Families of elliptic curves of high rank with nontrivial torsion group over \mathbb{Q}

by

LEOPOLDO KULESZ (Buenos Aires)

Introduction. In 1976, B. Mazur [Maz] proved Beppo Levi’s conjecture which asserts that if E is an elliptic curve defined over \mathbb{Q}, the only possible torsion groups over \mathbb{Q} are

$$\mathbb{Z}/2\mathbb{Z}, \quad \mathbb{Z}/2m\mathbb{Z}, \quad m = 1, \ldots, 4.$$

For a finite group G and a number field K, let

$$\text{Br}(G, K) = \limsup_{E_G} \text{rank}(E_G(K)),$$

where E_G runs through the elliptic curves defined over K for which $E(K)_{\text{tors}}$ is isomorphic to G.

In order to accelerate the factorisation algorithm of H. W. Lenstra [Len], P. L. Montgomery [Mon], H. Suyama [Suy] and A. O. L. Atkin–F. Morain [A-M] obtain the following result:

Proposition. $\text{Br}(G, \mathbb{Q}) \geq 1$ for all G.

More precisely, for each torsion case they construct an infinite family of elliptic curves over \mathbb{Q} of rank ≥ 1 parametrised either by the projective line or by another elliptic curve of rank ≥ 1.

It is natural to ask, for each torsion case, if there exist families of elliptic curves of higher rank.

The case $G = \mathbb{Z}/2\mathbb{Z}$ was studied by K. Nagao [Nag] and S. Fermigier [Fer]. Nagao shows that $\text{Br}(\mathbb{Z}/2\mathbb{Z}, \mathbb{Q}) \geq 6$ using a family of elliptic curves defined over \mathbb{Q} of rank at least 6 with a rational point of order 2, parametrised by another elliptic curve of rank ≥ 1. This result was improved by Fermigier, who showed that $\text{Br}(\mathbb{Z}/2\mathbb{Z}, \mathbb{Q}) \geq 8$. He constructed a family of elliptic curves...
defined over \mathbb{Q} of rank at least 8 with a rational of order 2, parametrised by $\mathbb{Q}(t_1, \ldots, t_5)$. He also found in this family a single curve of rank 14.

Both Nagao and Fermigier obtain their results by applying the method used by J.-F. Mestre in order to find an infinite family of elliptic curves of rank ≥ 12 [Mes1], [Mes2].

In this paper, we will improve the lower bound of $\text{Br}(G, \mathbb{Q})$ for the other cases of torsion and sharpen the corresponding parametrisations.

1. PRELIMINARIES

1.1. Parametrisation of the elliptic curves with a fixed torsion group. In this section we will recall and sometimes reformulate some classic results [Kna], [Kub] and [Na].

Let E be an elliptic curve defined over \mathbb{Q} passing through a \mathbb{Q}-rational point P. Without loss of generality we can assume $P = (0, 0)$; then E admits the following equation on the affine plane:

$$p(x, y) = y^2 + a_1 xy + a_3 y - (x^3 + a_2 x^2 + a_4 x) = 0.$$

Moreover, since $(\partial p/\partial x)(0, 0) = -a_4$ and $(\partial p/\partial y)(0, 0) = a_3$, E is not singular at P if and only if $a_3 \neq 0$ or $a_4 \neq 0$. We will suppose from now on that E is nonsingular at P.

The point P is of order 2 if and only if the tangent to E at P is vertical, hence, if and only if $a_3 = 0$, i.e., if and only if E has the equation

$$(1.1.1) \quad y^2 + a_1 xy = x^3 + a_2 x^2 + a_4 x.$$

Suppose now that $a_3 \neq 0$. Under the change of coordinates

$$(x, y) \mapsto (X, Y + a_3^{-1} a_4 X),$$

the point P remains invariant and the curve becomes

$$Y^2 + (a_1 + 2a_3^{-1} a_4)XY + a_3 Y = X^3 + (a_2 - a_1 a_3^{-1} a_4 - a_3^{-2} a_4^2) X^2.$$

We can rewrite this by changing the notation:

$$(*) \quad y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2.$$

Using the chord-tangent method we obtain

$$-P = (0, -a_3), \quad [2]P = (-a_2, a_1 a_2 - a_3).$$

As $[3]P = 0$ if and only if $-P = [2]P$, we conclude that P is of order 3 if and only if $a_2 = 0$, i.e. E has the equation

$$(1.1.2) \quad y^2 + a_1 xy + a_3 y = x^3.$$

For other cyclic cases of torsion we start directly from Tate’s normal form

$$y^2 + (1 - c)xy - by = (x^3 - bx^2),$$
which can be obtained by the change of coordinates

\[(x, y) \mapsto (X/u^2, Y/u^3) \]

with \(u = a_3^{-1}a_2 \),

and letting \(b = -a_3^{-2}a_2^3 \) and \(c = 1 - a_3^{-1}a_1a_2 \). The chord-tangent method from the point \(P = (0, 0) \) yields

\[
\begin{align*}
-\,P &= (0, b), \quad [2]\,P = (b, bc), \quad [-2]\,P = (b, 0), \\
[3]\,P &= (c, b - c), \quad [-3]\,P = (c, c^2), \\
[4]\,P &= \left(\frac{b(b - c)}{c^2}, \frac{-b^2(b - c - c^2)}{c^3} \right), \quad [-4]\,P = \left(\frac{b(b - c)}{c^2}, \frac{(b - c)^2b}{c^3} \right), \\
[5]\,P &= \left(\frac{-bc(-c^2 + b - c)}{(b - c)^2}, \frac{bc^2(b^2 - bc - c^3)}{(b - c)^3} \right), \\
[-5]\,P &= \left(\frac{-bc(-c^2 + b - c)}{(b - c)^2}, \frac{b^2(-c^2 + b - c)^2}{(b - c)^3} \right), \\
[6]\,P &= \left(\frac{(-b + c)(c^3 + bc - b^2)}{(-b + c + c^2)^2}, \frac{c(bc^2 - c^2 + 3bc - 2b^2)(-b + c)^2}{(-bc + c^2)^3} \right), \\
[-6]\,P &= \left(\frac{(-b + c)(c^3 + bc - b^2)}{(-b + c + c^2)^2}, \frac{c(c^3 + bc - b^2)^2}{(-b + c + c^2)^3} \right),
\end{align*}
\]

and therefore:

\[(1.1.3) \quad P \text{ is of order } 4 \text{ if and only if } c = 0 \ (|2\,P| = [-2\,P]). \]
\[(1.1.4) \quad P \text{ is of order } 5 \text{ if and only if } b = c \ (|3\,P| = [-2\,P]). \]
\[(1.1.5) \quad P \text{ is of order } 6 \text{ if and only if } b = c + c^2 \ (|3\,P| = [-3\,P]). \]
\[(1.1.6) \quad P \text{ is of order } 7 \text{ if and only if } b = d^3 - d^2 \text{ and } c = d^2 - d. \]
\[(1.1.7) \quad P \text{ is of order } 8 \text{ if and only if } \]
\[
b = (2d - 1)(d - 1), \quad c = \frac{(2d - 1)(d - 1)}{d}.
\]
\[(1.1.8) \quad P \text{ is of order } 9 \text{ if and only if } \]
\[
b = cd, \quad c = fd - f, \quad d = f(f - 1) + 1. \]
\[(1.1.9) \quad P \text{ is of order } 10 \text{ if and only if } \]
\[
b = cd, \quad c = fd - f, \quad d = \frac{f^2}{f - (f - 1)^2}.
\]
\[(1.1.10) \quad P \text{ is of order } 12 \text{ if and only if } \]
\[
b = cd, \quad c = fd - f, \quad d = m + t, \quad f = \frac{m}{1-t}, \quad m = \frac{3t - 3t^2 - 1}{t - 1}.
\]

We suggest a different parametrisation for the cases \(\mathbb{Z}/9\mathbb{Z}, \mathbb{Z}/10\mathbb{Z}\) and \(\mathbb{Z}/12\mathbb{Z}\), which will be useful later. Instead of considering the conditions that the point \(P = (0, 0)\) should verify in order to have \([9]P = 0\) (resp. \([10]P = 0\) and \([12]P = 0\)), we start from the simpler case \([3]P = 0\) (resp. \([5]P = 0\) and \([6]P = 0\)) and look for a point \(Q\) such that \([3]Q = P\) (resp. \([2]Q = P\) and \([2]Q = P\)). In this manner we obtain the following results:

- On the elliptic curve defined by the equation
 \[
 (32t^2 - 8t)y^2 + (-48t^2 + 64t^3 + 1)x y + t(4t - 1)y - 8tx^3(4t - 1) = 0,
 \]
 the point \(Q = (t, 2t^2/(4t - 1))\) is of order 9.

- On the elliptic curve defined by the equation
 \[
 (t + 1)^2y^2 + (2t^2 + 2t + 1 + 2t^3)x y + t^2(2t + 1)y - (t + 1)^2x^3 - t^2(2t + 1)x^2 = 0,
 \]
 the point \(Q = (-t^2(2t + 1)/(t + 1)^3, -t^3(2t + 1)^2/(t + 1)^5)\) is of order 10.

- On the elliptic curve defined by the equation
 \[
 y_1(x_1 + 1)y^2 + (-y_1^2 + 2y_1 + x_1^3)x y + (-y_1^2 + x_1^3 - 2x_1y_1)y - y_1(x_1 + 1)x^3 = 0
 \]
 with \(x_1 = -(t + 1)(t^2 - 2t + 5)/8\) and \(y_1 = t(1 - t^2)x_1/4\), the point \(Q = (x_1, y_1)\) is of order 12.

In order to treat the torsion cases of the form \(\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2n\mathbb{Z}\) we start from the elliptic curve in Weierstrass form:

\[(1.1.11) \quad E : \quad y^2 = (x - \alpha)(x - \beta)(x - \gamma).\]

We know that if \(\alpha, \beta\) and \(\gamma\) are in \(\mathbb{Q}\) then \(E(\mathbb{Q})_{\text{tors}}\) contains one torsion subgroup isomorphic to \(\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}\).

In order to study the torsion case \(\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}\) we consider the following result (cf. [Kna, Chapter IV]):

Theorem 1.1. Let \(E\) be an elliptic curve defined over a field \(k\) of characteristic \(\neq 2\) or \(3\). Suppose that \(E\) is given by

\[
y^2 = (x - \alpha)(x - \beta)(x - \gamma)
\]

with \(\alpha, \beta, \gamma \in k\). For \((x_2, y_2)\) in \(E(k)\) there exists \((x_1, y_1) \in E(k)\) with \([2](x_1, y_1) = (x_2, y_2)\) if and only if \(x_2 - \alpha, x_2 - \beta\) and \(x_2 - \gamma\) are perfect squares in \(k\).
It follows that the curves E with a torsion subgroup isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$ have the equation
\begin{equation}
(1.1.12) \quad y^2 = x(x + x_1^2)(x + x_2^2), \quad x_1, x_2 \in \mathbb{Q}.
\end{equation}
Indeed, by applying the theorem, we verify that the point $(0, 0)$ is of order 4.

If we look for x_1 and x_2 in the equation (1.1.12) such that the point $(x_1 x_2, x_1 x_2 (x_1 + x_2))$ is a double point (cf. Theorem 1.1), we find that the elliptic curves E with a torsion subgroup isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/8\mathbb{Z}$ have the equation
\begin{equation}
(1.1.13) \quad y^2 = x(x + x_1^2)(x + x_2^2)
\end{equation}
with $x_1 = (t^2 - 1)/(2t)$, $x_2 = 1/x_1$ and $t \in \mathbb{Q}$. For this last case, it is also possible to start from (1.1.7) and find the parameter d such that this curve has another point of order 2. It is sufficient to set
\begin{equation}
(1.1.13') \quad d = \frac{-2(4 + t)}{-8 + t^2}.
\end{equation}

Finally, in order to obtain a torsion subgroup isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z}$, it is sufficient to set $\alpha = x_1^2$, $\beta = x_2^2$ and $\gamma = x_3^2$ in (1.1.11) and find x_1, x_2 and x_3 such that the point $(0, x_1 x_2 x_3)$ is of order 3 (using (1.1.2)).

Thus, the curves with a torsion subgroup isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z}$ have the equation
\begin{equation}
(1.1.14) \quad y^2 = (x - x_1^2)(x - x_2^2) \left(x - \frac{x_1^2 x_2^2}{(x_1 - x_2)^2} \right).
\end{equation}

1.2. Transforming a quartic into a cubic. We recall some results about quartics [Cas], [A-M]. Let E be the elliptic curve satisfying the equation
\[y^2 = a_4 x^4 + a_3 x^3 + a_2 x^2 + a_1 x + a_0 = f(x), \]
and passing through the rational point (x_0, y_0). If we set
\[x = x_0 + y_0 \left(X - \frac{f'(x_0)}{4y_0} \right)^{-1}, \quad y = \frac{Y}{y_0} (x - x_0)^2, \]
we see that E is birationally equivalent to
\[E' : \quad Y^2 = X^4 - 6A_2 X^2 + 4A_1 X + A_0 = F(X). \]
This last curve is also birationally equivalent to
\[E'' : \quad T^2 = S^3 - \frac{3A_2^2 + A_0}{4} S + \frac{A_1^2 - A_2(A_2^2 - A_0)}{4}, \]
after the following change of coordinates:
\[X = \frac{T - A_1/2}{S - A_2}, \quad Y = -X^2 + 2S + A_2. \]
1.3. Independence of a system of points. We consider elliptic curves E_{x_1,\ldots,x_r} defined over the field $\mathbb{Q}(x_1,\ldots,x_r)$; we will have to show that certain points $P_1(x_1,\ldots,x_r),\ldots,P_n(x_1,\ldots,x_r)$ are independent on the curve $E_{x_1,\ldots,x_r}(\mathbb{Q}(x_1,\ldots,x_r))$. It will be sufficient to find a suitable specialisation y_1,\ldots,y_r of x_1,\ldots,x_r in rational values and to show that the points $P_1(y_1,\ldots,y_r),\ldots,P_n(y_1,\ldots,y_r)$ are independent on $E_{y_1,\ldots,y_r}(\mathbb{Q})$ ([Sil]). For this, we will compute the matrix of the Néron–Tate heights with gp-PARI [Fer].

2. RESULTS

Let us recall some results obtained by Montgomery [Mon], Suyama [Suy] and Atkin–Morain [A-M]:

- For $E(\mathbb{Q})_{\text{tors}}$ isomorphic to $\mathbb{Z}/3\mathbb{Z}$, $\mathbb{Z}/4\mathbb{Z}$, $\mathbb{Z}/5\mathbb{Z}$, $\mathbb{Z}/6\mathbb{Z}$, $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, or $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$, they obtain families of elliptic curves of rank ≥ 1, parametrised by $\mathbb{Q}(t)$.

- For $E(\mathbb{Q})_{\text{tors}}$ isomorphic to $\mathbb{Z}/7\mathbb{Z}$, $\mathbb{Z}/8\mathbb{Z}$, $\mathbb{Z}/9\mathbb{Z}$, $\mathbb{Z}/10\mathbb{Z}$, $\mathbb{Z}/12\mathbb{Z}$, $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z}$, or $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/8\mathbb{Z}$, they obtain families of elliptic curves of rank ≥ 1, parametrised by an elliptic curve of rank ≥ 1.

In what follows we improve these results for $E(\mathbb{Q})_{\text{tors}}$ isomorphic to $\mathbb{Z}/3\mathbb{Z}$, $\mathbb{Z}/4\mathbb{Z}$, $\mathbb{Z}/5\mathbb{Z}$, $\mathbb{Z}/6\mathbb{Z}$, $\mathbb{Z}/7\mathbb{Z}$, $\mathbb{Z}/8\mathbb{Z}$, $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$ or $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z}$, either by constructing infinite families of elliptic curves of higher rank or by sharpening the corresponding parametrisation. For $E(\mathbb{Q})_{\text{tors}}$ isomorphic to $\mathbb{Z}/9\mathbb{Z}$, $\mathbb{Z}/10\mathbb{Z}$, $\mathbb{Z}/12\mathbb{Z}$ or $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/8\mathbb{Z}$, we will find parametrisations by other elliptic curves of rank ≥ 1.

2.1. The case $E(\mathbb{Q})_{\text{tors}} = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$

Theorem 2.1. $\text{Br}(\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}, \mathbb{Q}) \geq 4$. More precisely, there is an infinite family of elliptic curves of rank at least four, with a torsion subgroup over \mathbb{Q} isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ and parametrised by $\mathbb{Q}(x_1, x_2, x_3, x_4)$.

Proof. We know that E is an elliptic curve defined over a field K with a torsion subgroup isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ if and only if E has a cubic model of the form

$$y^2 = (x - \alpha)(x - \beta)(x - \gamma) \quad \text{with } \alpha, \beta, \gamma \in K$$

(cf. (1.1.8)). Consider the curves

$$E_{a,b} : \quad y^2 = a(x^2 + 1)^2 + bx^2 \quad \text{with } a, b \in \mathbb{Q},$$

passing through a \mathbb{Q}-rational point (x_0, y_0). It is easy to verify (cf. 1.2) that these curves have a cubic model of the form

$$y^2 = (x - \alpha)(x - \beta)(x - \gamma)$$
with
\[
\alpha = -\frac{(ax_0^4 + 2ax_0^2 + a - y_0^2)(ax_0^4 - 2ax_0^2 - y_0^2 + a)}{x_0^2y_0^4},
\]
\[
\beta = -\frac{a(x_0 - 1)^2(x_0 + 1)^2(ax_0^4 + 2ax_0^2 + a - y_0^2)}{x_0^2y_0^4},
\]
\[
\gamma = -\frac{a(x_0^2 + 1)^2(ax_0^4 - 2ax_0^2 - y_0^2 + a)}{x_0^2y_0^4},
\]
and thus, the curves \(E_{a,b}\) have a torsion subgroup defined over \(\mathbb{Q}\) isomorphic to \(\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}\). In order to obtain such curves we will apply the following method due to J.-F. Mestre [Mes1].

Let \(X, X_1, X_2, X_3, X_4\) be five indeterminates and \(K = \mathbb{Q}(X_1, X_2, X_3, X_4)\). Let \(P \in K[X]\) be the polynomial \(P(X) = \prod_{i=1}^4(X - X_i) = X^4 + c_3X^3 + c_2X^2 + c_1X + c_0\). It may be written in a unique form as \(P = Q^2 - R\) with \(Q\) and \(R\) in \(K[X]\) such that \(Q(X) = X^2 + d_1X + d_0\) and \(R(X) = r_1X + r_2\), where \(d_1, d_0, r_1, r_2 \in \mathbb{Q}\). Indeed, we obtain the equality by setting \(d_1 = c_3/2\), \(d_0 = (c_2 - d_1^2)/2\), \(r_1 = 2d_1d_0 - c_1\) and \(r_2 = d_0^2 - c_0\).

The rational fraction \(F_1(x) = (x^2 + 1)^2/x^2\) is invariant under the action of the group \(G_1\) of four homographies generated by \(x \mapsto -x\) and \(x \mapsto 1/x\). Let \(x_1, x_2, x_3\) and \(x_4\) be four indeterminates. If we set \(X_i = F_1(x_i)\) the numerator of \(P(F_1(x))\) splits completely over \(\mathbb{Q}(x_1, x_2, x_3, x_4)\). In this way, we obtain the curve \(E_{r_1,r_2}\) satisfying the equation
\[
y^2 = r_1(x^2 + 1)^2 + r_2x^2
\]
and passing through the points of abscissae \(x_1, x_2, x_3\) and \(x_4\) (and by their conjugates) under the action of \(G_1\).

When we apply this method to the case where \(x_1 = 2, x_2 = 3, x_3 = 4\) and \(x_4 = 5\), we obtain the elliptic curve \(E\) satisfying the minimal equation
\[
E: \quad y^2 + xy = x^3 + ax + b
\]
with
\[
a = -33266039859280269453163159675, \\
b = 1266432590907122115122625450016203315594257.
\]
It has a torsion subgroup isomorphic to \(\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}\) generated by the points
\[
P_1 = (159074830970654, -79537415485327), \\
P_2 = (-199067488994146, 99533744497073),
\]
and passes through the following four independent points (images of the points on \(E_{r_1,r_2}\) of \(x\)-coordinate \(x_1 = 2, x_2 = 3, x_3 = 4\) and \(x_4 = 5\)):
\[
Q_1 = (-20566252547452, 1393517661684992475371), \\
Q_2 = (360529885950854, 6011268744207477259073),
\]
Moreover, they pass through the points whose x-coordinates are the roots of $F_2(x) \prod_{i=1}^3(F_2(x) - g_2(x_i))$.

If we apply this method in the case where $x_1 = 2$, $x_2 = 4$, and $x_3 = 6$, then we obtain the points P_1, \ldots, P_6 of x-coordinates $-7, -7/9, -19/9, -19/25, -39/4, -39/49$ (6 of the 9 roots of $\prod_{i=1}^3(F_2(x) - g_2(x_i))$).

We obtain the elliptic curve E of minimal equation

$$y^2 + xy = x^3 + ax + b$$

The determinant of the Néron–Tate matrix is 1803.84 (computed with gp-PARI), which completes the proof of Theorem 2.1.

2.2. The case $E(\mathbb{Q})_{\text{t} \text{ors}} = \mathbb{Z}/3\mathbb{Z}$

Theorem 2.2. $\text{Br}(\mathbb{Z}/3\mathbb{Z}, \mathbb{Q}) \geq 6$. More precisely, there is an infinite family of elliptic curves of rank at least six, with a torsion subgroup over \mathbb{Q} isomorphic to $\mathbb{Z}/3\mathbb{Z}$ and parametrised by $\mathbb{Q}(x_1, x_2, x_3)$.

Proof. By (1.1.2), E is an elliptic curve defined over a field K with a torsion subgroup over K isomorphic to $\mathbb{Z}/3\mathbb{Z}$ if and only if E has a cubic model of the form

$$y^2 + a_1xy + a_3y = x^3$$

with $a_1, a_3 \in K$.

Let X, X_1, X_2, X_3 be four indeterminates and $K = \mathbb{Q}(X_1, X_2, X_3)$. Let $P(X) = X \prod_{i=1}^3(X - X_i) = X^4 + c_3X^3 + c_2X^2 + c_1X \in K[X]$. Then $P = Q^2 - R$ for unique Q and R in $K[X]$ such that $Q(X) = X^2 + d_1X + d_0$ and $R(X) = r_1X + r_2^2$, where $d_1, d_0, r_1, r_2 \in \mathbb{Q}$. Indeed, set $d_1 = c_3/2$, $d_0 = (c_2 - d_1^2)/2$, $r_1 = 2d_1d_0 - c_1$ and $r_2 = d_0$.

Consider the rational fractions

$$F_2(x) = \frac{x^3}{(x + 1)^2}, \quad g_2(x) = -\frac{1}{4}\frac{(x^2 + 3)^3}{(x - 1)^2(x + 1)^2},$$

and three indeterminates x_1, x_2 and x_3. By setting $X_i = g_2(x_i)$, the numerator of $P(F_2(x))$ splits completely over $\mathbb{Q}(x_1, x_2, x_3)$. In this way, we obtain the curves

$$E_{r_1, r_2} : \quad y^2 = r_1x^3 + r_2^2(x + 1)^2$$

with a torsion subgroup defined over $\mathbb{Q}(x_1, x_2, x_3)$ isomorphic to $\mathbb{Z}/3\mathbb{Z}$. They have a cubic model of the form (cf. 1.2)

$$E'_{r_1, r_2} : \quad y^2 - 2r_2xy - 2r_1r_2y = x^3,$$

via

$$E_{r_1, r_2} \rightarrow E'_{r_1, r_2}, \quad (x, y) \mapsto (r_1x, r_1(r_2(x + r_1) + y)).$$

Moreover, they pass through the points whose x-coordinates are the roots of $F_2(x) \prod_{i=1}^3(F_2(x) - g_2(x_i))$.
with
\[a = -78203520427419039841411467,\]
\[b = 25931405022853661276303764732312995569.\]

It has a torsion subgroup isomorphic to \(\mathbb{Z}/3\mathbb{Z}\) generated by the point
\[P = (7167424811990, 818540686627009297),\]
and passes through the following six independent points (images of the points \(P_1, \ldots, P_6\)):
\[Q_1 = (30967676391166/9, 15024496813910125937),\]
\[Q_2 = (-5189102999442, 22921483484817715265),\]
\[Q_3 = (7167424811990, -8185416854051821287),\]
\[Q_4 = (52150295496478, 9, 22921402664822970827/27),\]
\[Q_5 = (145646473383006/25, 150244650474432388589/125),\]
\[Q_6 = (5762455177454, 131221750961285185).\]

The determinant of the Néron–Tate matrix is 648532.73, which completes the proof of Theorem 2.2.

2.3. The case \(E(\mathbb{Q})_{\text{tors}} = \mathbb{Z}/4\mathbb{Z}\)

Theorem 2.3. \(\text{Br}(\mathbb{Z}/4\mathbb{Z}, \mathbb{Q}) \geq 3\). More precisely, there is an infinite family of elliptic curves of rank at least three, with a torsion subgroup over \(\mathbb{Q}\) isomorphic to \(\mathbb{Z}/4\mathbb{Z}\) and parametrised by \(\mathbb{Q}(x_1, x_2, x_3)\).

Proof. By (1.1.3), \(E\) is an elliptic curve defined over a field \(K\) with a torsion subgroup over \(K\) isomorphic to \(\mathbb{Z}/4\mathbb{Z}\) if and only if \(E\) has a cubic model of the form
\[y^2 + xy - by = x^3 - bx^2\quad \text{with } b \in K.\]

We proceed as in Theorem 2.2, this time with the rational fraction \(F_3(x) = x^2/(x - 1)\). If we set \(X_i = F_3(x_i)\), the numerator of \(P(F_3(x))\) splits completely over \(\mathbb{Q}(x_1, x_2, x_3)\). In this way, we obtain the curves
\[E_{r_1, r_2} : \quad y^2 = r_1 x^2(x - 1) + r_2^2(x - 1)^2\]
with a torsion subgroup defined over \(\mathbb{Q}(x_1, x_2, x_3)\) isomorphic to \(\mathbb{Z}/4\mathbb{Z}\). Indeed, they have a cubic model of the form (cf. 1.2)
\[E'_{r_1, r_2} : \quad y^2 - 2(x - b)y = x^3 - bx^2\quad \text{with } b = r_1/r_2^2,\]
via
\[E_{r_1, r_2} \rightarrow E'_{r_1, r_2}, \quad (x, y) \mapsto (bx, b(x - 1 + y/r_2)).\]
Moreover, they pass through the points whose \(x\)-coordinates are the roots of \(F_2(x) \prod_{i=1}^3 (F_2(x) - g_2(x_i)).\)
Applying this method to the case where $x_1 = 3$, $x_2 = 4$, and $x_3 = 5$, we obtain the elliptic curve E of minimal equation

$$y^2 + xy = x^3 + ax + b$$

with

$$a = -266721356141, \quad b = 52307554376730321.$$

It has a torsion group isomorphic to $\mathbb{Z}/4\mathbb{Z}$ generated by the point

$$P = (554026, 272839207),$$

and passes through the following three independent points (images of the points on E_{r_1,r_2} of x-coordinates x_1, x_2 and x_3):

$$Q_1 = (249930, 35340231),$$

$$Q_2 = (268936, 5139697),$$

$$Q_3 = (211918, 72706027).$$

The determinant of the Néron–Tate matrix is 43.88, which completes the proof of Theorem 2.3.

2.4. The case $E(\mathbb{Q})_{\text{tors}} = \mathbb{Z}/5\mathbb{Z}$

Theorem 2.4. $\text{Br}(\mathbb{Z}/5\mathbb{Z}, \mathbb{Q}) \geq 2$. More precisely, there is an infinite family of elliptic curves of rank at least two, with a torsion subgroup over \mathbb{Q} isomorphic to $\mathbb{Z}/5\mathbb{Z}$ and parametrised by $\mathbb{Q}(t)$.

Proof. By (1.1.4), E is an elliptic curve defined over a field K with a torsion subgroup over K isomorphic to $\mathbb{Z}/5\mathbb{Z}$ if and only if E has a cubic model of the form

$$E_b : \quad y^2 + (1 - b)xy - by = x^3 - bx^2 \quad \text{with } b \in K.$$

Set

$$b = \frac{-(3t^2 + 6t + 4)(t^2 + 6t + 12)}{(t - 2)^2(t + 2)^2},$$

$$u = \frac{-(8 + 8t + t^2)}{(t - 2)(t + 2)},$$

$$v = \frac{-(t^2 + 6t + 12)}{(t - 2)(t + 2)}.$$

We will show that the points $P_1 = (-1, u)$ and $P_2 = (v, v)$ are independent in $E_b(\mathbb{Q}(t))$. If $t = 4$, we obtain the elliptic curve E of minimal equation

$$y^2 + y = x^3 + x^2 + ax + b$$

with

$$a = -112845920, \quad b = 461373286640.$$
It has a torsion subgroup isomorphic to $\mathbb{Z}/5\mathbb{Z}$ generated by the point
\[P = (6202, 10003), \]
and passes through the following two independent points (images of P_1 and P_2):
\[Q_1 = (6121, 3766), \quad Q_2 = (5851, 38083). \]
The determinant of the Néron–Tate matrix is 11.74, which completes the proof of Theorem 2.4.

2.5. The case $E(\mathbb{Q})_{\text{tors}} = \mathbb{Z}/6\mathbb{Z}$

Theorem 2.5. $\text{Br}(\mathbb{Z}/6\mathbb{Z}, \mathbb{Q}) \geq 2$. More precisely, there is an infinite family of elliptic curves of rank at least two, with a torsion subgroup over \mathbb{Q} isomorphic to $\mathbb{Z}/6\mathbb{Z}$ and parametrised by $\mathbb{Q}(t)$.

Proof. By (1.1.5), E is an elliptic curve defined over a field K with a torsion subgroup over K isomorphic to $\mathbb{Z}/6\mathbb{Z}$ if and only if E has a cubic model of the form
\[E_c : \quad y^2 + (1 - c)xy - (c + c^2)y = x^3 - (c + c^2)x^2 \quad \text{with } c \in K. \]
Set
\[c = \frac{4(t - 1)(-2t + 1 + 2t^2)}{5 - 8t + 4t^4}. \]
We will show that the points P_1 and P_2 of x-coordinate $-c$ and ct respectively are independent in $E_c(\mathbb{Q}(t))$. If $t = 2$, we obtain the elliptic curve E of minimal equation
\[y^2 + xy = x^3 + ax + b \]
with
\[a = -1747020, \quad b = 867156112. \]
It has a torsion subgroup isomorphic to $\mathbb{Z}/6\mathbb{Z}$ generated by the point
\[P = (-396, 38888), \]
and passes through the following two independent points (images of P_1 and P_2):
\[Q_1 = (-1456, 18748), \quad Q_2 = (1724, 53728). \]
The determinant of the Néron–Tate matrix is 6.47, which completes the proof of Theorem 2.5.

2.6. The case $E(\mathbb{Q})_{\text{tors}} = \mathbb{Z}/7\mathbb{Z}$

Theorem 2.6. $\text{Br}(\mathbb{Z}/7\mathbb{Z}, \mathbb{Q}) \geq 1$. More precisely, there is an infinite family of elliptic curves of rank at least one, with a torsion subgroup over \mathbb{Q} isomorphic to $\mathbb{Z}/7\mathbb{Z}$ and parametrised by $\mathbb{Q}(t)$.
Proof. By (1.1.6), E is an elliptic curve defined over a field K with a torsion subgroup over K isomorphic to $\mathbb{Z}/7\mathbb{Z}$, if and only if E has a cubic model of the form

$$E_d : y^2 + (1 - c)xy - by = x^3 - bx^2$$

with $b = d^3 - d^2$, $c = d^2 - d$ and $d \in K$. Set

$$d = \frac{-2(-3 + t)}{3 + t^2}.$$

The point of abscissa

$$\frac{-2(t - 1)(t + 3)(t + 1)(-3 + t)^2}{(3 + t^2)^3}$$

is of infinite order in $E_d(\mathbb{Q}(t))$ since it is not in $E_d(\mathbb{Q}(t))_{\text{tors}}$, except for a finite set of rational values of t, which completes the proof of Theorem 2.6.

2.7. The case $E(\mathbb{Q})_{\text{tors}} = \mathbb{Z}/8\mathbb{Z}$

Theorem 2.7. $\text{Br}(\mathbb{Z}/8\mathbb{Z}, \mathbb{Q}) \geq 1$. More precisely, there is an infinite family of elliptic curves of rank at least one, with a torsion subgroup over \mathbb{Q} isomorphic to $\mathbb{Z}/8\mathbb{Z}$ and parametrised by $\mathbb{Q}(t)$.

Proof. By (1.1.7), E is an elliptic curve defined over a field K with a torsion subgroup over K isomorphic to $\mathbb{Z}/8\mathbb{Z}$ if and only if E has a cubic model of the form

$$E_d : y^2 + (1 - c)xy - by = x^3 - bx^2$$

with $b = (2d - 1)(d - 1)$, $c = (2d - 1)(d - 1)/d$ and $d \in K$. Set $d = (2 - 2t + t^2)/(2 + t^2)$.

The point of abscissa

$$\frac{-2t(2 - 4t + t^2)(t^2 - 2)}{(2 + t^2)^2(2 - 2t + t^2)}$$

is of infinite order in $E_d(\mathbb{Q}(t))$ since it is not in $E_d(\mathbb{Q}(t))_{\text{tors}}$, and $E_d(\mathbb{Q}(t))_{\text{tors}}$ is isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/8\mathbb{Z}$ only for a finite number of values of t, which completes the proof of Theorem 2.7.

2.8. The case $E(\mathbb{Q})_{\text{tors}} = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$

Theorem 2.8. $\text{Br}(\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}, \mathbb{Q}) \geq 2$. More precisely, there is an infinite family of elliptic curves of rank at least two, with a torsion subgroup over \mathbb{Q} isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$ and parametrised by $\mathbb{Q}(t_1, t_2, t_3)$.

Proof. By (1.1.9), E is an elliptic curve defined over a field K with a torsion subgroup over K isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$ if and only if E has a
cubic model of the form

\[E_{u_1,u_2} : \quad y^2 = x(x + u_1^2)(x + u_2^2) \quad \text{with } u_1, u_2 \in \mathbb{K}. \]

Let \(x_1, x_2 \in \mathbb{Q} \). How could we find \(u_1, u_2, y_1 \) and \(y_2 \) in \(\mathbb{Q} \) such that \((x_1^2 + u_1^2)(x_2^2 + u_2^2) = y_i^2 \) \((i = 1, 2) \)?

If we consider \(E_{u_1,u_2} \) as a conic in \(y \) and \(u_2 \), it is easy to see that we can answer this question by setting

\[u_2 = \frac{s^2u_1 - 2su_1^2 - 2x_1^2s + u_1x_1^2 + u_3^3}{s^2 - x_1^2 - u_1^2}, \]

\[s = \frac{1}{2} \frac{x_2x_1^2 + u_1^4 + 2x_2^2u_1^2}{u_1(x_2^2 + u_1^2)}. \]

In this manner, we construct an infinite family of elliptic curves

\[E_{u_1,u_2} : \quad y^2 = x(x + u_1^2)(x + u_2^2) \]

with \(u_2 \in \mathbb{Q}(x_1, x_2, u_1) \), and passing through the points with the \(x \)-coordinate given by \(x_1^2 \) and \(x_2^2 \).

The points \(P_1 \) and \(P_2 \) with \(x \)-coordinates \(4 \) and \(t^2 \) are independent in \(E_t(\mathbb{Q}(t)) \). If \(t = 5 \), we obtain the elliptic curve \(E \) satisfying the minimal equation

\[y^2 = x^3 + ax^2 + bx \]

with

\[a = 1866892562, \quad b = 153388875753868561. \]

It has a torsion subgroup isomorphic to \(\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z} \) generated by the points

\[R_1 = (-86136961, 0), \quad R_2 = (391648919, 20162086350120) \]

and passes through the following two independent points (images of \(P_1 \) and \(P_2 \)):

\[Q_1 = (344547844, 17758857249370), \quad Q_2 = (2153424025, 137744198443930). \]

The determinant of the Néron–Tate matrix is 112.65, which completes the proof of Theorem 2.8.

2.9. The case \(E(\mathbb{Q})_{\text{tors}} = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z} \)

Theorem 2.9. \(\text{Br}(\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z}, \mathbb{Q}) \geq 1 \). More precisely, there is an infinite family of elliptic curves of rank at least one, with a torsion subgroup over \(\mathbb{Q} \) isomorphic to \(\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z} \) and parametrised by \(\mathbb{Q}(t) \).

Proof. By (1.1.10), \(E \) is an elliptic curve defined over a field \(\mathbb{K} \) with a torsion subgroup over \(\mathbb{K} \) isomorphic to \(\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z} \) if and only if \(E \) has a
cubic model of the form
\[E_{x_1, x_2} : \quad y^2 = (x + x_1^2)(x + x_2^2) \left(x + \frac{x_1^2 x_2^2}{(x_1 - x_2)^2} \right) \quad \text{with } x_1, x_2 \in \mathbb{K}. \]

Set
\[x_1 = -\frac{1 + 2t}{(t - 1)(t + 1)}, \quad x_2 = x_1^2. \]

The point whose \(x\)-coordinate is \(x_1^3\) is of infinite order in \(E_{x_1, x_2}(\mathbb{Q}(t))\) since it is not in \(E_{x_1, x_2}(\mathbb{Q}(t))_{\text{tors}}\), except for a finite number of rational values of \(t\), which completes the proof of Theorem 2.9.

2.10. The case \(E(\mathbb{Q})_{\text{tors}} = \mathbb{Z}/9\mathbb{Z}\). In the first section we found two different parametrisations of elliptic curves defined over a field \(\mathbb{K}\) with a torsion subgroup over \(\mathbb{K}\) isomorphic to \(\mathbb{Z}/9\mathbb{Z}\):

\[E_f : \quad y^2 + (1 - c)xy - by = (x^3 - bx^2) \]

with \(b = cd\), \(c = fd - f\) and \(d = f(f - 1) + 1\) (cf. (1.1.8)) and

\[E_t : \quad (32t^2 - 8t)y^2 + (-48t^2 + 64t^3 + 1)xy + t(4t - 1)y - 8tx^3(4t - 1) = 0 \]

(cf. (1.1.8')). We consider the following elliptic curves:

\[E_1 : \quad y^2 = (x - 2)(x^3 - 4x^2 + x - 2), \]
\[E_2 : \quad y^2 = x(4x + 1)(4x^2 - 7x + 1), \]
\[E_3 : \quad y^2 = -(2x - 1)(32x^2 - 2x - 1), \]
\[E_4 : \quad y^2 = -(8x - 1)(4x - 1)(32x^2 - 20x - 1). \]

The point \((0, 2)\) (resp. \((-1/4, 0)\), \((1/4, 1/2)\), \((1/8, 0)\)) is of infinite order in \(E_1(\mathbb{Q})\) (resp. \(E_2(\mathbb{Q})\), \(E_3(\mathbb{Q})\), \(E_4(\mathbb{Q})\)) and hence \(E_1\) (resp. \(E_2\), \(E_3\), \(E_4\)) has rank \(\geq 1\) over \(\mathbb{Q}\).

Theorem 2.10. \(E_1(\mathbb{Q})\), \(E_2(\mathbb{Q})\), \(E_3(\mathbb{Q})\) and \(E_4(\mathbb{Q})\) parametrise elliptic curves with a torsion subgroup over \(\mathbb{Q}\) isomorphic to \(\mathbb{Z}/9\mathbb{Z}\), of rank \(\geq 1\).

Proof. On \(E_f\), \([6](0, 0) = (u(f), v(f))\) with

\[u(f) = f^2(f - 1), \quad v(f) = f^4(f - 1)^2. \]

Hence, if we set

\[p(x, y) = y^2 + (1 - c)xy - by - (x^3 - bx^2) \]

with \(b = cd\), \(c = fd - f\) and \(d = f(f - 1) + 1\), then the polynomial \(p(x, v(f))\) vanishes at \(x = u(f)\). In this way, \(p(x, v(f))/(x - u(f))\) is a polynomial of degree 2 in \(x\) and splits in \(\mathbb{Q}\) if and only if \((f - 2)(f^3 - fx^2 + f - 2)\) is a square in \(\mathbb{Q}\), i.e. if and only if \(f\) is the abscissa of a point of \(E_1(\mathbb{Q})\). The roots of this polynomial are the \(x\)-coordinates of points of infinite order of \(E_f(\mathbb{Q})\).
For E_2, E_3 and E_4 we apply the same idea to E_t with $P = (t, 2t^2/(4t - 1))$, $\lbrack 4 \rbrack P = \left(-\frac{1}{4(4t - 1)}, \frac{-1}{32t(4t - 1)} \right)$ and $\lbrack 5 \rbrack P = \left(-\frac{1}{4(4t - 1)}, \frac{-1}{2t(4t - 1)^2} \right)$ respectively.

2.11. The case $E(\mathbb{Q})_{\text{tors}} = \mathbb{Z}/10\mathbb{Z}$. In the first section we found two different parametrisations of elliptic curves defined over a field K with a torsion subgroup over K isomorphic to $\mathbb{Z}/10\mathbb{Z}$:

$$E_f : y^2 + (1 - c)xy - by = (x^3 - bx^2)$$
with $b = cd$, $c = fd - f$ and $d = f^2/(f - (f - 1)^2)$ (cf. (1.1.9)), and

$$E_t : (t + 1)^2y^2 + (2t^2 + 2t + 1 + 2t^3)xy + t^2(2t + 1)y - (t + 1)^2x^3 - t^2(2t + 1)x^2 = 0$$
(cf. (1.1.9')). We consider the following elliptic curves:

$$E_1 : y^2 = (x - 2)(x + 1)(x^2 - 5x + 2),$$
$$E_2 : y^2 = 2x^3 + 2x^2 + 2x + 1,$$
$$E_3 : y^2 = (1 - 3x - 4x^2 + 4x^3)(x + 1),$$
$$E_4 : y^2 = 5x^4 + 8x^3 + 12x^2 + 12x + 4.$$

The point $(-1, 0)$ (resp. $(0, 1), (-1, 0), (-1, 1)$) is of infinite order in $E_1(\mathbb{Q})$ (resp. $E_2(\mathbb{Q})$, $E_3(\mathbb{Q})$, $E_4(\mathbb{Q})$) and thus E_1 (resp. E_2, E_3, E_4) has rank ≥ 1 over \mathbb{Q}.

Theorem 2.11. $E_1(\mathbb{Q})$, $E_2(\mathbb{Q})$, $E_3(\mathbb{Q})$ and $E_4(\mathbb{Q})$ parametrise elliptic curves with a torsion subgroup over \mathbb{Q} isomorphic to $\mathbb{Z}/10\mathbb{Z}$, of rank ≥ 1.

Proof. On E_f, $\lbrack 6 \rbrack (0, 0) = (u(f), v(f))$ with

$$u(f) = \frac{f^2(2f - 1)(f - 1)}{-3f + f^2 + 1)^2}, \quad v(f) = -\frac{f^2(2f - 1)^2(f - 1)^2}{(-3f + f^2 + 1)^3}.$$

Hence, if we set

$$p(x, y) = y^2 + (1 - c)xy - by - (x^3 - bx^2)$$
with $b = cd$, $c = fd - f$ and $d = f^2/(f - (f - 1)^2)$, then the polynomial $p(x, v(f))$ vanishes at $x = u(f)$. In this way, $p(x, v(f))/(x - u(f))$ is a polynomial of degree 2 in x and splits in \mathbb{Q} if and only if $(f - 2)(f + 1)(f^2 - 5f + 2)$ is a square in \mathbb{Q}, i.e. if and only if f is the x-coordinate of a point of $E_1(\mathbb{Q})$.

The roots of this polynomial are the x-coordinates of points of infinite order of $E_f(\mathbb{Q})$.

For E_2, E_3 and E_4 we apply the same idea to E_t with

$$\lbrack 2 \rbrack P = \left(-\frac{t^2(2t + 1)}{(t + 1)^2}, \frac{t^4(2t + 1)^2}{(t + 1)^4} \right),$$
\[[3] P = \left(\frac{t(2t+1)}{t+1}, \frac{t^2(2t+1)^2}{(t+1)^3} \right), \]

\[[5] P = \left(-\frac{t^2}{t+1}, \frac{t^4}{t+1} \right) \]

respectively, where

\[P = \left(-\frac{t^2(2t+1)}{(t+1)^3}, \frac{-t^3(2t+1)^2}{(t+1)^5} \right). \]

2.12. The case \(E(Q)_{\text{tors}} = \mathbb{Z}/12\mathbb{Z} \). In the first section we parametrised the elliptic curves defined over a field \(K \) with a torsion subgroup over \(K \) isomorphic to \(\mathbb{Z}/12\mathbb{Z} \), in the following way (cf. (1.1.10')):

\[
E_t : \quad x_1y_1(x_1+1)y_1^2 + (-y_1^2x_1 - 2x_1y_1 + x_1^2x_1^2)2x_1y_1 + x_1(-y_1^2 + x_1^2 + 2x_1y_1)y - x_1y_1(x_1+1)x_1^3 = 0
\]

with \(x_1 = -(t+1)(t^2 - 2t + 5)/8 \) and \(y_1 = t(1-t^2)/4 \).

We consider the following elliptic curve:

\[
E_1 : \quad y^2 = (x^4 + 6x^3 - 24x^2 + 90x - 9).
\]

The point (1, 8) is of infinite order in \(E_1(Q) \) and thus \(E_1 \) has rank \(\geq 1 \) over \(Q \).

Theorem 2.12. \(E_1(Q) \) parametrises elliptic curves with a torsion subgroup over \(Q \) isomorphic to \(\mathbb{Z}/12\mathbb{Z} \), of rank \(\geq 1 \).

Proof. On \(E_t \), \([9](x_1, y_1) = (u(t), v(t)) \) with

\[
u(t) = \frac{1}{4}\left(\frac{(t^2 - 2t + 5)(t + 1)^2}{(t-1)^2}, \quad v(t) = \frac{1}{16}\left(\frac{(t^2 - 2t + 5)^2(t + 1)^4}{(t-1)^4} \right).\]

Thus, if we set

\[
p(x, y) = x_1y_1(x_1+1)y_1^2 + (-y_1^2x_1 - 2x_1y_1 + x_1^2x_1^2)2x_1y_1 + x_1(-y_1^2 + x_1^2 + 2x_1y_1)y - x_1y_1(x_1+1)x_1^3,
\]

with

\[
b = (2d-1)(d-1), \quad c = \frac{(2d-1)(d-1)}{d}, \quad d = \frac{-2(4 + t)}{-8 + t^2},
\]

the polynomial \(p(x, v(t)) \) vanishes at \(x = u(t) \). Hence, \(p(x, v(t))/(x - v(t)) \) is a polynomial of degree 2 in \(x \) and splits in \(Q \) if and only if \(t^4 + 6t^3 - 24t^2 + 90t - 9 \) is a square in \(Q \), i.e. if and only if \(t \) is the \(x \)-coordinate of a point of \(E_1(Q) \). The roots of this polynomial are the \(x \)-coordinates of points of infinite order of \(E_t(Q) \).
2.13. The case $E(\mathbb{Q})_{\text{tors}} = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/8\mathbb{Z}$. In the first section we parametrised the elliptic curves defined over a field K with a torsion subgroup over K isomorphic to $\mathbb{Z}/12\mathbb{Z}$ in the following way (cf. (1.1.13')):

$$E_t : y^2 + (1 - c)xy - by = x^3 - bx^2$$

with

$$b = (2d - 1)(d - 1), \quad c = \frac{(2d - 1)(d - 1)}{d}, \quad d = \frac{-2(4 + t)}{8 + t^2}.$$

Define the elliptic curve

$$E_1 : y^2 = -(x^4 + 8x^3 + 24x^2 - 64).$$

The point $(-2, 4)$ is of infinite order in the curve $E_1(\mathbb{Q})$ and hence E_1 has rank ≥ 1 over \mathbb{Q}.

Theorem 2.13. $E_t(\mathbb{Q})$ parametrises elliptic curves with a torsion subgroup over \mathbb{Q} isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/8\mathbb{Z}$, of rank ≥ 1.

Proof. On E_t, $[3](0, 0) = (u(t), v(t))$ with

$$u(t) = \frac{(8 + 4t + t^2)t(2 + t)}{(-8 + t^2)^2}, \quad v(t) = \frac{-\frac{1}{2}t^2(2 + t)^2(8 + 4t + t^2)^2}{(4 + t)(-8 + t^2)^3}.$$

Thus, if we let

$$p(x, y) = y^2 + (1 - c)xy - by - (x^3 - bx^2)$$

with

$$b = (2d - 1)(d - 1), \quad c = \frac{(2d - 1)(d - 1)}{d}, \quad d = \frac{-2(4 + t)}{8 + t^2},$$

the polynomial $p(x, v(t))$ vanishes at $x = u(t)$. It follows that the polynomial $p(x, v(t))/(x - u(t))$ is of degree 2 in x and it splits in \mathbb{Q} if and only if $-(t^4 + 8t^3 + 24t^2 - 64)$ is a square in \mathbb{Q}, i.e. if and only if t is the x-coordinate of a point of $E_1(\mathbb{Q})$. The roots of this polynomial are the x-coordinates of points of infinite order of $E_t(\mathbb{Q})$.

References

Universidad Nacional de General Sarmiento
Arenales 3675 9P
1425 Capital Federal, Argentina
E-mail: lkulesz@ungs.edu.ar
 kulesz@math.jussieu.fr

Received on 20.7.2001
and in revised form on 7.5.2002