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1. Introduction. Some problems in number theory and some other
branches of mathematics can be reduced to the estimation of exponential
sums ∑

X1<x≤X2

e(F (x)) with X = X2 −X1 ≤ X1.

If F (x) is a polynomial or a function which can be reduced to a polynomial
then the sum can be evaluated by using Vinogradov’s method; if F (x) is
“van der Corput” type function then one uses van der Corput’s method or
Bombieri–Iwaniec method. Here by van der Corput (v.d.c.) type function of
order k we mean a real-valued k times continuously differentiable function
F (x) such that F (j)(x) � Fj(x)/xj (j = 1, . . . , k) with piecewise monotone
Fj(x) such that if k > 1, then

1≪ Fj+1(x)/Fj(x)� 1 and limx1−2/KF (k)(x)� 1;

if k = 1, then
lim
x→∞

F1(x) =∞ and lim |F ′(x)| < 1

(see the notation below).
Note that if k > 1 is the smallest integer such that F (x) is a v.d.c.

function of order k and K = 2k then

F (k)(x)≪ x2/K−1 and F (k−1)(x)≫ x4/K−1

so that

(1) x4/K−2 ≪ F (k)(x)≪ x2/K−1.

If X is “not small”, the above mentioned methods give non-trivial esti-
mates. We call such sums standard exponential sums. If X is “small”, the
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sum is called short and the well-known van der Corput’s estimates may
be larger than the trivial estimates. Also, if F (x) contains an oscillating
term, van der Corput’s method cannot be used directly. We call such sums
non-standard exponential sums. In the past we studied short sums [2] and
sums containing an oscillating term [1], [2].

Wenguang Zhai has recently introduced [4] a method of evaluation of
exponential sums with F (x) = f(x) + g(x){h(x)}. He applied the method
to prove that for any k 6= 0 and any c > 0 the sequence {[nc] logk n} is uni-
formly distributed modulo 1 by proving that the discrepancy of the sequence
satisfies

D(X)� X−δ(c) logX for some δ(c) > 0.

His result improved the result of Rieger [3] who proved the uniform distri-
bution of the sequence for 1 < c < 3/2 and 0 < k < 1.

The method of Zhai gives a non-trivial estimate if f(x), g(x) and h(x) are
v.d.c. functions and g(x) � x3/4−α for any fixed α > 0. One can evaluate
such sums (and more general sums) with g(x)� x1−α using our method of
evaluation of short sums and

Lemma 1. Let f(t, x) be a real-valued function such that

|f(t1, x)− f(t2, x)| ≤ λ|t1 − t2|.
Then for any real function g(x), any positive integer r and any M > 0 we
have

S =
∑

x

a(x)e(f(g(x), {h(x)}))(2)

=
1
M

M−1∑

m=0

∞∑

j=0

bj,m
∑

x

a(x)e(f(g(x),m/M) + jh(x))

+O

(
λr + r

M

∑

x

|a(x)|
)

+O

(
r

M

∞∑

j=0

sin(2πrj/M)
sin(πj/M)

aj
∑

x

|a(x)|e(jh(x))
)
,

where

aj = (sin(πj/M)/(πj/M))r+1, a0 = 1,

bj,m = aje(−(2m+ 1)j/(2M)).

This lemma is also simpler to use than the corresponding lemma of Zhai.
Using Lemma 1, we prove

Theorem 1. Let k be a sufficiently large positive integer such that f(x),
g(x) and h(x) are v.d.c. functions of order k and let k1 ∈ [2, k − 1] and
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k2 ∈ [2, k−2] be the smallest integers such that f(x), g(x) and h(x) are v.d.c.
functions of orders k1, 1 and k2 respectively. Assume that g(x)� x1−α for
some α > 0 and that for any m the functions fm(x)/hm(x) are piecewise
monotone on � 1 intervals and

|fm(x)hm+1(x)/(fm+1(x)hm(x))− 1|≫ 1.

Define
ϕj(y) = f (j)(g−1(y)), φj(y) = h(j)(g−1(y))

and assume that for any m the functions ϕ
(m)
j (y)/φ(m)

j (y) are piecewise
monotone on � 1 intervals and

|ϕ(m)
j (y)φ(m+1)

j (y)/(ϕ(m+1)
j (y)φ(m)

j (y))− 1|≫ 1,

|ϕ(p)
1 (y)| � y2/P−3, |φ(p)

1 (y)| < y2/P−5 for some integer p > 1.

Then
S ≡

∑

X≤x≤2X

e(f(x) + g(x){h(x)})� X∆0,

where
∆0 = X−α/(3P ) + (G+X1/3)−1/(PK), G = g(X).

Also, if f(x) = Ch(x) then the above estimate holds if |C| > 1 and

|S| � X∆0 +X/G if |C| < 1.

Theorem 2. Let f(x, y) be a real-valued function on [X, 2X]×[0, 1] such
that for any y it is a v.d.c. function of order k. Assume that k is the smallest
such integer. Assume also that g(x) is a v.d.c. function of order 1 such that
for some a > 0 we have g(x) � x1−a and , setting h(n) = f(g−1(n), n),
assume that it is a v.d.c. function of order j. Let λk and µj be such that

|∂kf(x, y)/∂xk| � λk and |h(j)(n)| � µj .
Then

S ≡
∑

X≤x≤2X

e(f(x, {g(x)}))

� X[λ1/(K−2)
k +X−a/K +G(X)−2/K + µ

4/(KJ+K)
j ].

For the sequence {[nα] logβ n} considered by Rieger and Zhai,

f(x) = xα logβ x, g(x) = − logβ x, h(x) = xα,

so that if αβ 6= 0 the conditions of Theorem 1 are satisfied and one can
use it to prove the uniform distribution of the sequence modulo 1 and to
evaluate the discrepancy. One can do the same for f(x) = xα, g(x) = xβ

and h(x) = xγ with α 6= γ and β < 1, and some other functions.
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2. Notation. We will use the following notation: e(x) = exp(2πix);
f(x)� g(x) means that f(x) = O(g(x)); f(x)≪ g(x) means that f(x)�
g(x)xε; f(x) � g(x) means that f(x) � g(x) � f(x); {x}, [x] and ‖x‖ are
the fractional part, the integer part and the distance to the nearest integer
functions; |S| is the cardinality of the set S. For positive integers k, r etc.,
we write K = 2k, R = 2r etc.

3. Proofs. To prove Lemma 1, we take

χr,m(x) ≡ χr,m(x; δ)

= (2δ)−r
δ�

−δ
. . .

δ�

−δ
χ0,m(x+ t1 + . . .+ tr) dt (m = 0, . . . ,M − 1),

where χ0,m(x) is the characteristic function of [m/M, (m+1)/M) modulo 1.
Expanding χ0,m(x) into a Fourier series, we obtain

χr,m(x) = (2δ)−r
δ�

−δ
. . .

δ�

−δ

(
1
M

+
∞∑

|j|=1

aj,me(x+ t1 + . . .+ tr)
)
dt(3)

=
1
M

+
∞∑

|j|=1

aj,m

(
sin(2πjδ)

2πjδ

)r
e(jx)

where

aj,m =
sin(πj/M)

πj
e

(−(2m+ 1)j
2M

)
.

We use (3) with δ = 1/M so that aj,m(sin(2πjδ)/(2πjδ))r = bj,m/M

from the lemma. Since
∑M−1
m=0 χ0,m(x) = 1, we have

∑M−1
m=0 χr,m(x) = 1 and

we obtain

S =
∑

x

a(x)
M−1∑

m=0

χr,m(h(x))e(f(g(x), {h(x)}))

=
∑

x

a(x)
M−1∑

m=0

χr,m(h(x))e(f(g(x),m/M))

+
∑

x

a(x)
M−1∑

m=0

χr,m(h(x))[e(f(g(x), {h(x)}))− e(f(g(x),m/M))].

The first sum is reduced to the first sum in (2) by using (3) with δ = 1/M .
To evaluate the second sum (which we denote with S1), we divide it into
two subsums: the first subsum, S′1, is over all m with ‖m/M‖ > r/M , and
S′′1 is the remaining part of S1.



Estimation of exponential sums 319

If ‖m/M‖ > r/M then χr,m(g(x)) = 0 unless |g(x) − m/M | < r/M .
Since |e(a)− e(b)| = 2|sin(π(b− a))| < 2π|a− b|, we obtain

S′1 �
∑

x

|a(x)|
∑

m

χr,m(h(x))
rλ

M
=
rλ

M

∑

x

|a(x)|.

To evaluate S′′1 , we write first

|S′′1 | ≤
∑

x

|a(x)|
∑

m

2χr,m(h(x)) ≤ 2
∑

x

|a(x)|χ1(h(x); 1/(2M))

where

χ1(t; δ) ≡ (2δ)−r
δ�

−δ
. . .

δ�

−δ
χ(t+ t1 + . . .+ tr) dt

and χ(t) is the characteristic function of [−r/M, r/M) modulo 1. Similarly
to (3), we obtain

χ1(t; 1/(2M)) =
2r
M

+ 2
∞∑

|j|=1

sin(2πrj/M)
πj

(
sin(πj/M)
πj/M

)r
e(jt)

so that

|S′′1 | ≤
4r
M

∑

x

|a(x)|+ 2
∞∑

j=1

sin(2πrj/M)
sin(πj/M)

aje(jh(x)).

To prove the theorems, we need three more lemmas.

Lemma 2. Let f(x) ∈ C(k+j)[X1,X2] with k > 1, j > 0 and 1 ≤ X =
X2 −X1 ≤ X1. Assume that

f (k)(x) ≤ λk and f (k+j)(x) � λk+j .

Then ∣∣∣
∑

X1≤x≤X2

e(f(x))
∣∣∣� X[λ1/(K−2)

k + (X−j−2λk/λk+j)4/(K(j+4))

+ (λk+jX
4+j−8/K)−4/(K(j+2)).

Lemma 2 is a simple generalization of van der Corput estimates (for the
proof, see [1, Lemma 4.1]).

Lemma 3 [2, Lemma 4.2]. Let f(x)∈C2[X1,X2] be such that f ′′(x)�λ2

for X1 ≤ x ≤ X2 = X1 +X ≤ 2X1. Assume that ‖f ′(x)‖ ≥ Xλ2. Then
∑

X1≤x≤X2

e(f(x))� X
√
λ2 + 1 + min{X; 1/

√
λ2; 1/‖f ′(X2)‖; 1/‖f ′(X1)‖}.

Lemma 4. Let f(x, y) be a real-valued function on {(x, y) : Y ≤ y ≤
2Y, X1 ≡ X1(y) ≤ x ≤ X2(y) ≡ X2} such that f(x, y) is a v.d.c. function
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of order k as a function of x and either g1(y) ≡ f (k−1)(X1, y) or g2(y) ≡
f (k−1)(X2, y) is a v.d.c. function of order j. Assume that

∂kf

∂xk
(x, y) � λk and gi(y)(j) � µj for a v.d.c. function gi(y).

Then

S ≡
∑

Y≤y≤2Y

∣∣∣
∑

X1≤x≤X2

e(f(x, y))
∣∣∣

� XY (λ1/(K−2)
k +X−4/(3K) + Y −2/K + µ

4/(KJ+K−8)
j ) if k > 1

and
S � XY (µ1/(J−1)

j + 1/Y + logX/X) if k = 1.

Proof. If k = 1, we use van der Corput’s Lemma to get

S �
∑

y

min{X; 1/‖fy(X1, y)‖+ 1/‖fy(X2, y)‖}

�
∑

y

min{X; 1/‖fy(X1, y)‖; 1/‖fy(X2, y)‖}

and proceed as below. If k = 2 then we use van der Corput’s estimates
(Lemma 2 with j = 0) to get

S � X
√
λ2 + 1/

√
λ2.

If λ2 � X−4/3, the above implies S � XY
√
λ2 + Y X2/3.

If Xλ2 ≡ ∆0 ≤ X−1/3, we can evaluate S differently. We define

Yi(∆) ≡ Y (∆) = |{y ∈ [Y, 2Y ] : ‖gi(y)‖ ≤ ∆}|.

Using Lemma 3, we obtain

(4) S � XY (Xλ2) +XY
√
λ2 +

∑

r

min{X; 1/
√
λ2; 1/(2r∆0)}Y (2r∆0).

Now we need to evaluate Y (∆). If µ1 is small, we divide the interval [Y, 2Y ]
into � Y µ1 + 1 subintervals of length � 1/µ1 such that [g(y)] remains
constant for all y in a subinterval. Each of them contains � ∆/µ1 + 1
integers y such that ‖g(y)‖ < ∆ so that

Y (∆)� (Y µ1 + 1)(∆/µ1 + 1)� Y ∆+ Y µ1 + 1.

If µ1 is not small but µk is small for some k > 1, we use (3) with r = 1,
M = 3/δ, m = 0 and m = M − 1 to obtain

Y (∆) ≤ min
δ≥∆

Y (δ),
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where

Y (δ)� Y δ +
∞∑

|l|=1

min{1/M ;Ml−2}
∣∣∣
∑

y

e(lg(y))
∣∣∣

� Y δ +
∑

l

min{1/M ;Ml−2}

× [Y (lµj)1/(J−2) + Y 1−2/J log Y + Y 1−8/J+16J−2
µ
−2/J
j ],

and Y (∆)� Y ∆+ Y µ
1/(J−1)
j . We substitute this into (4) to obtain

S � XY
√
λ2 +X2Y λ2 +XY µ

1/(J−1)
j +X

√
Y(5)

� XY
√
λ2 +X2/3Y +XY µ

1/(J−1)
j +X

√
Y .

This proves the lemma for k = 2. If k > 2, we apply H. Weyl–van der Corput
inequality m = k − 2 times:
∣∣∣∣
S

XY

∣∣∣∣
M

� Q−M/2 +
1

QM−1XY

Q∑

q1=1

. . .

QM/2∑

qm=1

∑

y

∣∣∣
∑

X1(q)≤x≤X2(q)

e(f1(x, y))
∣∣∣,

where
M = 2m, Q = min{λ−1/(2M−1)

k ;X2/M ;µ−2/(M(J+1)−2)
j }

and

f1(x, y) = q1 . . . qm

1�

0

. . .

1�

0

fxm(x+ t1q1 + . . .+ tmqm, y) dt.

Using (5), we obtain
∣∣∣∣
S

XY

∣∣∣∣
M

� Q−M/2 +
1

QM−1XY

×
∑

q1,...,qm

(XY
√
q1 . . . qmλk +X2/3Y +X

√
Y +XY (q1 . . . qmµj)1/(J−1))

� Q−M/2 +
√
QM−1λk +X−1/3 + Y −1/2 + (QM−1µj)1/(J−1)

� λ
M/(K−2)
k +X−1/3 + Y −1/2 + µ

4M/(KJ+K−8)
j .

To prove Theorem 1, we assume first that G ≡ g(X)� X1/(3K). We use
Lemma 1 with r = 3 and M = max{X1/(2K)/G;GX1/(4K)} to obtain

S �
∞∑

|j|=0

|aj |
M−1∑

m=0

∣∣∣
∑

x

e(f(x) + g(x)m/M + jh(x))
∣∣∣

+
XG

M
+
∞∑

j=1

|aj |
∣∣∣
∑

x

e(jh(x))
∣∣∣.
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Lemma 2 with k = k1 + 1 and m = 0 shows that the last sum is

� X
∞∑

j=1

min{1/M ;M3j−4}

×[(jλk1+1)1/(2K1−2) +X−2/K + (jλk1+1X
4−4/K1)−1/K1 ]

� X[(Mλk1+1)1/(2K1−2)+X−2/K+(Mλk1+1X
4−4/K1)−1/K1 ]�X1−1/(4K).

To evaluate the first sum, for a fixed j, we divide the interval [X, 2X] into
� logX subintervals with |f (p)(x) + jh(p)(x)| � λp � |f (p)(X)|X−ε1 and
one interval (which we denote with I) on which the last inequality does not
hold, where ε1 > 0 is a sufficiently small number and p is the smallest integer
such that

|f (p)(X)|X1−1/P ≤ 1 and |jh(p)(X)X1−1/P | ≤ 1.

Obviously, p < k. The conditions of the theorem imply that if x ∈ I then

|f (p+1)(x) + jh(p+1)(x)|≫ |f (p+1)(X)|.
Using Lemma 2 with k = p and m = 1 if x ∈ I and m = 0 otherwise, we
find that the first sum is

�
∑

j

min{1;M2j−2}X1−1/K logX � X1−1/(4K)

so that
S � X1−1/(4K).

Now we assume that G� X1/(3K). We take ε0 = (G′)4/(9P ) +G−4/(PK)

and define a(x) = 1− χ(x) where G′ = g′(X) and χ(x) is the characteristic
function of [−ε0, ε0] modulo 1. Then

S =
∑

X≤x≤2X

a(g(x))e(f(x) + g(x){h(x)}) +O
( ∑

X≤x≤2X

χ(g(x))
)
.

The O-term is � |{x ∈ [X, 2X] : ‖g(x)‖ ≤ 3ε0}|. As above, we divide the
interval [X, 2X] into � XG′ + 1 subintervals of length � 1/G′ each such
that [g(X)] remains constant on each subinterval. The number of x in each
subinterval such that ‖g(x)‖ ≤ 3ε0 is � 1 + ε0/G

′ so that the O-term is

� (XG′ + 1)(1 + ε0/G
′)� Xε0 +XG′.

Now we apply Lemma 1 with r = 3 and M = GX1/(4K) to obtain

S �
∞∑

|j|=0

|aj |
∣∣∣
M−1∑

m=0

∑

x

a(h(x))e(f(x) + jh(x) + g(x)m/M +mj/M)
∣∣∣

+Xε0 +XG′ +X1−1/(4K) +
∞∑

j=1

|aj |
∣∣∣
∑

x

e(jh(x))
∣∣∣.
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As above, the last sum is � X1−1/(4K). Now we need to evaluate the first
sum. We denote it by Σ and denote the sum over m and x by S1; summing
over m, we obtain

S �
∑

x

a(g(x))e(f(x) + jh(x))
e(g(x))− 1

e((j + g(x))/M)− 1
.

Let G1 and G2 be the minimum and maximum of g(x) on [X, 2X].
Setting

I(y) = {x ∈ [X, 2X] : y + ε0 ≤ g(x) ≤ y + 1− ε0} ≡ [X1(y),X(y)]

and writing j = u+ vM with |u| < M/2, we obtain

S1 �
∑

G1≤y≤G2

∣∣∣∣
∑

x∈I(y)

e(f(x) + jh(x))
e(g(x))− 1

e((u+ g(x))/M)− 1

∣∣∣∣.

If X1(y) ≤ x ≤ X(y)− 1 then 1/|e((u+ g(x))/M)− 1| �M/(|u+ y|+ ε0)
and∣∣∣∣

1
e((u+ g(x))/M)− 1

− 1
e((u+ g(x+ 1))/M)− 1

∣∣∣∣�
MG′

(y + u)2 + ε2
0
.

Abel’s summation formula and the above inequalities yield

S1 �
∑

y

{
M

|y + u|+ ε0

∣∣∣
∑

x∈I(y)

e(ψ(x))
∣∣∣

+
MG′

(y + u)2 + ε2
0

∑

X1(y)≤s≤X(y)

∣∣∣
∑

s≤x≤X(y)

e(ψ(x))
∣∣∣
}
,

where ψ(x) = f(x) + jh(x) + ig(x) and i = 0 or 1. We set X0 = 1/G′. Then
the second sum above is

�MG′
∑

s≤X0

∑

y

1
(u+ y)2 + ε2

0

∣∣∣
∑

X(y)−s≤x≤X(y)

e(ψ(x))
∣∣∣

so we get

(6) Σ �
∞∑

|v|=0

1
v4 + 1

∑

u≤M/2

∑

y

{
1

|y + u|+ ε0

∣∣∣
∑

x∈I(y)

e(ψ(x))
∣∣∣

+
G′

(y + u)2 + ε2
0

∑

s≤X0

∣∣∣
∑

X(y)−s≤x≤X(y)

e(ψ(y))
∣∣∣
}

� max
s≤X0

V∑

|v|=0

1
v4 + 1

∑

|u|≤M/2

∑

y

1
|y + u|+ ε2

0

∣∣∣
∑

X(y)−s≤x≤X(y)

e(ψ(x))
∣∣∣+R′,
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where

V = X1/(4K) and R′ �
∞∑

v=V

v−4X(logX + ε−2
0 )� X1−1/(4K).

Let r be the smallest integer such that

|f (r)(x)| ≤ X2/R−1 and |jh(r)(x)| ≤ X2/R−1.

Obviously, 1 < r < k. To evaluate the sum in (6) we need to evaluate

Y (∆) ≡ |{y ∈ [G1, G2] : ‖ϕ(y)‖ ≤ ∆}| where ϕ(y) = Aψ(r−1)(X(y))

and A ≤ X
1−1/R
0 is a fixed number. Assume that t is the smallest integer

such that

|(Af (r−1)(X(y)))(t)| ≤ G2/T−1 and |(Ajh(r−1)(X(y)))(t)| ≤ G2/T−1.

We take a small constant ε > 0 and divide the set of all y into � logX
intervals with

|ϕ(t)(y)|λt ≥ A(|(f (r−1)(X(y)))(t)|+ |(jh(r−1)(X(y)))(t)|)X−ε10

and at most one interval, I, in which the above inequality is not satisfied.
The conditions of the theorem imply that if y ∈ I then

|ϕ(t+1)(y)| � A|(f (r−1)(X(y)))(t+1)|G−ε1 .
Using Lemma 2 with k = t and m = 0 if y 6∈ I and m = 0 otherwise as
above we obtain

Y (∆)≤ min
δ≥∆

Y (δ)(7)

� min
δ

(
Gδ +

∞∑

j=1

min{δ; 1/(δj2)}
∣∣∣
∑

y

e(jϕ(y))
∣∣∣
)

� Gmin
δ

(
δ +

∞∑

j=1

min{δ; 1/(δj2)}
)

(G−1/T + (jµt)1/(T−2))

� Gmin
δ

(δ +G−1/T + (µt/δ)1/(T−2))

≤ G(∆+G−1/P + µ
1/(T−1)
t )

� G(∆+G−1/P ).

To evaluate the sum in (6) we assume first that r = 2. We divide the
interval [X(y) − s,X(y)] into � logX subintervals with ϕ′′(x) � λ2 and
consider one of them, corresponding to the largest subsum. We denote it by
S(u, v, y).

If λ2 ≥ X−4/3
0 , we use Lemma 2 with k = 2 and m = 0 and obtain

S(u, v, y)� X
2/3
0 .
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If λ2 ≤ X−4/3
0 we use Lemma 3 to evaluate S(u, v, y) if

(8) ‖ψ′(X(y))‖ ≥ CX0λ2 ≡ ∆0

with an appropriate C or evaluate it trivially otherwise.
Note that if (8) holds then for all x ∈ [X(y)− s,X(y)] we have

‖ψ′(x)‖ = ‖ψ′(X(y)) +O(λ2X0)‖ � ‖ψ′(X(y))‖.
Summing over all u and y and using (7), we obtain

S(v) ≡
∑

u,y

S(u, v, y)� (logX + ε−2
0 )(9)

×
[
X

2/3
0 +

∑

l

min{X0; 1/(∆02l)}Y (∆02l) +X0Y (∆0)
]

logX

� (logX + ε−2
0 )(GX2/3

0 +X0G
1−1/P ) log2 X.

If r > 2, we apply Hölder’s inequality to get

S(v)�
(∑

u,y

1
|y + u|+ ε2

0

)1−4/R

×
(∑

u,y

1
|y + u|+ ε2

0

∣∣∣
∑

x

e(ψ(x))
∣∣∣
R/4
)4/R

logX.

Now we use H. Weyl–van der Corput inequality r − 2 times with Q =
X

4/R
0 to obtain

S(v)� [G(logX + ε−2
0 )]1−4/R

[∑

y,u

1
|y + u|+ ε2

0

(
X
R/4
0 Q−R/8

+X
R/4−1
0 Q1−R/4

Q∑

q1=1

. . .

QR/8∑

qr−2=1

∣∣∣
∑

x

e(Aψ1(x))
∣∣∣
)]4/R

where

A = q1 . . . qr−2 and ψ1(x) =
1�

0

. . .

1�

0

ψ(x+ q1t1 + . . .+ qr−2tr−2) dt.

Using (7) we obtain, as in the proof of (9),

S(v)� ε−2
0 XQ−1/2 log2 X + [ε−2

0 X]1−4/R logX

×
[
Q1−R/4 ∑

q1,...,qr−2

ε−2
0 (X2/3

0 G+X0G
1−1/P )

]4/R

� ε−2
0 X[X−4/(3R)

0 +G−4/(PR)] log2 X,
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and∑

v

S(v)� ε−2
0 X[X−4/(3R)

0 +G−4/(PR)] log2 X � X1−a/(3K) +XG−1/(PK).

To prove Theorem 2 we set n = [g(x)]. Let G1 and G2 be the minimum
and maximum of g(x) on [X, 2X] and G′ = g′(X). Using Lemma 4, we
obtain

S �
(∑

x,n

1
)

(λ1/(K−2)
k + (G′)−4/(3K) +G−2/K + µ

4/(KJ+K−8)
j ).

Since
∑
x,n 1� X and G′ = g1(X)/X≫ X−a, this completes the proof.
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