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Relations among certain number knots

by

Kuniaki Horie (Hiratsuka) and Mitsuko Horie (Tokyo)

Let k be a global field, namely, either a finite extension over the field of
rational numbers or an algebraic function field in one variable over a finite
constant field. Let Ω be a separable algebraic closure of k. From now on,
we assume all global fields to be contained in Ω. For each global field E,
let JE denote the idele group of E, and E× the multiplicative group of E.
We then consider E× to be a subgroup of JE by means of the canonical
injection E× → JE . Given any finite Galois extension F over k contained
in Ω, we write NF/k for the norm map JF → Jk so that the restriction
NF/k|F× coincides with the norm map F× → k×. The number knot of F/k
is defined as the quotient group of k× ∩ NF/k(JF ) modulo NF/k(F×), and
we denote it simply by ν(F ):

ν(F ) = (k× ∩NF/k(JF ))/NF/k(F
×).

In general, the abelian group ν(F ) is known to be finite: |ν(F )| < ∞. On
the other hand, the so-called Hasse norm theorem states that if F/k is a
cyclic extension, then

ν(F ) = 1, i.e., k× ∩NF/k(JF ) = NF/k(F
×).

A global field E is called a central extension of F/k if E is a Galois extension
over k containing F such that the Galois group Gal(E/F ) lies in the centre
of the Galois group Gal(E/k). In particular, a central extension of F/k is
abelian over F . It follows that the composite of F and any finite abelian
extension over k in Ω is a central extension of F/k. Hence, for any abelian
extension k′ over k in Ω, each finite extension over F in the composite Fk′

is a central extension of F/k.
Now, let L/K be an extension of global fields which are Galois extensions

over k so that L/K is a finite Galois extension. We then define the natural
map ν(L) → ν(K) to be the homomorphism from ν(L) into ν(K) induced
by the canonical injection k× ∩NL/k(JL)→ k× ∩NK/k(JK). In this paper,
we shall mainly prove the following results.
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Theorem 1. L/K being as above, assume that every central extension
of K/k in L is a subfield of the composite of K and the maximal abelian
extension over k in L. Then the natural map ν(L)→ ν(K) is surjective:

k× ∩NK/k(JK) = (k× ∩NL/k(JL))NK/k(K
×).

Consequently , in the case where L is the composite of K and an abelian
extension over k, the natural map ν(L)→ ν(K) is surjective.

Theorem 2. Let K and k′ be global fields such that K is a Galois exten-
sion over k and k′ an abelian extension over k not contained in K; Kk′ 6= K.
For each prime number p, let Kp denote the maximal intermediate field of
the abelian extension Kk′/K such that Gal(Kp/K)p = 1:

Gal(Kk′/Kp) = Gal(Kk′/K)p.

Then ν(Kk′) = 1 if and only if ν(Kp) = 1 for all prime numbers p dividing
[Kk′ : K]. Furthermore, in the case where [Kk′ : K] is a power of some
prime number q, ν(L) = 1 for every intermediate field L of Kk′/K if and
only if ν(L) = 1 for some intermediate field L of Kk′/Kq.

Theorem 3. Let K be a finite Galois extension over k in Ω, and k′

a cyclic extension over k in Ω. Let t denote the exponent of Gal(K/k).
Then, for any extension E/F of intermediate fields of Kk′/K with

gcd(t, [E : K]) = gcd(t, [F : K]),

the natural map ν(E)→ ν(F ) is an isomorphism, so that

NF/k(F
×) ∩NE/k(JE) = NE/k(E×).

Owing much to cohomological arguments of Razar [7], we shall base our
discussions upon the explicit description of the relation between number
knots made by means of the Hopf formula for Schur multipliers. We should
note that an essential part of Theorem 2 for the case K = k is given by
Gerth [2] and [7]. In addition, since ν(k) = 1, Theorem 3 for the case K = k
coincides with the Hasse norm theorem. Among immediate consequences of
Theorems 2 and 3 are the following results on Iwasawa-theoretical extensions
of global fields.

Corollary 1. Let K be a finite Galois extension over k in Ω. Given
any prime number p, let Zp denote as usual the ring of p-adic integers, and
let k∞ be a Zp-extension over k in Ω (namely , an abelian extension over k
in Ω whose Galois group over k is isomorphic to the additive group of Zp
as a topological group). Let

K = K(0) ⊂ . . . ⊂ K(n) ⊂ K(n+1) ⊂ . . . ⊂ Kk∞
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be the tower of all intermediate fields of the Zp-extension Kk∞/K such that
[K(n) : K] = pn, with n ranging over the non-negative integers. Then

ν(K(n)) = 1 for all n ≥ 0

if and only if
ν(K(n)) = 1 for some n ≥ 1.

Corollary 2. Let K be a finite Galois extension over k in Ω as in
Corollary 1, and let t denote the exponent of Gal(K/k). Let Ẑ denote the
direct product of Zp for all prime numbers p, and let k̃ be an abelian exten-
sion over k in Ω such that Gal(k̃/k) is isomorphic to the additive group of
Ẑ as a topological group: Gal(k̃/k) ∼= Ẑ. Then, for every extension E/F of
global fields with

K ⊆ F, E ⊂ Kk̃, gcd(t, [E : K]) = gcd(t, [F : K]),

the natural map ν(E)→ ν(F ) is an isomorphism.

Corollary 3. Under the assumption of Corollary 2, let Γ be any in-
finite extension over K in Kk̃. Let KΓ denote the maximal intermediate
field of Γ/K such that [KΓ : K] divides t. Then, for every global field L
with KΓ ⊆ L ⊂ Γ , the natural map ν(L) → ν(KΓ ) is an isomorphism. In
particular , when p, k∞, and K(n) for all integers n ≥ 0 are the same as in
Corollary 1, the natural map ν(K(m′)) → ν(K(m)) is an isomorphism for
every pair (m,m′) of integers with 0 ≤ m ≤ m′ such that pm+1 does not
divide the exponent of Gal(K/k).

1. In this section and the next, we shall discuss some preliminary results
for the proofs in Section 3. Let H be any finite group. For each positive
integer n, let Pn(H) denote the free module with a basis the direct product
of n copies of H. Now, let us take the homomorphisms

∂ : P3(H)→ P2(H), ∂′ : P2(H)→ P1(H)

such that

∂((σ1, σ2, σ3)) = (σ2, σ3)− (σ1σ2, σ3) + (σ1, σ2σ3)− (σ1, σ2),

∂′((σ1, σ2)) = σ2 − σ1σ2 + σ1

for every (σ1, σ2, σ3) ∈ H ×H ×H. Noting that Im(∂) ⊆ Ker(∂ ′), we put

M(H) = Ker(∂′)/Im(∂).

This is called the Schur multiplier of H and is nothing but the second hom-
ology group of H with coefficients in the additive group Z of (rational) in-
tegers where we understand that H acts trivially on Z. Next, let π : F →H
be a free presentation of H, that is, let F be a free group and π a homomor-
phism of F onto H. Put R = Ker(π), so that [F ,R] (i.e. the subgroup of
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F generated by [x, y] = xyx−1y−1 for all x ∈ F and all y ∈ R) is a normal
subgroup of the groups F , [F ,F ] and R. For each σ in H, take an element
xσ of F with π(xσ) = σ. The Hopf formula for the Schur multiplier M(H)
can be stated explicitly as follows (cf. Eilenberg–MacLane [1], Karpilovsky
[5, Ch. 2], Robinson [8, Ch. 11]):

Lemma 1. Let f be the homomorphism P2(H) → R/[F ,R] mapping
each (σ, τ) ∈ H ×H to xσxτx−1

στ [F ,R]. Then

f(Ker(∂′)) = ([F ,F ] ∩R)/[F ,R], Ker(f) ∩Ker(∂ ′) = Im(∂),

f |Ker(∂′) does not depend on the choice of {xσ | σ ∈ H}, and hence f
defines an isomorphism

π̃ : M(H) ∼→ ([F ,F ] ∩R)/[F ,R]

that depends only on π.

Proof. Let F0 be the free group freely generated by |H| symbols Xσ for
all σ ∈ H, let ω be the homomorphism F0 → H such that ω(Xσ) = σ for
all σ ∈ H, and let R0 = Ker(ω). Let g be the homomorphism P2(H) →
R0/[R0,R0] mapping each (σ, τ) ∈ H × H to XσXτX

−1
στ [R0,R0]. Then g

turns out to be an isomorphism, because R0 is a free group freely generated
by its |H|2 elements XσXτX

−1
στ for all (σ, τ) ∈ H×H (see, e.g., [5, Theorem

2.7.1(iii)]). Next, take an element

α =
∑

σ,τ∈H
aσ,τ (σ, τ)

of P2(H), with each aσ,τ in Z. For each τ ∈ H, we put

bτ =
∑

σ∈H
(aσ,τ − aσ,σ−1τ + aτ,σ).

It follows that α belongs to Ker(∂ ′) if and only if

bτ = 0 for every τ ∈ H.(1)

Since the homomorphism R0/[R0,R0]→ F0/[F0,F0] induced by the inclu-
sion R0 → F0 maps g(α) to

∏

σ,τ∈H
(XσXτX

−1
στ )aσ,τ [F0,F0] =

∏

τ∈H
(Xτ [F0,F0])bτ ,

it also follows that the condition g(α) ∈ ([F0,F0] ∩ R0)/[R0,R0] is equiv-
alent to (1). Hence we have

g(Ker(∂′)) = ([F0,F0] ∩R0)/[R0,R0].

Furthermore, for each (%, σ, τ) ∈ H ×H ×H,

g(∂((%, σ, τ))) = XσXτX
−1
στ X%XστX

−1
%στX%στX

−1
τ X−1

%σ X%σX
−1
σ X−1

% [R0,R0]

= (XσXτX
−1
στ )X%(XσXτX

−1
στ )−1X−1

% [R0,R0],
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so that
g(Im(∂)) = [F0,R0]/[R0,R0].

Now let h be the composite of g and the natural homomorphismR0/[R0,R0]
→R0/[F0,R0]. Then, from the above properties of g, we obtain

h(Ker(∂′)) = ([F0,F0] ∩R0)/[F0,R0], Ker(h) = Im(∂).(2)

We denote by φ the homomorphism F0 → F such that φ(Xσ) = xσ for every
σ ∈ H, namely, π ◦ φ = ω. On the other hand, since F is a free group and
ω is surjective, there exists a homomorphism ψ : F → F0 which satisfies
ω ◦ ψ = π. Naturally, ψ defines a homomorphism

ψ : ([F ,F ] ∩R)/[F ,R]→ ([F0,F0] ∩R0)/[F0,R0]

while φ defines a homomorphism

φ : ([F0,F0] ∩R0)/[F0,R0]→ ([F ,F ] ∩R)/[F ,R].

We then easily find that ψ◦φ is the identity map on ([F0,F0]∩R0)/[F0,R0],
φ ◦ ψ is the identity map on ([F ,F ]∩R)/[F ,R], φ does not depend on the
choice of {xσ | σ ∈ H}, and

f |Ker(∂′) = φ ◦ (h|Ker(∂′)).

Because of (2), the assertions of the lemma follow immediately from these
facts.

Next, let H1 and H2 be finite groups such that there exists a surjective
homomorphism λ : H1 → H2. Let θ : E → H1 be a free presentation
of H1. Then the composite λ ◦ θ : E → H2 is a free presentation of H2.
One can therefore apply Lemma 1 to the case π = λ ◦ θ as well as to the
case π = θ. Clearly, the homomorphism P2(H1) → P2(H2) mapping each
(σ, τ) ∈ H1 ×H1 to (λ(σ), λ(τ)) defines a homomorphism

λ∗ : M(H1)→M(H2),

which is called the residuation map for λ (cf. Nakayama [6]). Put

R1 = Ker(θ), R2 = Ker(λ ◦ θ),
so that R1 ⊆ R2. The inclusion [E , E ] ∩ R1 → [E , E ] ∩ R2 then induces a
homomorphism

j : ([E , E ] ∩R1)/[E ,R1]→ ([E , E ] ∩R2)/[E ,R2].

Lemma 2. The diagram

M(H1) ([E , E ] ∩R1)/[E ,R1]

M(H2) ([E , E ] ∩R2)/[E ,R2]

θ̃ //

λ∗

��
j

��
λ̃◦θ //
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is commutative. Furthermore, there exists an exact sequence

M(H1) λ∗→M(H2)→ ([H1,H1] ∩Ker(λ))/[H1,Ker(λ)]→ 1.

Proof. It is not difficult to deduce the first part from Lemma 1. As

θ([E , E ] ∩R2) = [H1,H1] ∩Ker(λ),

θ induces a surjective homomorphism

([E , E ] ∩R2)/[E ,R2]→ ([H1,H1] ∩Ker(λ))/[H1,Ker(λ)].

However, using θ(R2) = Ker(λ), we easily check that the kernel of the above
homomorphism is

([E , E ] ∩R1)[E ,R2]/[E ,R2] = Im(j).

Hence the second part follows from the first and Lemma 1 (cf. [8, Ch. 11]).

2. Let F be any global field which is a Galois extension over k. Let
GF denote the Galois group of F over k: GF = Gal(F/k). Note that the
natural action of GF on JF makes the idele class group JF /F

× of F into a
GF -module. In JF /F

×, let

AF = {uF× | u ∈ JF , NF/k(u) ∈ k×},
and let BF denote the group generated by (uF×)σ−1 = uσu−1F× for all
(u, σ) ∈ JF ×GF . Then AF is a subgroup of JF /F× containing BF , and the
quotient AF /BF is none other than the Tate cohomology group of GF in
dimension −1 with coefficients in JF /F

×. Let P be the set of all primes of
k. For each v ∈ P , we fix a prime v of Ω lying above v, denote by Gv

F the
decomposition group of v|F for F/k, and denote by CorvF the corestriction
map M(GvF )→M(GF ). Let γF denote the homomorphism from the direct
sum

⊕
v∈P M(GvF ) into M(GF ) such that

γF ((cv)v∈P ) =
∑

v∈P
CorvF (cv) for each (cv)v∈P ∈

⊕

v∈P
M(GvF ).

Then, as is well known, the composite of the so-called Tate isomorphism
M(GF ) ∼→ AF /BF and the homomorphism AF /BF → ν(F ) induced by
NF/k gives rise to an isomorphism

Coker(γF ) ∼→ ν(F ).

We write ΨF for this isomorphism.
Now, let L be any finite Galois extension over k in Ω, and K any Galois

extension over k in L. Let R(L/K) denote the residuation map M(GL) →
M(GK) for the restriction map GL → GK (i.e., the homomorphism from GL
onto GK mapping each σ ∈ GL to σ|K). Given any v ∈ P , let RvL/K denote
the residuation map M(GvL) → M(GvK) for the restriction map GvL → GvK .
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Then the diagram

M(GvL) M(GL)

M(GvK) M(GK)

CorvL //

RvL/K
��

R(L/K)
��CorvK //

is commutative, since CorvL and CorvK are induced by the inclusionsGv
L→GL

and GvK → GK , respectively. We therefore obtain a commutative diagram
⊕

v∈P M(GvL) M(GL)

⊕
v∈P M(GvK) M(GK)

γL //

��
R(L/K)
��

γK //

(3)

Here the left vertical arrow is the homomorphism, from
⊕

v∈P M(GvL) into⊕
v∈P M(GvK), mapping each (cv)v∈P in

⊕
v∈P M(GvL) to (RvL/K(cv))v∈P .

Thus R(L/K) induces a homomorphism

Coker(γL)→ Coker(γK).

We denote this by %L/K . The following result is essentially well known (cf.
Jehne [4], Kuniyoshi [9, §4]; for a proof, see [3]):

Lemma 3. With the symbol (L/K) denoting the natural map ν(L) →
ν(K), the diagram

Coker(γL) ν(L)

Coker(γK) ν(K)

ΨL∼ //

%L/K

��
(L/K)
��ΨK∼ //

is commutative.

3. Let us prove the theorems stated in the introduction.

Proof of Theorem 1. Let N = Gal(L/K). Then [GL, N ] ⊆ [GL, GL]∩N ,
and hence the assumption of Theorem 1 means that [GL, N ] = [GL, GL]∩N .
Indeed (by Galois theory), [GL, N ] is the Galois group of L over a central
extension of K/k in L, and [GL, GL] ∩ N coincides with the Galois group
of L over the composite of K and the maximal abelian extension over k in
L. It therefore follows from Lemma 2 that the residuation map R(L/K) is
surjective (cf. [7, Lemma 3]), so that %L/K is also surjective. Hence Lemma 3
proves Theorem 1.

To give a proof of Theorem 2, we first prove two lemmas under the
assumption of Theorem 2.
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Lemma 4. Let E/F be an extension of intermediate fields of Kk′/K.
Then R(E/F ) is surjective. Moreover , for every v ∈ P , RvE/F is surjective.

Proof. We may just consider the case where E/F coincides with Kk′/K;
because F/k is a Galois extension, E = Fk′′ for some intermediate field k′′

of k′/k, and obviously, for any finite group H, the residuation map M(H)→
M(H) for the identity map H → H is an identity map. Let v be any prime
of k, and let N v denote the kernel of the restriction map Gv

Kk′ → GvK . As
[GKk′ , GKk′ ] ∩Gal(Kk′/K) = 1 by the assumption that k′/k is abelian, we
obtain [GvKk′ , G

v
Kk′ ] ∩Nv = 1 from Nv ⊆ Gal(Kk′/K). Lemma 2 therefore

proves that R(Kk′/K) and RvKk′/K are surjective.

Lemma 5. For any prime number p,

pM(GKk′) ⊇ Ker(R(Kk′/Kp)).

Proof. Let π : F → GKk′ be a free presentation of GKk′ and let R =
Ker(π). For any Galois extension L over k in Kk′, we let S(L) denote the
kernel of the composite of π and the restriction map GKk′ → GL. Then π
induces an isomorphism S(L)/R ∼→ Gal(Kk′/L), while Lemma 2 gives us a
commutative diagram

M(GKk′) ([F ,F ] ∩R)/[F ,R]

M(GKp) ([F ,F ] ∩ S(Kp))/[F ,S(Kp)]

π̃ //

R(Kk′/Kp)
�� ��ω̃p //

where ωp denotes the free presentation of GKp defined as the composite of π
and the restriction map GKk′ → GKp , and the vertical map on the right is
the homomorphism induced by the inclusion [F ,F ] ∩ R → [F ,F ] ∩ S(Kp).
Therefore, the assertion of Lemma 5 is equivalent to

([F ,S(Kp)] ∩R)/[F ,R] ⊆ (([F ,F ] ∩R)/[F ,R])p.(4)

As Gal(Kk′/Kp) = Gal(Kk′/K)p, i.e., S(Kp)/R = (S(K)/R)p, we obtain

S(Kp) = {ypz | y ∈ S(K), z ∈ R}.
Now, take any x ∈ F , y ∈ S(K), and z ∈ R. Then

[x, ypz] = xypzx−1z−1y−p ∈ xypx−1y−p[F ,R] = ([x, y]y)py−p[F ,R].

We also see, by the fact π(y) ∈ Gal(Kk′/K), that

π([x, y]) ∈ [GKk′ ,Gal(Kk′/K)] ⊆ [GKk′ , GKk′ ] ∩Gal(Kk′/K) = 1.

Therefore, [x, y] belongs to R so that ([x, y]y)py−p[F ,R] = [x, y]p[F ,R].
Consequently, we have

[x, ypz] ∈ [x, y]p[F ,R], [x, y] ∈ [F ,F ] ∩R.
Since (4) follows from these, the lemma is proved.
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Proof of Theorem 2. Let F be any intermediate field of Kk′/K such that

Coker(γF ) = 1, i.e., ν(F ) = 1.

Since Lemma 4 implies that RvKk′/F is surjective for every v ∈ P , (3) yields
a commutative diagram

⊕
v∈P M(GvKk′) M(GKk′)

⊕
v∈P M(GvF ) M(GF )

γKk′ //

��
R(Kk′/F )
��

γF //

in which the vertical map on the left is surjective. Hence R(Kk′/F )◦γKk′ is
surjective. It thus follows that M(GKk′) is generated by the image of γKk′
and the kernel of R(Kk′/F ):

M(GKk′) = Im(γKk′) + Ker(R(Kk′/F )).(5)

Next, let q be a prime number dividing [Kk′ : K]. Note that such a
prime q certainly exists by Kk′ 6= K. We then see from Theorem 1 that the
natural map ν(Kq)→ ν(K) is surjective. In particular,

ν(K) = 1 if ν(Kq) = 1.(6)

Now, we assume that ν(Kp) = 1 for all prime numbers p dividing [Kk′ : K].
As Kp = K for any prime number p not dividing [Kk′ : K], we have, by
(5) and (6),

M(GKk′) = Im(γKk′) + Ker(R(Kk′/Kp))

for every prime number p. Therefore, Lemma 5 shows that

M(GKk′) = Im(γKk′) + pM(GKk′)

for every prime number p, so that we have, by induction,

M(GKk′) = Im(γKk′) + nM(GKk′)

for every positive integer n. However, |GKk′ |M(GKk′) = 0. Hence

M(GKk′) = Im(γKk′), i.e., Coker(γKk′) = 1.

This just shows ν(Kk′) = 1.
Conversely, it follows from Theorem 1 that if ν(Kk′) = 1, then ν(Kp) = 1

for every prime number p dividing [Kk′ : k]. The first assertion of Theorem 2
is therefore proved.

Suppose now that [Kk′ : K] is a power of a prime number q and that
ν(L) = 1 for some intermediate field L of Kk′/Kq. Then ν(Kq) = 1 by
Theorem 1. Hence ν(Kk′) = 1 by the first assertion proved above. Therefore,
we see again from Theorem 1 that ν(L) = 1 for all intermediate fields L of
Kk′/K. The proof of Theorem 2 is thus completed.
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Proof of Theorem 3. As in the statement of Theorem 3, let E/F be any
extension of global fields such that

K ⊆ F, E ⊂ Kk̃, gcd(t, [E : K]) = gcd(t, [F : K]).

Let π : F → GE be a free presentation of GE . We put

R = Ker(π), S(K) = π−1(Gal(E/K)), S(F ) = π−1(Gal(E/F )).

Since E/K is a cyclic extension and gcd(t, [E : K]) divides [F : K],

Gal(E/F ) = Gal(E/K)[F :K] ⊆ Gal(E/K)t.

Therefore, it follows that

S(F ) ⊆ S(K)tR = {ytz | y ∈ S(K), z ∈ R}.
On the other hand, Lemma 2 implies that

Ker(R(E/F )) ∼= ([F ,S(F )] ∩R)/[F ,R].(7)

Now, take arbitrary x ∈ F , y ∈ S(K) and z ∈ R. Noting that E is the
composite of K and an intermediate field of k̃/k, we have

[x, ytz] ∈ [x, y]t[F ,R], [x, y] ∈ R,
as in the proof of Lemma 5. Hence

[x, ytz] ∈ xt(x−1[x, y])t[F ,R] = xtyx−ty−1[F ,R].

It also follows from F/S(K) ∼= GK and S(K)/R ∼= Gal(E/K) that there
exist a, b ∈ Z, z1, z2 ∈ R, and y0 ∈ S(K) satisfying

xt = ya0z1, y = yb0z2.

Consequently,

[x, ytz] ∈ ya0z1y
b
0z2z

−1
1 y−a0 z−1

2 y−b0 [F ,R] = z1z2z
−1
1 z−1

2 [F ,R] = [F ,R].

This shows that [F ,S(F )] = [F ,R]. Hence, by (7) and Lemma 4, R(E/F )
turns out to be an isomorphism. Lemma 4 and (3) give us, however, a
commutative diagram

⊕
v∈P M(GvE) M(GE)

⊕
v∈P M(GvF ) M(GF )

γE //

��
R(E/F )
��

γF //

in which the vertical map on the left is surjective. Therefore,

%E/F : Coker(γE)→ Coker(γF )

must be an isomorphism. Hence Lemma 3 completes the proof of Theo-
rem 3.
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