−(V ;−iy, s) + J+(V ;−iy, s)(2.7)

with V ≥ c(|t|+ L)3 and a suitable constant c = c(F).
The case 0 < y < 1/β is dealt with in a similar way, by considering in

place of C the contour C ′ consisting of the vertical segment [−K−1/2− iV,
−K − 1/2 + iV ] and of the two horizontal half-lines [−K − 1/2 ± iV,

∞ ± iV ). Using the integrals J̃±(V ;−iy, s) in Lemma 2.2 instead of the
corresponding integrals J±(V ;−iy, s), in this case by Cauchy’s theorem we
deduce that HK(−iy, s) is holomorphic for σ ≤ R and

HK(−iy, s) = I(V ;−iy, s) + J̃−(V ;−iy, s) + J̃+(V ;−iy, s)(2.8)

for −L ≤ σ ≤ R and V ≥ c(|t|+ L)3.
In order to get a uniform bound for HK(−iy, s) in the strip −L ≤ σ ≤ R

we inject the bounds of Lemma 2.2 into (2.7) and (2.8). Suppose first that
y > 1/β. If |t| � log−2 βy we choose V = c(|t| + L)3 � log−6 βy in (2.7),
and hence from Lemma 2.2 we get

HK(−iy, s)� (|t|+ 2)cLy−K−1/2
(

1 +
1

log βy

)
.

If |t| � log−2 βy we choose V = c(L3 + log−6 βy)� (|t|+ L)3 in (2.7), and
hence from Lemma 2.2 we have

HK(−iy, s)� (log βy)−cLy−K−1/2
(

1 +
1

log βy

)
.

Therefore, for y > 1/β we have

HK(−iy, s)� (|t|+ 2)cLy−K−1/2(1 + log−cL βy)

uniformly for (λ,µ) ∈ F and −L ≤ σ ≤ R. A similar (even simpler) argu-
ment applies to the case 0 < y < 1/β as well, and the lemma follows.

We recall that for F ∈ S] the ξ-invariant ξF (see the Introduction) is
defined in terms of the µ-data. In analogy with ξF , starting from the data
(λ,µ) we define

ξ = 2
r∑

j=1

(µj − 1/2) = η + iθ(2.9)

and write

A(s) =
r∑

j=1

(λj(1− 2s)− 2i=µj) log 2λj

and, for any non-negative integer m,
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ΓK,m(s) = −
K∑

k=0

1
k!

Γ
(
1− s

2 + ξ
2 + k

2

)

Γ
(1

2 + s
2 + ξ

2 − k
2 +m

)
(
i

2

)−k

+
√
π

Γ
(
1− s

2 + ξ
2

)
Γ (s− 1 + iθ +m)

Γ
(
s
2 − 1

2 −
ξ
2

)
Γ
(
s
2 + ξ

2 +m
)
Γ
(1

2 + s
2 + ξ

2 +m
)

− i√π Γ
(3

2 − s
2 + ξ

2

)
Γ (s− 1 + iθ +m)

Γ
(
s
2 −

ξ
2

)
Γ
(
s
2 + ξ

2 +m
)
Γ
(1

2 + s
2 + ξ

2 +m
) .

Lemma 2.4. Let F be an admissible family of data, L≥ 2, R=R(F)≥ 2,
K be as in (2.4) and ξ be as in (2.9). Then for any (λ,µ) ∈ F and any
integer M ≥ cL with a suitable c = c(F) we have

HK(−i/β, s) = eA(s)
M∑

m=0

Pm(s)ΓK,m(s) + gM (s),

where the Pm(s)’s are polynomials with degPm ≤ 2m and P0(s) = 1 identi-
cally , and their coefficients are uniformly bounded by a constant depending
of F and M . Moreover , gM (s) is holomorphic for −L ≤ σ ≤ R and satisfies

gM (s)�F ,M (|t|+ 2)cM

uniformly for (λ,µ) ∈ F and −L ≤ σ ≤ R, where c = c(F).

Proof. This lemma is an extension of Theorem 5.1 in [7], and the main
argument in the proof is similar. Therefore, we only give a sketch of the
proof.

Let F be an admissible family of data, (λ,µ) ∈ F , z = x − i/β with
x > 0 and w = −K − 1/2 + iv. Then for V > 0 sufficiently large we have

HK(z, s) =
1

2πi

( �

|v|≤V
+

�

|v|≥V

)
h(w, s)zw dw(2.10)

= H
(1)
K,V (z, s) +H

(2)
K,V (z, s),

say. Moreover

HK(−i/β, s) = lim
x→0+

HK(z, s).(2.11)

Since H
(1)
K,V (z, s) is the integral I(V ; z, s) in Lemma 2.2, we infer that

H
(1)
K,V (−i/β, s) is holomorphic for σ ≤ R. Moreover, we choose V = c(|t|+L)3

with a suitable constant c = c(F) and apply Lemma 2.2, thus getting (recall
that the value of c is not necessarily the same at each occurrence)

H
(1)
K,V (−i/β, s)� (|t|+ 2)cL(2.12)

uniformly for (λ,µ) ∈ F and −L ≤ σ ≤ R.
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In order to deal with H
(2)
K,V (z, s) we write a = 1

2(1 − s) + 1
2ξ and b =

1
2s+

1
2ξ, and argue as in Lemma 5.1 of [7] using the following form of Stirling’s

formula:

logΓ (z + a) =
(
z + a− 1

2

)
log z − z +

1
2

log 2π

+
M∑

m=1

(−1)m+1 Bm+1(a)
m(m+ 1)

z−m +O

( |a|M+2

|z|M+1

)

uniformly for |arg(z + a)| ≤ π − ε and |a| ≤ |z|/2, where M is any non-
negative integer and Bm(a) denotes the mth Bernoulli polynomial. Applying
this to h∗(w, s) we get

log h∗(w, s) = log
{
eA(s) Γ

(
a+ 1

2 − w
2

)

Γ
(
b+ 1

2 + w
2

)
(
β

2

)w}
+

M∑

m=1

Qm(s)
wm

+O
( |s|M+2

|w|M+1

)

with certain polynomials Qm(s) of degree ≤ m+1, and taking the exponen-
tial we obtain

h∗(w, s) = eA(s) Γ
(
a+ 1

2 − w
2

)

Γ
(
b+ 1

2 + w
2

)
(
β

2

)w{
1 +

M∑

m=1

Q′m(s)
wm

+O

( |s|2M+2

|w|M+1

)}

with certain polynomials Q′m(s) of degree ≤ 2m. Now for 1 ≤ m ≤ M we
use the formula

1
wm

=
αm

(αw + β)m
+
M−m−1∑

l=1

Fl,m(β)
wl+m

+O

( |β|M−m
|w|M

)

with certain polynomials Fl,m(β) of degree ≤ l, where α and β are param-
eters to be suitably chosen and (z)m means 1 for m = 0 and z(z + 1) · · ·
· · · (z +m− 1) for m ≥ 1. In this way we finally get

h∗(w, s) = eA(s) Γ
(
a+ 1

2 − w
2

)

Γ
(
b+ 1

2 + w
2

)
(
β

2

)w( M∑

m=0

Pm(s)(
b+ 1

2 + w
2

)
m

+ gM(w, s)
)
,

where the Pm(s)’s are polynomials with degPm ≤ 2m and P0(s) = 1 identi-
cally, and their coefficients are uniformly bounded by a constant depending
on F and M . Moreover, if we choose M ≥ cL with a suitable constant
c = c(F), then gM (w, s) is holomorphic for −L ≤ σ ≤ R and satisfies

gM (w, s)� (|t|+ 2)M+2

|v|M+1 , |v| ≥ V,

uniformly for (λ,µ) ∈ F and −L ≤ σ ≤ R. Hence, using Γ (z + 1) = zΓ (z),
we get
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(2.13) H
(2)
K,V (z, s)

= eA(s)
M∑

m=0

Pm(s)
2πi

�

(−K−1/2)

Γ
(
a+ 1

2 − w
2

)
Γ (w)

Γ
(
b+ 1

2 + w
2 +m

)
(
βz

2

)w
dw + H̃

(2)
K,V,M (z, s),

where

H̃
(2)
K,V,M (z, s) = − eA(s)

M∑

m=0

Pm(s)
2πi

�

|v|≤V

Γ
(
a+ 1

2 − w
2

)
Γ (w)

Γ
(
b+ 1

2 + w
2 +m

)
(
βz

2

)w
dw

+ eA(s) 1
2πi

�

|v|≥V

Γ
(
a+ 1

2 − w
2

)
Γ (w)

Γ
(
b+ 1

2 + w
2

)
(
βz

2

)w
gM (w, s) dw.

In view of the choice of M the second integral is convergent in the strip
−L ≤ σ ≤ R, and hence H̃(2)

K,V,M (−i/β, s) is holomorphic in the same strip
and satisfies

H̃
(2)
K,V,M (−i/β, s)� (|t|+ 2)cM(2.14)

uniformly for (λ,µ) ∈ F and −L ≤ σ ≤ R.
In order to deal with the first term on the RHS of (2.13) we observe that

each term
eA(s)

2πi

�

(−K−1/2)

Γ
(
a+ 1

2 − w
2

)
Γ (w)

Γ
(
b+ 1

2 + w
2 +m

)
(
βz

2

)w
dw

equals the function H(1)
K (z, s) in (5.2) of [7] with b replaced by b+m. There-

fore, arguing exactly as in the proof of Theorem 5.1 of [7] we get

(2.15) lim
x→0+

eA(s)
M∑

m=0

Pm(s)
2πi

�

(−K−1/2)

Γ
(
a+ 1

2 − w
2

)
Γ (w)

Γ
(
b+ 1

2 + w
2 +m

)
(
βz

2

)w
dw

= eA(s)
M∑

m=0

Pm(s)
{
−

K∑

k=0

1
k!

Γ
(
a+ 1

2 + k
2

)

Γ
(
b+ 1

2 − k
2 +m

)
(
i

2

)−k

+
√
π

Γ
(
a+ 1

2

)
Γ
(
b− a− 1

2 +m
)

Γ (−a)Γ (b+m)Γ
(1

2 + b+m
)

− i√π Γ (a+ 1)Γ
(
b− a− 1

2 +m
)

Γ
(1

2 − a
)
Γ (b+m)Γ

(1
2 + b+m

)
}
.

In view of the definitions of a and b, the lemma follows now from
(2.10)–(2.15).

Lemma 2.5. Let F be an admissible family of data, L≥ 2, R=R(F)≥ 2,
K be as in (2.4) and θ be as in (2.9). Then for any (λ,µ) ∈ F the function
HK(−i/β, s) is meromorphic for σ ≤ R, with at most simple poles at the
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points
s(k) = 1− k − iθ, k = 0, 1, . . . ,

and non-vanishing residue at s(0). Moreover , for |s− s(k)| ≥ c, k = 0, 1, . . . ,

HK(−i/β, s)�F ,L (|t|+ 2)cL

uniformly for (λ,µ) ∈ F and −L ≤ σ ≤ R, where c = c(F).

Proof. This lemma is an extension of Theorem 6.1 of [7], but the argu-
ment in the proof is different. In fact, the argument using binomial coefficient
identities as in [7] is apparently difficult to carry over to our present case,
and is replaced by a more theoretical argument.

Let (λ,µ) ∈ F . We choose M = [cL] + 1 in Lemma 2.4 to infer that
HK(−i/β, s) is meromorphic for σ ≤ R since L can be taken arbitrar-
ily large. Moreover, by Lemma 2.4 and Stirling’s formula we find that
HK(−i/β, s) satisfies the required bound away from its poles. Therefore,
the proof of the lemma reduces to investigating the polar structure of
HK(−i/β, s).

We start by observing that for a, b, c, d ∈ C with ac 6= 0 and w with
(a− c)w + b− d non-negative integer, the function

Γ (as+ b)
Γ (cs+ d)

(2.16)

is holomorphic at s = w. In fact, denoting by f(s) the function in (2.16)
and writing k = (a− c)w + b− d, we have

f(s) =
Γ (a(s− w) + aw + b)
Γ (c(s− w) + cw + d)

= Qk(s)
Γ (a(s− w) + z0)
Γ (c(s− w) + z0)

,

where Qk(s) is a polynomial of degree k and z0 = cw+ d, and our assertion
follows at once.

Next we consider the meromorphic function ΓK,m(s) as in Lemma 2.4,
and prove that for every m ≥ 0 it has at most simple poles. In fact, if we
write

ΓK,m(s) = −Σ(s) +
√
πA(s)− i√π B(s),(2.17)

then Σ(s) has obviously at most simple poles, while the possible poles of
A(s) and B(s) are at the points

wl = ξ + l(2.18)

with l integer ≥ 2, coming from Γ
(
1− s

2 + ξ
2

)
and Γ

(3
2 − s

2 + ξ
2

)
, and

s(k) = 1− k − iθ(2.19)

with k integer ≥ m, coming from Γ (s − 1 + iθ + m). Moreover, A(s) and
B(s) have at most double poles, and this may a priori happen only when
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wl = s(k) for some l and k in the above ranges. But if we write

f1(s) =
Γ
(
1− s

2 + ξ
2

)

Γ
(
s
2 + ξ

2 +m
) , f2(s) =

Γ
(3

2 − s
2 + ξ

2

)

Γ
(1

2 + s
2 + ξ

2 +m
) ,

then for w = s(k) the functions f1(s) and f2(s) satisfy the hypotheses
of (2.16) and hence are holomorphic at s = s(k). Therefore, A(s) and B(s)
have at most simple poles as well, thus proving our assertion. In particular,
HK(−i/β, s) has at most simple poles.

Writing w = −K − 1/2 + iv and z = x− i/β with x > 0, from (2.15) we
have

ΓK,m(s) = lim
x→0+

1
2πi

�

(−K−1/2)

Γ
(
1− s

2 + ξ
2 − w

2

)
Γ (w)

Γ
(1

2 + s
2 + ξ

2 + w
2 +m

)
(
βz

2

)w
dw,

and by Stirling’s formula

Γ
(
1− s

2 + ξ
2 − w

2

)
Γ (w)

Γ
(1

2 + s
2 + ξ

2 + w
2 +m

)
(
βz

2

)w
� (|v|+ 2)−σ−m

uniformly for x → 0+. Therefore, ΓK,m(s) is holomorphic for 1 − m < σ
≤ R, and hence by Lemma 2.4 the function HK(−i/β, s) is holomorphic for
1 < σ ≤ R.

Now we are ready to conclude the proof of the lemma. Note that the
possible poles of Σ(s) in (2.17) are of type wl (see (2.18)), and hence by
Lemma 2.4 the possible poles of HK(−i/β, s) in the half-plane σ ≤ 1 are
of type wl or s(k) (see (2.18) and (2.19)). Let wl be such that <wl ≤ 1 and
wl 6= s(k) for every k ≥ 0. Since the functions ΓK,m(s) have at most simple
poles, in order to prove that HK(−i/β, s) is holomorphic at s = wl it suffices
to show that

ress=wl ΓK,m(s) = 0, m ≥ 0.(2.20)

Suppose first that l is even, say l = 2p. Then, since wl 6= s(k), B(s) in (2.17)
is holomorphic at s = wl. Moreover, Γ

(
1 − s

2 + ξ
2 + k

2

)
is also holomorphic

at s = wl if k is odd or if k = 2q with integer q > p− 1. Therefore by (2.17)
we get

(2.21) ress=wl ΓK,m(s)

= −
p−1∑

q=0

1
(2q)!

(
i

2

)−2q 1

Γ
(1

2 + wl
2 + ξ

2 − q +m
) λp,q

+
√
π

Γ (wl − 1 + iθ +m)

Γ
(
wl
2 − 1

2 −
ξ
2

)
Γ
(
wl
2 + ξ

2 +m
)
Γ
(1

2 + wl
2 + ξ

2 +m
) λp,0,
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where for q ≤ p− 1

λp,q = ress=w2p Γ

(
1− s

2
+
ξ

2
+ q

)
= −2 resz=1−p+q Γ (z) = −2

(−1)p−1−q

(p− 1− q)! ,

and hence

(2.22) ress=w2p ΓK,m(s)

= 2(−1)p−1
{ p−1∑

q=0

4q

(2q)!(p− 1− q)!Γ
(1

2 + p− q + η +m
)

−√π Γ (2p− 1 + η +m)
(p− 1)!Γ

(
p− 1

2

)
Γ (p+ η +m)Γ

(1
2 + p+ η +m

)
}

= 2(−1)p−1Φp(η +m),

say. The function Φp(z) is clearly meromorphic for every p, and Φp(x) = 0 for
1−2p < x ≤ R−2p. Indeed, given x in such an interval we choose (λ,µ) with
λj > 0, d = 1 and η = <ξ = x, and consider the associated functions ΓK,m(s)
and the point w2p = ξ+2p. Since in this case 1 < <w2p ≤ R, we already know
that ΓK,0(s) is holomorphic at s = w2p, and hence Φp(x) = 0 by (2.22). By
analytic continuation we have Φp(z) = 0 identically, therefore (2.20) follows
from (2.22) in the case of even l.

The case of odd l can be treated in a completely analogous way, with
the role of A(s) in the second term on the RHS of (2.21) replaced by B(s).
In such a way we find that HK(−i/β, s) is holomorphic at the points wl
in (2.18), provided wl 6= s(k). The singularities of HK(−i/β, s) with σ ≤ R
are therefore at most simple poles at the points s(k) in (2.19) with k ≥ 0.
Moreover, the argument leading to Theorem 6.1 of [7] shows that the residue
of ΓK,0(s) at s = s(0) does not vanish, while we already know that the
functions ΓK,m(s) with m ≥ 1 are holomorphic at s = s(0). Since P0(s) = 1
identically, by Lemma 2.4 we conclude that the residue of HK(−i/β, s) at
s = s(0) does not vanish, and the lemma follows.

By Lemmas 2.3 and 2.5 we summarize the required properties of
HK(−iy, s) as follows. Writing

χ(y) =
{

1 if y 6= 1/β,

0 if y = 1/β,

we have

Theorem 2.1. Let F be an admissible family of data, L ≥ 2, y > 0, R =
R(F) ≥ 2, K be as in (2.4) and θ be as in (2.9). Then for any (λ,µ) ∈ F
the function HK(−iy, s) is meromorphic for σ ≤ R. Moreover
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(i) if y 6= 1/β then HK(−iy, s) is holomorphic for σ ≤ R, while
HK(−i/β, s) has at most simple poles at the points

s(k) = 1− k − iθ, k = 0, 1, . . . ,

with non-vanishing residue at s(0);
(ii) we have (for |s− s(k)| ≥ c, k = 0, 1, . . . , if y = 1/β)

HK(−iy, s)�F ,L (|t|+ 2)cLy−K−1/2(1 + χ(y)|logβy|−cL)

uniformly for (λ,µ) ∈ F and −L ≤ σ ≤ R, where c = c(F).

3. Proof of Theorems 1 and 2. The proof of Theorem 1 follows the
proof of Theorem 7.1 of [7], and hence we give a sketch of the main argument,
with details where needed. Let d > 0, F ∈ S ]d and α > 0. Moreover, let
∆ ≥ 2, R ≥ 2 to be chosen later on, K be as in (2.4), N > 2 and zN =
1/N + 2πiα. For σ < 1 + 1/d and a sufficiently large constant c > 0, the
argument at the beginning of Section 7 of [7] and transformation (2.3) give

(3.1) FN (s, α)

=
∞∑

n=1

a(n)
ns

e−n
1/dzN =

1
2πi

�

(c)

F

(
s+

w

d

)
Γ (w)z−wN dw

= R
(1)
N (s, α) +R

(2)
N (s, α) + ωQ1−2s

∞∑

n=1

a(n)
n1−s HK

(
n1/d

Q2/dzN
, s;λ,µ

)

= R
(1)
N (s, α) +R

(2)
N (s, α) + ωQ1−2s

∞∑

n=1

a(n)
n1−s HK

(
n1/d

Q2/dzN
, s̃; λ̃, µ̃

)
,

where HK(z, s;λ,µ) is the hypergeometric function defined by (2.1), s̃, λ̃, µ̃
are given by (2.2) and

R
(1)
N (s, α) = resw=d(1−s) F

(
s+

w

d

)
Γ (w)z−wN ,

R
(2)
N (s, α) =

K∑

k=0

(−1)k

k!
F

(
s− k

d

)
zkN .

Letting N →∞, from (3.1) and the definition of nα we obtain

F (s, α) = R(1)(s, α) +R(2)(s, α)(3.2)

+ ωQ1−2s
∞∑

n=1

a(n)
n1−s HK

(
− i

dβ1/d

(
n

nα

)1/d

, s̃; λ̃, µ̃
)
,

where
R(j)(s, α) = lim

N→∞
R

(j)
N (s, α), j = 1, 2.
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In order to deal with the first two terms on the RHS of (3.2), we write
the Laurent expansion of F (s) at s = 1 as

F (s) =
mF∑

k=1

αk
(s− 1)k

+ f1(s)(3.3)

with f1(s) entire. A computation shows that

R
(1)
N (s, α) =

mF∑

k=1

αkd
kβk−1,N (s)

with

βk,N (s) =
1
k!

k∑

ν=0

(
k

ν

)
Γ (ν)((1− s)d)(− log zN )k−νz(s−1)d

N ,

and hence

R(1)(s, α) =
mF∑

k=1

αkd
kβk−1(s)(3.4)

with

βk(s) =
1
k!

k∑

ν=0

(
k

ν

)
Γ (ν)((1− s)d)(− log z)k−νz(s−1)d(3.5)

and z = 2πiα. Therefore, R(1)(s, α) is holomorphic for σ < 1 + 1/d, s 6= 1.
Moreover, from the behavior of Γ (ν)(s) at s = 0 we obtain

βk(s) =
z(s−1)d

k!

k∑

ν=0

(
k

ν

)
(−1)νν!

((1− s)d)ν+1 (− log z)k−ν + f2(s)

= −z
(s−1)d

k!

k∑

ν=0

(
k

ν

)
(−1)k−ν+1(k − ν)!

((1− s)d)k−ν+1 (− log z)ν + f2(s)

= − z(s−1)d

((s− 1)d)k+1

k∑

ν=0

1
ν!

(−(s− 1)d log z)ν + f2(s)

= − z(s−1)d

((s− 1)d)k+1

∞∑

ν=0

1
ν!

(−(s− 1)d log z)ν + f3(s)

= − 1
((s− 1)d)k+1 + f3(s),

where f2(s), f3(s) are holomorphic at s = 1. Hence

R(1)(s, α) = −
mF∑

k=1

αk
(s− 1)k

+ f4(s)(3.6)
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with f4(s) holomorphic for σ < 1 + 1/d. But

R(2)(s, α) =
K∑

k=0

(−1)k

k!
F

(
s− k

d

)
zk(3.7)

is holomorphic for σ < 1 + 1/d apart from the term corresponding to k = 0,
therefore from (3.3) and (3.6) we see that R(1)(s, α) +R(2)(s, α) is holomor-
phic for σ < 1 + 1/d.

Given F ∈ S]d with d > 0, let F denote the admissible family of data
consisting only of (λ̃, µ̃). We apply Theorem 2.1 to such F , with the choice

R = 2d+ 2, L = d(∆+ 1) + 2.(3.8)

Note that, by (2.2), the range of σ as −L ≤ <s̃ ≤ R contains the in-
terval [−∆, 1 + 1/d). Note also that the β-parameter (defined by (2.5)) of
HK(z, s̃; λ̃, µ̃) is

β̃ = dβ1/d,

while the θ-invariant (see (2.9)) of HK(z, s̃; λ̃, µ̃) equals θF since =µ̃j = =µj .
Splitting the sum over n in (3.2) as

a(nα)

n1−s
α

HK

(
− i
β̃
, s̃; λ̃, µ̃

)
+
∑

n6=nα

a(n)
n1−s HK

(
− i
β̃

(
n

nα

)1/d

, s̃; λ̃, µ̃
)
,(3.9)

from Theorem 2.1(ii) we have

HK

(
− i
β̃

(
n

nα

)1/d

, s̃; λ̃, µ̃
)
� n−(K+1/2)/d � n−R/d, n→∞,

uniformly for −∆ ≤ σ < 1 + 1/d, and hence by Theorem 2.1(i) the second
term in (3.9) is holomorphic for σ < 1 + 1/d since n 6= nα. Moreover, if
a(nα) 6= 0 then by Theorem 2.1(i) the first term in (3.9) has at most simple
poles at the points s̃ (k) = 1− k− iθF with integer k ≥ 0 and non-vanishing
residue at s̃ (0). In view of (2.2) we therefore deduce that

ωQ1−2s
∞∑

n=1

a(n)
n1−s HK

(
− i

dβ1/d

(
n

nα

)1/d

, s̃; λ̃, µ̃
)

is meromorphic for σ < 1+1/d, is holomorphic for σ < 1+1/d if a(nα) = 0,
and has at most simple poles at the points

sk =
d+ 1

2d
− k

d
− i θF

d
, k = 0, 1, . . . ,

if a(nα) 6= 0, with non-vanishing residue at s0. This completes the proof of
Theorem 1.

In order to prove Theorem 2 we have to inject uniform bounds into the
above argument. Let F denote both the admissible family of L-functions
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and the induced admissible family of data (λ̃, µ̃), and let F ∈ F . We
follow the argument above with K as in (2.4) and choosing R and L as
in (3.8), but here d denotes an upper bound for dF as F ∈ F . We first
remark that, in view of (1.3), the bound for F (s, α) is trivially true for
1 + 1/2dF ≤ σ ≤ 2 since 1 ≤ dF � 1, and hence we consider (3.2) in the
range −∆ ≤ σ < 1 + 1/2dF .

The first two terms on the RHS of (3.2) are dealt with by means of (1.4).
By Stirling’s formula, from (3.5) we deduce that for k ≤ mF and −∆ ≤ σ <
1 + 1/2dF with |s− 1| ≥ 1/4,

βk(s)� (|t|+ 2)c∆|log 2πα|mFα(σ−1)d.

Moreover, by (3.3), (1.4) and Cauchy’s formula for k ≤ mF we have

αk � qcF ,

and hence by (3.4) for −∆ ≤ σ < 1 + 1/2dF with |s− 1| ≥ 1/4 we get

R(1)(s, α)� qcF (|t|+ 2)c∆|log 2πα|mFα(σ−1)d.(3.10)

Further, by (1.4) and (3.7) for nα � 1 and −∆ ≤ σ < 1 + 1/2dF with
|s− 1| ≥ 1/4 we have

R(2)(s, α)� qc−σF (|t|+ 2)c∆αc.(3.11)

Therefore, since R(1)(s, α) + R(2)(s, α) is holomorphic for σ < 1 + 1/dF ,
from (3.10), (3.11) and the maximum modulus principle we have

R(1)(s, α) +R(2)(s, α)� qc−σF (|t|+ 2)c∆αc(3.12)

uniformly for F ∈ F , −∆ ≤ σ < 1+1/2dF and nα � 1, with some constant
c = c(F).

We split the sum over n on the RHS of (3.2) as in (3.9) and apply
Theorem 2.1. Recalling that Q2 � qF , for |s− sk| ≥ 1/4dF , k = 0, 1, . . . , the
contribution of the first term in (3.9) to (3.2) is

� q
1/2−σ
F |a(nα)|nσ−1

α (|t|+ 2)c∆ � qcFα
σ+c(|t|+ 2)c∆(3.13)

uniformly for F ∈ F and −∆ ≤ σ < 1 + 1/2dF . The contribution of the
second term in (3.9) to (3.2) is

� q
1/2−σ
F

∑

n6=nα
|a(n)|nσ−1(|t|+2)c∆

(
nα
n

)(K+1/2)/d(
log

n

nα

)c∆/d
(3.14)

� qc−σF (|t|+ 2)c∆δ(α)c∆

uniformly for F ∈ F , −∆ ≤ σ < 1 + 1/2dF and nα � 1, and hence the
required bound for F (s, α) follows from (3.2) and (3.12)–(3.14).
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Finally, by Theorem 1, Theorem 2.1, (3.2) and (3.9), for k = 0, 1, . . . we
have

ress=sk F (s, α) = ωQ1−2sknsk−1
α a(nα)

1
d

ress=s(k) HK

(
− i
β̃
, s; λ̃, µ̃

)

and, by Cauchy’s integral formula,

ress=s(k) HK(−i/β̃, s; λ̃, µ̃)� 1

uniformly for F ∈ F , where the implicit constant may also depend on k.
The required expression for ress=sk F (s, α) follows now from the definitions
of ω∗F and qF .

4. Proof of the corollaries. The proof of Corollary 1 is standard, so
we give only a sketch. Let φ(u) be a smooth function on (0,∞) with compact
support and let

φ̃(s) =
∞�

0

φ(u)us−1 du

be its Mellin transform. It is well known that φ̃(s) is an entire function
satisfying

φ̃(s)� (|t|+ 2)−C , a ≤ σ ≤ b,
for every C > 0. Starting from

SF (x) =
1

2πi

�

(2)

F (s, α)φ̃(s)xs ds,

we shift the line of integration to σ = −∆, where ∆ > 0 is arbitrarily
large and the line σ = −∆ has distance ≥ 1/4dF from the poles of F (s, α).
Writing rk = ress=sk F (s, α), from Theorem 2 we get

SF (x) =
∑

<sk≥−∆
rkφ̃(sk)xsk +O

(
qc+∆F δ(α)c∆x−∆

∞�

−∞
(|t|+ 2)c∆−C dt

)
,

and Corollary 1 follows at once since ∆ and C are arbitrarily large.

In order to prove Corollary 2 we need a lemma concerning the function

ζd(s, α) =
∞∑

n=1

e(−n1/dα)
ns

, σ > 1.

Lemma 4.1. For d > 1 and α > 0 the function ζd(s, α) is entire.

Proof. We first observe that the function

Zd(s, α) = πs−1/2
∞∑

k=0

1
k!
Γ
(1

2

(
1− s+ k

d

))

Γ
(1

2

(
s− k

d

)) ζ(1− s+ k/d)(2πiα)k(4.1)
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is entire. In fact, for each k ≥ 0 the pole of ζ(1−s+k/d) is canceled by a zero
of Γ

(1
2

(
s− k

d

))−1, and by Stirling’s formula the series is rapidly convergent
over C since d > 1. Moreover, by Cauchy’s theorem and the functional
equation of ζ(s) (see also the beginning of the proof of Theorem 1 and
Section 7 of [7]), for σ > 1 we get

Zd(s, α) = lim
N→∞

1
2πi

�

(2)

πs−1/2 Γ
(1

2

(
1− s− w

d

))

Γ
(1

2

(
s+ w

d

))

× Γ (w)ζ
(

1− s− w

d

)(
1
N

+ 2πiα
)−w

dw

= lim
N→∞

1
2πi

�

(2)

ζ

(
s+

w

d

)
Γ (w)

(
1
N

+ 2πiα
)−w

dw

= ζd(s, α),

and the lemma follows.

We remark that Lemma 4.1 is due to Hardy [5] (see also n.3 of the
Miscellaneous Examples at the end of Chapter IX of Titchmarsh [12]), al-
though Hardy’s proof is quite different from ours. We include the proof of
Lemma 4.1 since it is a simplified version of our main idea in the proof
of Theorem 1. In fact, in this case we have nice convergence properties of
the hypergeometric function involved (corresponding to the case with “main
parameter” µ < 0 in the sense of Braaksma [2]). We also remark that the
method in the proof of Lemma 4.1 is general, in the sense that it provides
the analytic continuation to C of the twist

Fd(s, α) =
∞∑

n=1

a(n)
ns

e(−n1/dα), σ > 1,

for every F ∈ S] and d > dF . Indeed, the series

ωQ1−2s
∞∑

k=0

1
k!

( r∏

j=1

Γ (λj(1− s+ k/d) + µj)

Γ (λj(s− k/d) + µj)

)
F (1− s+ k/d)(2πiα)k,

which is the analog of (4.1), is rapidly convergent over C for d > dF and
equals Fd(s, α) for σ > 1.

Now we are ready for the proof of Corollary 2. We first remark that we
may assume

P (log x) =
1
x

ress=1 F (s)
xs

s
,(4.2)

otherwise the result is trivial since xP (logx) is the “wrong” main term.
Moreover, since the functions in S]1 are suitable linear combinations of shifted
Dirichlet L-functions over Dirichlet polynomials (see Theorem 2 of [7]),
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Corollary 2 holds true for S]1, and hence we may restrict our attention to
functions F ∈ S]d with d > 1. As in (3.3) we write

F (s) =
mF∑

k=1

αk
(s− 1)k

+ f1(s)

with f1(s) entire (the sum is empty if mF = 0). Moreover, we write

c(n) = a(n)−
mF−1∑

k=0

αk+1

k!
logk n, H(s) =

∞∑

n=1

c(n)
ns

.

Clearly

H(s) = F (s)−
mF−1∑

k=0

(−1)k

k!
αk+1ζ

(k)(s),

and hence H(s) is an entire function. Suppose now that Corollary 2 is
false, i.e.

AF (x)− xP (logx) = o(x(d−1)/2d).

Therefore, by well known asymptotic formulae for the mean value of logk n
and since d > 1, by computing P (logx) in (4.2) we get

∑

n≤x
c(n) = o(x(d−1)/2d).

Hence, for s in a compact set, by partial summation we have
∑

n>y

c(n)n−s = o(y(d−1)/2d−σ), σ >
d− 1

2d
.(4.3)

For α > 0 with a(nα) 6= 0 we consider the function

H(s, α) =
∞∑

n=1

c(n)
ns

e(−n1/dα) = F (s, α)−
mF−1∑

k=0

(−1)k

k!
αk+1ζ

(k)
d (s, α).

By partial summation, for σ > 1 we get

H(s, α)− e(−α)H(s) = −2πiα
d

∞�

1

(∑

n>y

c(n)
ns

)
y1/d−1e(−y1/dα) dy,

and in view of (4.3) such a formula holds for σ > (d+ 1)/2d since the integral
is convergent there. Moreover, for σ > (d+ 1)/2d we have

(4.4) H(s, α)− e(−α)H(s) = o
(∞�

1

y−(d−1)/2d−σ dy
)

= o

(
1

σ− (d+ 1)/2d

)
,

σ →
(
d+ 1

2d

)+

.
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But, in view of Theorem 1 and Lemma 4.1, H(s, α) has a simple pole at
s0 = (d+ 1)/2d− iθF /d, while H(s) is entire. Therefore, for s = σ − iθF /d
we have

H(s, α)− e(−α)H(s)� 1
σ − (d+ 1)/2d

, σ →
(
d+ 1

2d

)+

,

a contradiction in view of (4.4), and Corollary 2 follows.

In the proof of Corollary 3 we may assume that F (s) is entire, otherwise
the result is trivial. Since the convergence of the series

∞∑

n=1

a(n)

is excluded by Corollary 2 with the choice P (x) = 0 identically, we have

σc(F ) = lim sup
x→∞

log |AF (x)|
log x

(see Section 9.14 of Titchmarsh [12]). Hence Corollary 3 follows at once
from Corollary 2, again with the choice P (x) = 0 identically. The gener-
alization of Corollary 3 follows by the same argument applied to the func-
tion

G(s) = F (s)−
k∑

j=0

(−1)jcjζ(j)(s),

where Q(x) = c0 + c1x+ · · ·+ ckx
k.

Finally, the proof of the first part of Corollary 4 uses the generalization
of Corollary 3. In fact, the abscissa of convergence σc(F −ζ) of the Dirichlet
series

F (s)− ζ(s) =
∞∑

n=1

a(n)− 1
ns

(4.5)

satisfies σc(F − ζ) ≥ (dF − 1)/2dF . Since Sd = ∅ for 1 < d < 5/3 (see
[9]) if dF > 1 then dF ≥ 5/3, and hence σc(F − ζ) ≥ 1/5. This con-
tradicts our assumption that (4.5) converges for σ < 1/5 − δ, and hence
dF = 1. Moreover, the convergence of (4.5) for σ < 1/5 − δ implies that
F (s) has a pole at s = 1, and the result follows since ζ(s) is the only
function in S1 with a pole at s = 1 (see Theorem 3 of [7]). The second
part of Corollary 4 is proved in the same way, with the difference that in
this case F (s) is entire, and hence from Theorem 3 of [7] we deduce that
F (s) is a shift of a Dirichlet L-function formed with a primitive charac-
ter.
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