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Linear relations among theta series
of genera of ternary forms

by

Y. Choie and Y. Chung (Pohang)

1. Introduction. It is well known that the orthogonal complement of
the subspace of cusp forms with respect to the Petersson inner product is
generated by the Eisenstein series of weight k ≥ 5/2. Moreover, in [5] it was
shown that the orthogonal complement E3/2(4D,χ`) of the space of cusp
forms of weight 3/2 with level 4D, D a square free integer, is generated by
some Eisenstein series, which were explicitly constructed. Here ` is a positive
divisor of D.

In this paper we compute the dimension of the space spanned by the
theta series of the genera of positive definite ternary forms of level 4D and
find linear relations among them; first we find all distinct genera of positive
definite ternary forms of level 4D, D square free, with character χ` and find
a maximal independent set of the space spanned by the genus theta series.
Secondly, by checking the values of the genus theta series at all cusps of
Γ0(4D) explicitly, linear relations among them are found. As a result we
show that the Eisenstein space E3/2(4P, χ`) of prime level P is spanned by
the theta series of the genera of positive definite ternary forms.

2. Number of genera of positive definite ternary forms. In this
section we find all genera of ternary forms of level 4D, D square free, and
character χ` using the local behavior of ternary forms. For more detailed
results we refer to [3].

Two integral quadratic forms are said to be semi-equivalent if they are
equivalent over the p-adic integers for all primes p, and are equivalent over
the real numbers (see [3] for more details). Semi-equivalent forms are said
to be in the same genus of forms; equivalent forms are semi-equivalent, so
we say classes of forms belong to a genus. To count the number of genera
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of positive definite ternary forms having level 4D and character χ` we first
need the following lemmas. Throughout this paper, D denotes a square free
integer and ` is its divisor.

Lemma 2.1. Let p be an odd prime. Let f be a ternary form of level 4D
and character χ`, ` |D. Let α, β and γ be p-adic units and ε be a nonsquare
p-adic unit.

(1) If p |D and p | `, then f is equivalent to αx2 + βy2 + γpz2 over Zp.
Moreover there are two equivalence classes of this type with discrim-
inant p or εp over Zp.

(2) If p |D and p - `, then f is equivalent to αx2 + βpy2 + γpz2 over Zp.
(3) If p -D, then f is equivalent to αx2 + βy2 + γz2. Moreover , there

are two equivalence classes of this type with discriminant p2 or εp2

over Zp.
(4) There is a unique equivalence class of unimodular forms over Zp with

discriminant ε or 1.
(5) For all the above forms, their equivalence classes are determined by

the discriminant of their unimodular part.

Proof. It is clear that x2 + y2 + pz2 and x2 + εy2 + εpz2 are the only
inequivalent forms having discriminant p. Also, x2 + εy2 + pz2 is the only
form (up to equivalence) having discriminant εp. The remaining assertions
are similar by looking at the discriminant, so we omit the detailed proof.

Next we consider ternary forms with level 4D over Z2.

Lemma 2.2. Let f be a ternary form with level 4D and character χ`.
Let α, β, γ, αi, i = 1, 2, 3, and β1 be units in Z2. Then:

(1) f is equivalent to one of the forms α2x
2 + yz, αx2 + βy2 + γz2 ∼=

α1x
2 + 2(β1y

2 +β1z
2 + yz) or α3x

2 + 4yz over Z2. Here β1 ∈ {0, 1}.
Furthermore, even if αi, i = 1, 2, 3, may be distinct , their values
modulo 4 are all the same.

(2) The number of equivalence classes of the type αx2 + βy2 + γz2 is 2.
(3) The number of equivalence classes of the type αx2 + yz is 1.
(4) There is one-to-one correspondence between the forms of the type

αx2 + yz and those of the type αx2 + 4yz.

Proof. The results can be obtained by direct computation and we omit
the detailed proof.

The following theorem is a necessary and sufficient condition for the
existence of a form over Q with given local conditions.

Theorem 2.3 ([4, p. 203]). Suppose an n-ary quadratic space V(p) is
given over Qp. In order that there exists an n-ary space V over Q such
that V(p) ≡ Vp for all primes p, it is necessary and sufficient that



Linear relations among theta series 389

(1) there is a d0 ∈ Q with dV(p) = d0 for all p,
(2) SpV(p) = 1 for almost all p,
(3)

∏
p SpV(p) = 1.

Here, SpV(p) denotes the Hasse symbol defined as follows. If V is a binary
quadratic space over Q, then a quadratic form f on V can be written as
f(x, y) = a1x

2 + a2y
2 with a1, a2 ∈ Q. The Hasse symbol SpV = (a1, a2) at

p is given by

(a1, a2) :=
{

1 if a1x
2 + a2y

2 = 1 is solvable in Qp,
−1 otherwise.

The Hasse symbol on an n-ary quadratic space V is defined by

Spf =
∏

1≤i≤j≤n
(ai, aj) for f =

n∑

i=1

aix
2
i ∈ V.

The following theorem gives the number of genera of positive definite
ternary forms having level 4D and character χ`. A more general result was
stated in [3]. Here, we deal only with the case of a square free level D.

Theorem 2.4. Let g`(4D) be the number of genera of positive definite
ternary forms having level 4D, D square free, with character χ`, ` |D. Then

g`(4D) = 2t(D)+1.

Here, t(D) denotes the number of distinct prime factors of D.

Proof. Let f be such a ternary form. We consider the following three
cases:

(1) Suppose that f is equivalent to αx2 +yz over Z2. Lemma 2.2 implies
that this is the only equivalence class over Z2. Hence the Hasse symbol of
f at the prime 2 takes exactly one value among 1 or −1 and the Hasse
symbol of f at an odd prime p, p |D, may be taken both 1 and −1. So, by
Theorem 2.3(3), the number of genera of the above type is 2t(D)−1.

(2) Suppose that f is equivalent to αx2 + βy2 + γz2 over Z2. Lemma 2.2
shows that there are two distinct equivalence classes over Z2. Hence there
are two possible values of the Hasse symbol of f at the prime 2, that is, 1
or −1. The Hasse symbol of f at an odd prime p, p |D, can be 1 or −1.
Theorem 2.3 implies that in fact the number of genera of the above type is
2t(D).

(3) If f is equivalent to αx2 + 4xy over Z2, then by the same argument
as in (2), we conclude that the number of genera of the above type is also
2t(D)−1.

Therefore, by summing all three cases we get the result.
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3. Theta series of genera of ternary forms. In this section we study
theta series of genera of positive definite integral ternary forms and find their
values at each cusp.

Let f(x1, x2, x3) be a positive definite quadratic form with integral co-
efficients, and Af = (∂2f/∂xs∂xt). Put

θf (z) =
∑

m∈Z3

exp(zmAfmt/2), exp(z) := e2πiz, z ∈ H,

0(f) = #{S ∈M3×3(Z) | SAfSt = Af},

θ(gen f, z) =
(∑

fi

1
0(fi)

)−1∑

fi

θfi(z)
0(fi)

,

where the fi run over a complete set of representatives of the equivalence
classes in the genus of f . θ(gen f, z) is called a theta series of genera of
ternary forms or a genus theta series of ternary forms.

Then from the results in [6] and [7] we have the following theorem:

Theorem 3.1. Let f be a positive definite integral ternary form with
level N,N ≡ 0 (mod 4), and χ =

(2 det(Af )
∗

)
. Then:

(1) θf (z) belongs to M3/2(N,χ),
(2) θ(gen f, z) belongs to E3/2(N,χ).

By evaluating 2t(D)+1 theta series of genera of ternary forms at all cusps,
we find a maximal independent set of the space spanned by those. Moreover,
linear relations among those genus theta series are listed; first note that the
value of θ(gen f, z) at each cusp is the same as that of θf (z). So we only
need to compute the values of θf (z) at each cusp. Let S(4D) be a complete
set of representatives of equivalence classes of cusps of Γ0(4D). In fact, we
can choose S(4D) = {1/t | t | 4D}, and so |S(4D)| = 3 · 2t(D).

The following theorem concerns the values of θf (z) at each cusp:

Theorem 3.2 ([1]). We have

lim
z→i∞

θf (z) = 1.

The value of θf at each cusp a/c ∈ S(4D), a/c 6=∞, can be computed as

V (θf , a/c) = (−i)3/2(detAf )−1/2c−3/2GAf (a, c),

where GAf (a, c) is the Gauss sum defined by

GAf (a, c) :=
∑

x (mod c)

exp(axAfxt/2c).

The next proposition gives the values of Gaussian sums:
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Proposition 3.3 ([1]). (1) If (c, c′) = 1, then

GA(a, cc′) = GA(ac, c′)GA(ac′, c).

(2) For each odd prime p, there exists an invertible matrix S over the
ring Zp of p-adic integers such that

SASt = diag(α1p
β1 , . . . , αkp

βk),

where αi,detS ∈ Z∗p and 0 ≤ β1 ≤ · · · ≤ βk are rational integers.
Then

GA(a, pm) =
∑

x (mod pm)

exp(axAxt/2pm)

= pmlm
∏

βi<m

aα′i
pm−βi

εpm−βip
(m+βi)/2,

where α′i ≡ 2−1αi (modpm−βi) and εd = 1 or i according as d ≡ 1
or 3 (mod 4). Here, lm = #{βi | βi ≥ m}.

(3) There exists an invertible matrix S over the ring Z2 of 2-adic inte-
gers such that

SASt =
l⊕

i=1

αi2si ⊕
l1⊕

j=1

βj2tj
(

0 1

1 0

)
⊕

l2⊕

s=1

γs2us
(

2 1

1 2

)
,

where αi, βj , γs ∈ Z∗2, and si ≥ 1, tj , us ≥ 0 are rational integers.
Here, lm = #{si | si ≥ m+1}+2#{tj | tj ≥ m}+2#{us | us ≥ m}.
Then

GA(a, 2m) = 2mlm
∏

si<m+1

G1,m+1−si(aαi, 2
m)

×
∏

tj<m

2m+tj
∏

us<m

(−1)m−us2m+us ,

where

G1,t(aαi, 2m) =





0 if t = 1,

(1 + iaαi)2m−t/2 if t is even,

2m−(t−1)/2eπiaαi/4 if t > 1 and odd.

Now we give the explicit value of θfi at the cusp a/c, V (θfi , a/c).

Proposition 3.4. Let fi = fi(x, y, z) be a positive definite ternary form
with level 4D, D a square free odd positive integer. Let εij be the discriminant
of the unimodular part for fi over Zpj , where pj is a prime such that 1/pj ∈
S(4D).
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(1) If fi is equivalent to αx2 + βy2 + γpjz
2 over Zpj , then

V (θfi , 1/pj) = (−i)3/2(detAfi)
−1/2p

−3/2
j ε2

pj

(
εij
pj

)
p2
j .

(2) If fi is equivalent to αx2 + βpjy
2 + γpjz

2 over Zpj , then

V (θfi , 1/pj) = (−i)3/2(detAfi)
−1/2p

−3/2
j εpj

(
εij
pj

)
p

5/2
j .

(3) If fi is equivalent to f := α′x2 + yz over Z2, then

V (θfi , 1/4) = (−i)3/2(detAfi)
−1/24−3/2(1 + iα

′
)2 · 22.

(4) If fi is equivalent to gδi := αx2+βy2+γz2 ∼= α′x2+2δy2+2δz2+2yz
over Z2, then

V (θfi , 1/4) = (−i)3/2(detAfi)
−1/24−3/2(1 + iα

′
)2 · (−1)δ23.

Here, δ0 = 0, δ1 = 1.
(5) If fi is equivalent to h := α′x2 + 4yz over Z2, then

V (θfi , 1/4) = (−i)3/2(detAfi)
−1/24−3/2(1 + iα

′
)2 · 24.

(6) V (θfi , 1/2v) = 0 for all v |D, for every ternary fi.

Proof. Use Example 4.2 in [1] and Proposition 3.3. We omit the detailed
proof.

In general we have the following:

Proposition 3.5. Let fi = fi(x, y, z) be a positive definite ternary form
of level 4D,D square free, and character χl, and let c be a divisor of D.
Then the value of the theta series of fi at each cusp is the following :

(1) We have

V (θfi , 1/c) = (−i)3/2(detAfi)
−1/2c−3/2

∏

pj |c
GAfi (1/pj , pj)

= (−i)3/2(detAfi)
−1/2c−3/2

×
∏

pj |c, pj |l
ε2
pj

(
εij
pj

)
p2
j

∏

pj |c, pj -l
εpj

(
εijc/pj
pj

)
p

5/2
j .

(2) If fi is equivalent to f = α′x2 + yz over Z2, then

V (θfi , 1/4c) = (−i)3/2(detAfi)
−1/2(4c)−3/2(1 + iα

′
)2 · 22

×
∏

pj |c, pj |l
ε2
pj

(
εij
pj

)
p2
j

∏

pj |c, pj -l
εpj

(
εijc/pj
pj

)
p

5/2
j .
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(3) If fi is equivalent to gδj = αx2+βy2+γz2 ∼= α′x2+2δy2+2δz2+2yz
over Z2, then

V (θfi , 1/4c) = (−i)3/2(detAfi)
−1/2(4c)−3/2(1 + iα

′
)2 · (−1)δ23

×
∏

pj |c, pj |l
ε2
pj

(
εij
pj

)
p2
j

∏

pj |c, pj -l
εpj

(
εijc/pj
pj

)
p

5/2
j .

(4) If fi is equivalent to h = α′x2 + 4yz over Z2, then

V (θfi , 1/4c) = (−i)3/2(detAfi)
−1/2(4c)−3/2(1 + iα

′
)2 · 24

×
∏

pj |c, pj |l
ε2
pj

(
εij
pj

)
p2
j

∏

pj |c, pj -l
εpj

(
εijc/pj
pj

)
p

5/2
j .

Proof. Use Propositions 3.3 and 3.4. We omit the detailed proof.

Remark 3.6. Fix a cusp 1/c and let fi run through all genera of level
4D with a fixed character. According to Proposition 3.5 we note that:

(1) The factor (detAfi)
−1/2∏

pj |c
( εij
pj

)
in V (θfi , 1/c) is the only factor

depending on fi.
(2) The factor (detAfi)

−1/2(−1)δ2∗
∏
pj |c
( εij
pj

)
in V (θfi , 1/4c) is the only

factor depending on fi. Here 2∗ denotes the power of 2 in V (θfi , 1/4c)
and δ is defined in Proposition 3.5.

4. Main theorem. In this section we state our main result. First we
need the following lemma.

Lemma 4.1 ([2, p. 319]). Let G be a group and K be a field. Let χ1, . . .
. . . , χn be distinct characters of G in K. Then they are linearly independent
over K.

Theorem 4.2. Let D be an odd square free positive integer and let ` be
a divisor of D.

(1) The number of linearly independent genus theta series θ(gen f, z)
for ternary quadratic forms f with level 4D and character χ` is
3 · 2t(D)−1, where t(D) is the number of prime factors dividing D.

(2) Let fi, gi and hi be the ternary forms with the same discriminant in
the unimodular part over Zp, for a prime p |D, which are equivalent
to the forms f = α′x2 + yz, gδ0 = α′x2 + 2yz and h = α′x2 + 4yz
over Z2, respectively. Then there is a linear relation among their
genus theta series:

3θ(gen gi, z) = θ(gen fi, z) + 2θ(genhi, z).
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Proof. Note that by Theorem 2.4 there are 2t(D)+1 genera of positive
definite ternary forms having level 4D and character χ`, and the number of
nonzero V (θfi , 1/c) is |S(4D)| − 2t(D) = 2t(D)+1. We consider the 2t(D)+1 ×
2t(D)+1 matrix

H =




V (θfi , 1/cj) V (θfi , 1/4cj)

. . . . . .

V (θgi , 1/cj) V (θgi , 1/4cj)

. . . . . .

V (θhi , 1/cj) V (θhi , 1/4cj)

. . . . . .




,

where fi, gi, and hi run over all genera with level 4D, character χ` and
fi ∼= f = α′x2 + yz, gi ∼= gδj = α′x2 + 2δ(y2 + z2) + 2yz, j = 0, 1, and
hi ∼= h = α′x2 + 4yz over Z2. Here, 1/cj, 1/4cj ∈ S(4D) with cj |D.

Our aim is to show that there are 3 · 2t(D)−1 linearly independent rows
in H. We write the matrix H in the following form:

H =




Af,cj Af,4cj
Agδ0 ,cj Agδ0 ,4cj
Agδ1 ,cj Agδ1 ,4cj
Ah,cj Ah,4cj



,

where Af,cj denotes the values of θfi at the cusp 1/cj and Af,4cj denotes the
values of θfi at the cusp 1/4cj, where fi is equivalent to f. The other values
are defined in a similar way. Here {c1, . . . , c2t(D)} is the set of all divisors
of D. By Proposition 3.5 and Remark 3.6, we can decompose the matrix H
as follows:

H = diag((−i)3/2(detAfi)
−1/2) ·H1

·diag
(
dj

∏

2<pj |cj , l≡0 (mod pj)

ε2
pjp

2
j

∏

2<pj |cj , l 6≡0 (mod pj)

εpj

(
c/pj
pi

)
p

5/2
j

)
,

where

dj =

{
c
−3/2
j if 1 ≤ j ≤ 2t(D),

(4cj)−3/2 if 2t(D) < j ≤ 2t(D)+1,
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and

H1 :=




∏
pj |c1

( ε1j
pj

)
. . .
∏
pj |c1

( ε1j
pj

)
(1 + ic1α

′
)2 · 22 . . .

...
...

...
...

∏
pj |c1

( ε
2t(D)−1+1,j

pj

)
. . .
∏
pj |c1

( ε
2t(D)−1+1,j

pj

)
(1 + ic1α

′
)2 · 23 . . .

...
...

...
...

∏
pj |c1

( ε
2t(D)+1,j

pj

)
. . .
∏
pj |c1

( ε
2t(D)+1,j

pj

)
(1 + ic1α

′
)(−1)2 · 23 . . .

...
...

...
...

∏
pj |c1

( ε
3·2t(D)−1+1,j

pj

)
. . .
∏
pj |c1

( ε
3·2t(D)−1+1,j

pj

)
(1 + ic1α

′
)2 · 24 . . .




.

Further note that

H1 = H2 · diag(1, 1, . . . , 1, 23(1 + ic1α
′
), . . . , 23(1 + ict(D)α

′
)),

where

H2 :=




∏
pj |c1

( ε1j
pj

)
. . .

∏
pj |c1

( ε1j
pj

)
. . .

...
...

...
...

∏
pj |c1

( ε
2t(D)−1+1,j

pj

)
. . .

∏
pj |c1

( ε
2t(D)−1+1,j

pj

)
2 . . .

...
...

...
...

∏
pj |c1

( ε
2t(D)+1,j

pj

)
. . .

∏
pj |c1

( ε
2t(D)+1,j

pj

)
(−1)2 . . .

...
...

...
...

∏
pj |c1

( ε
3·2t(D)−1+1,j

pj

)
. . .

∏
pj |c1

( ε
3·2t(D)−1+1,j

pj

)
4 . . .

...
...

...
...




·diag
(
dj

∏

2<pj |cj , l≡0 (mod pj)

ε2
pjp

2
j

∏

2<pj |cj , l 6≡0 (mod pj)

εpj

(
c/pj
pj

)
p

5/2
j

)

·diag(1, 1, . . . , 1, 23(1 + ic1α
′
), . . . , 23(1 + ict(D)α

′
)).

Now it is enough to consider H2 to find the linearly independent rows
of H. First note that Hasse symbol Spjfi, for each odd prime pj , is deter-
mined by the square class

( εij
pj

)
. One also checks that S2(f) = S2(gδ0) =

S2(h) and S2(gδ1) 6= S2(gδ0). On the other hand, using Theorem 2.4, one
finds that

∏
p6=2 Sp = S2. So, we may reduce the matrix H2 to the following
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form:

H2 =




A A

A 2A

A′ −2A′

A 4A



.

Here A and A′ are 2t(D)−1 × 2t(D)-matrices. Since
(
A
A′
)

is a nonsingular
matrix by Lemma 4.1, all rows of



A A

A 2A

A′ −2A′




are linearly independent. Since (A, 4A) = 3(A, 2A)− 2(A,A), we have

(detAhi)
1/2θ(genhi, z) = 3(detAgi)

1/2θ(gen gi, z)−2(detAfi)
1/2θ(gen fi, z).

After dividing by the common factors of (detAhi)
1/2, (detAgi)

1/2 and
(detAfi)

1/2, we have the stated linear relation between the genus theta
series of ternary forms. The proof is complete.

Corollary 4.3. The genus theta series of ternary forms with level 4D
and character χ` generate the Eisenstein space E3/2(4D,χ`) of weight 3/2
and level 4D with character χ` if and only if D is prime.

Proof. Note that dim(E3/2(4D,χ`)) = 2t(D)+1 − 1 (see [5]). Since by
Theorem 4.2 there are 2t(D) +2t(D)−1 linearly independent genus theta series
of ternary forms, 2t(D) + 2t(D)−1 = 2t(D)+1 − 1 if and only if D itself is an
odd prime.

5. Examples and theta identities

Example 5.1. Consider ternary forms with level 4D = 12. In this case
there are 4 different classes which belong to 4 different genera. More pre-
cisely, the table in [3] gives the following:

(1) Forms of level 12 and character χ1 = id are (αi ∈ Z∗2, i = 1, 2, 3):

(a) f1 = x2 + y2 + 3z2 + xy, equivalent to f = α1x
2 + yz over Z2,

(b) g1 = x2 + 3y2 + 3z2, equivalent to gδ0 = α2x
2 + 2yz over Z2,

(c) g2 = 3x2 + 2(y2 + z2 + yz), equivalent to gδ1 = 3x2 + 2(y2 + z2 + yz)
over Z2,

(d) h1 = 3x2 + 4y2 + 4z2 + 4yz, equivalent to h = α3x
2 + 4yz over Z2.

Theorem 4.2 implies the following linear relation among theta series:

3
∑

x,y,z∈Z
qx

2+3y2+3z2
=

∑

x,y,z∈Z
qx

2+y2+3z2+xy + 2
∑

x,y,z∈Z
q3x2+4y2+4z2+4yz.
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(2) Forms of level 12 and character χ3 are (αi ∈ Z∗2, i = 1, 2, 3):

(a) f1 = x2 + y2 + z2 + xy, equivalent to f = α1x
2 + yz over Z2,

(b) g1 = x2 + y2 + 3z2, equivalent to gδ0 = α2x
2 + 2yz over Z2,

(c) g2 = x2 + 2y2 + 2z2 + 2xy, equivalent to gδ1 = x2 + 2(y2 + z2 + xy),
(d) h1 = x2 + 4y2 + 4z2 + 4yz, equivalent to h = α3x

2 + 4yz over Z2.

Theorem 4.2 implies the following linear relation among theta series:

3
∑

x,y,z∈Z
qx

2+y2+3z2
=

∑

x,y,z∈Z
qx

2+y2+z2+xy + 2
∑

x,y,z∈Z
qx

2+4y2+4z2+4yz.

Example 5.2. Consider ternary forms with level 4D = 28. There are 5
different classes and only two of them belong to the same genus [3].

(1) Reduced ternary forms of level 28 and character χ = id are:

(a) f1 = x2 + 2y2 + 7z2 + xy, equivalent to f = α1x
2 + yz over Z2,

(b) g1 = x2 + 7y2 + 7z2, 2x2 + 4y2 + 7z2 − 2xy, equivalent to gδ0 =
α2x

2 + 2yz over Z2,
(c) g2 = 3x2 + 5y2 + 5z2 − 4yz − 2xz − 2xy, equivalent to gδ1 = α3x

2 +
2(y2 + z2 + yz) over Z2,

(d) h1 = 4x2 + 7y2 + 8z2 − 4xz, equivalent to h = α4x
2 + 4yz over Z2.

Theorem 4.2 implies the following linear relation among theta series:
∑

x,y,z∈Z
qx

2+7y2+7z2
+ 2

∑

x,y,z∈Z
q2x2+4y2+7z2+2xy

=
∑

x,y,z∈Z
qx

2+2y2+7z2+xy + 2
∑

x,y,z∈Z
q4x2+4y2+4z2+4yz.

(2) Reduced ternary forms of level 28 and character χ7 are:

(a) f1 = x2 + y2 + 2z2 − xz, equivalent to f = α1x
2 + yz over Z2,

(b) g1 = x2+y2+7z2, x2+2y2+4z2−2yz, equivalent to gδ0 = α2x
2+2yz

over Z2,
(c) g2 = 2x2 + 2y2 + 3z2 + 2yz + 2xz + 2xy, equivalent to gδ1 = α3x

2 +
2(y2 + z2 + yz) over Z2,

(d) h1 = x2 + 4y2 + 8z2 − 4yz, equivalent to h = α4x
2 + 4yz over Z2.

Theorem 4.2 implies the following linear relation among theta series:
∑

x,y,z∈Z
qx

2+y2+7z2
+ 2

∑

x,y,z∈Z
qx

2+2y2+4z2+2yz

=
∑

x,y,z∈Z
qx

2+y2+2z2+xz + 2
∑

x,y,z∈Z
qx

2+4y2+8z2+4yz.
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