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Introduction. In 1976, B. Mazur [Maz] proved Beppo Levi’s conjecture
which asserts that if E is an elliptic curve defined over Q, the only possible
torsion groups over Q are

{Z/kZ, k = 2, . . . , 10 and 12,

Z/2Z× Z/2mZ, m = 1, . . . , 4.

For a finite group G and a number field K, let

Br(G,K) = lim sup
EG

rank(EG(K)),

where EG runs through the elliptic curves defined over K for which E(K)tors

is isomorphic to G.
In order to accelerate the factorisation algorithm of H. W. Lenstra [Len],

P. L. Montgomery [Mon], H. Suyama [Suy] and A. O. L. Atkin–F. Morain
[A-M] obtain the following result:

Proposition. Br(G,Q) ≥ 1 for all G.

More precisely, for each torsion case they construct an infinite family of
elliptic curves over Q of rank ≥ 1 parametrised either by the projective line
or by another elliptic curve of rank ≥ 1.

It is natural to ask, for each torsion case, if there exist families of elliptic
curves of higher rank.

The case G = Z/2Z was studied by K. Nagao [Nag] and S. Fermigier
[Fer]. Nagao shows that Br(Z/2Z,Q) ≥ 6 using a family of elliptic curves de-
fined over Q of rank at least 6 with a rational point of order 2, parametrised
by another elliptic curve of rank ≥ 1. This result was improved by Fermigier,
who showed that Br(Z/2Z,Q) ≥ 8. He constructed a family of elliptic curves
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defined over Q of rank at least 8 with a rational of order 2, parametrised by
Q(t1, . . . , t5). He also found in this family a single curve of rank 14.

Both Nagao and Fermigier obtain their results by applying the method
used by J.-F. Mestre in order to find an infinite family of elliptic curves of
rank ≥ 12 [Mes1], [Mes2].

In this paper, we will improve the lower bound of Br(G,Q) for the other
cases of torsion and sharpen the corresponding parametrisations.

1. PRELIMINARIES

1.1. Parametrisation of the elliptic curves with a fixed torsion
group. In this section we will recall and sometimes reformulate some classic
results [Kna], [Kub] and [Na].

Let E be an elliptic curve defined over Q passing through a Q-rational
point P . Without loss of generality we can assume P = (0, 0); then E admits
the following equation on the affine plane:

p(x, y) = y2 + a1xy + a3y − (x3 + a2x
2 + a4x) = 0.

Moreover, since (∂p/∂x)(0, 0) = −a4 and (∂p/∂y)(0, 0) = a3, E is not sin-
gular at P if and only if a3 6= 0 or a4 6= 0. We will suppose from now on
that E is nonsingular at P .

The point P is of order 2 if and only if the tangent to E at P is vertical,
hence, if and only if a3 = 0, i.e., if and only if E has the equation

(1.1.1) y2 + a1xy = x3 + a2x
2 + a4x.

Suppose now that a3 6= 0. Under the change of coordinates

(x, y) 7→ (X,Y + a−1
3 a4X),

the point P remains invariant and the curve becomes

Y 2 + (a1 + 2a−1
3 a4)XY + a3Y = X3 + (a2 − a1a

−1
3 a4 − a−2

3 a2
4)X2.

We can rewrite this by changing the notation:

(∗) y2 + a1xy + a3y = x3 + a2x
2.

Using the chord-tangent method we obtain

−P = (0,−a3), [2]P = (−a2, a1a2 − a3).

As [3]P = 0 if and only if −P = [2]P , we conclude that P is of order 3 if
and only if a2 = 0, i.e. E has the equation

(1.1.2) y2 + a1xy + a3y = x3.

For other cyclic cases of torsion we start directly from Tate’s normal
form

y2 + (1− c)xy − by = (x3 − bx2),
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which can be obtained by the change of coordinates

(x, y) 7→ (X/u2, Y/u3) with u = a−1
3 a2,

and letting b = −a−2
3 a3

2 and c = 1 − a−1
3 a1a2. The chord-tangent method

from the point P = (0, 0) yields

−P = (0, b), [2]P = (b, bc), [−2]P = (b, 0),

[3]P = (c, b− c), [−3]P = (c, c2),

[4]P =
(
b(b− c)
c2

,
−b2(b− c− c2)

c3

)
, [−4]P =

(
b(b− c)
c2

,
(b− c)2b

c3

)
,

[5]P =
(−bc(−c2 + b− c)

(b− c)2 ,
bc2(b2 − bc− c3)

(b− c)3

)
,

[−5]P =
(−bc(−c2 + b− c)

(b− c)2 ,
b2(−c2 + b− c)2

(b− c)3

)
,

[6]P =
(

(−b+ c)(c3 + bc− b2)
(−b+ c+ c2)2 ,

c(bc2 − c2 + 3bc− 2b2)(−b+ c)2

(−bc+ c2)3

)
,

[−6]P =
(

(−b+ c)(c3 + bc− b2)
(−b+ c+ c2)2 ,

c(c3 + bc− b2)2

(−b+ c+ c2)3

)
,

and therefore:

(1.1.3) P is of order 4 if and only if c = 0 ([2]P = [−2]P ).
(1.1.4) P is of order 5 if and only if b = c ([3]P = [−2]P ).
(1.1.5) P is of order 6 if and only if b = c+ c2 ([3]P = [−3]P ).
(1.1.6) P is of order 7 if and only if b = d3 − d2 and c = d2 − d.
(1.1.7) P is of order 8 if and only if

b = (2d− 1)(d− 1), c =
(2d− 1)(d− 1)

d
.

(1.1.8) P is of order 9 if and only if

b = cd, c = fd− f, d = f(f − 1) + 1.

(1.1.9) P is of order 10 if and only if

b = cd, c = fd− f, d =
f2

f − (f − 1)2 .

(1.1.10) P is of order 12 if and only if

b = cd, c = fd− f, d = m+ t,

f =
m

1− t , m =
3t− 3t2 − 1

t− 1
.
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The cases (1.1.6)–(1.1.10) were obtained from the equalities [4]P =
[−3]P , [4]P = [−4]P , [5]P = [−4]P , [5]P = [−5]P , [5]P = [−6]P , re-
spectively, which give curves of genus 0 in b and c, hence parametrisable.

We suggest a different parametrisation for the cases Z/9Z, Z/10Z and
Z/12Z, which will be useful later. Instead of considering the conditions that
the point P = (0, 0) should verify in order to have [9]P = 0 (resp. [10]P = 0
and [12]P = 0), we start from the simpler case [3]P = 0 (resp. [5]P = 0 and
[6]P = 0) and look for a point Q such that [3]Q = P (resp. [2]Q = P and
[2]Q = P ). In this manner we obtain the following results:

• On the elliptic curve defined by the equation

(1.1.8′) Et : (32t2 − 8t)y2 + (−48t2 + 64t3 + 1)xy

+ t(4t− 1)y − 8tx3(4t− 1) = 0,

the point Q = (t, 2t2/(4t− 1)) is of order 9.
• On the elliptic curve defined by the equation

(1.1.9′) Et : (t+ 1)2y2 + (2t2 + 2t+ 1 + 2t3)xy

+ t2(2t+ 1)y − (t+ 1)2x3 − t2(2t+ 1)x2 = 0,

the point Q = (−t2(2t+ 1)/(t+ 1)3,−t3(2t+ 1)2/(t+ 1)5) is of order 10.
• On the elliptic curve defined by the equation

(1.1.10′) Et : y1(x1 + 1)y2 + (−y2
1 + 2y1 + x3

1)xy

+ (−y2
1 + x3

1 − 2x1y1)y − y1(x1 + 1)x3 = 0

with x1 = −(t+ 1)(t2 − 2t+ 5)/8 and y1 = t(1− t2)x1/4, the point Q =
(x1, y1) is of order 12.

In order to treat the torsion cases of the form Z/2Z × Z/2nZ we start
from the elliptic curve in Weierstrass form:

(1.1.11) E : y2 = (x− α)(x− β)(x− γ).

We know that if α, β and γ are in Q then E(Q)tors contains one torsion
subgroup isomorphic to Z/2Z× Z/2Z .

In order to study the torsion case Z/2Z×Z/4Z we consider the following
result (cf. [Kna, Chapter IV]):

Theorem 1.1. Let E be an elliptic curve defined over a field k of char-
acteristic 6= 2 or 3. Suppose that E is given by

y2 = (x− α)(x− β)(x− γ)

with α, β, γ ∈ k. For (x2, y2) in E(k) there exists (x1, y1) ∈ E(k) with
[2](x1, y1) = (x2, y2) if and only if x2 − α, x2 − β and x2 − γ are perfect
squares in k.
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It follows that the curves E with a torsion subgroup isomorphic to
Z/2Z × Z/4Z have the equation

(1.1.12) y2 = x(x+ x2
1)(x+ x2

2), x1, x2 ∈ Q.
Indeed, by applying the theorem, we verify that the point (0, 0) is of order 4.

If we look for x1 and x2 in the equation (1.1.12) such that the point
(x1x2, x1x2(x1 + x2)) is a double point (cf. Theorem 1.1), we find that the
elliptic curves E with a torsion subgroup isomorphic to Z/2Z× Z/8Z have
the equation

(1.1.13) y2 = x(x+ x2
1)(x+ x2

2)

with x1 = (t2 − 1)/(2t), x2 = 1/x1 and t ∈ Q. For this last case, it is also
possible to start from (1.1.7) and find the parameter d such that this curve
has another point of order 2. It is sufficient to set

(1.1.13′) d =
−2(4 + t)
−8 + t2

.

Finally, in order to obtain a torsion subgroup isomorphic to Z/2Z×Z/6Z,
it is sufficient to set α = x2

1, β = x2
2 and γ = x2

3 in (1.1.11) and find x1, x2

and x3 such that the point (0, x1x2x3) is of order 3 (using (1.1.2)).
Thus, the curves with a torsion subgroup isomorphic to Z/2Z × Z/6Z

have the equation

(1.1.14) y2 = (x− x2
1)(x− x2

2)
(
x− x2

1x
2
2

(x1 − x2)2

)
.

1.2. Transforming a quartic into a cubic. We recall some results
about quartics [Cas], [A-M]. Let E be the elliptic curve satisfying the equa-
tion

y2 = a4x
4 + a3x

3 + a2x
2 + a1x+ a0 = f(x),

and passing through the rational point (x0, y0). If we set

x = x0 + y0

(
X − f ′(x0)

4y0

)−1

, y =
Y

y0
(x− x0)2,

we see that E is birationally equivalent to

E′ : Y 2 = X4 − 6A2X
2 + 4A1X + A0 = F (X).

This last curve is also birationally equivalent to

E′′ : T 2 = S3 − 3A2
2 +A0

4
S +

A2
1 − A2(A2

2 −A0)
4

,

after the following change of coordinates:

X =
T − A1/2
S − A2

, Y = −X2 + 2S + A2.
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1.3. Independence of a system of points. We consider elliptic curves
Ex1,...,xr defined over the field Q(x1, . . . , xr); we will have to show that cer-
tain points P1(x1, . . . , xr), . . . , Pn(x1, . . . , xr) are independent on the curve
Ex1,...,xr (Q(x1, . . . , xr)). It will be sufficient to find a suitable specialisa-
tion y1, . . . , yr of x1, . . . , xr in rational values and to show that the points
P1(y1, . . . , yr), . . . , Pn(y1, . . . , yr) are independent on Ey1,...,yr (Q) ([Sil]). For
this, we will compute the matrix of the Néron–Tate heights with gp-PARI
[Fer].

2. RESULTS

Let us recall some results obtained by Montgomery [Mon], Suyama [Suy]
and Atkin–Morain [A-M]:

• For E(Q)tors isomorphic to Z/3Z, Z/4Z, Z/5Z, Z/6Z, Z/2Z× Z/2Z, or
Z/2Z × Z/4Z, they obtain families of elliptic curves of rank ≥ 1, paramet-
rised by Q(t).
• For E(Q)tors isomorphic to Z/7Z, Z/8Z, Z/9Z, Z/10Z, Z/12Z, Z/2Z×

Z/6Z, or Z/2Z × Z/8Z, they obtain families of elliptic curves of rank ≥ 1,
parametrised by an elliptic curve of rank ≥ 1.

In what follows we improve these results for E(Q)tors isomorphic to
Z/3Z, Z/4Z, Z/5Z, Z/6Z, Z/7Z, Z/8Z, Z/2Z × Z/2Z, Z/2Z × Z/4Z
or Z/2Z × Z/6Z, either by constructing infinite families of elliptic curves
of higher rank or by sharpening the corresponding parametrisation. For
E(Q)tors isomorphic to Z/9Z, Z/10Z, Z/12Z or Z/2Z × Z/8Z, we will find
parametrisations by other elliptic curves of rank ≥ 1.

2.1. The case E(Q)tors = Z/2Z× Z/2Z
Theorem 2.1. Br(Z/2Z × Z/2Z,Q) ≥ 4. More precisely , there is an

infinite family of elliptic curves of rank at least four , with a torsion subgroup
over Q isomorphic to Z/2Z× Z/2Z and parametrised by Q(x1, x2, x3, x4).

Proof. We know that E is an elliptic curve defined over a field K with
a torsion subgroup isomorphic to Z/2Z× Z/2Z if and only if E has a cubic
model of the form

y2 = (x− α)(x− β)(x− γ) with α, β, γ ∈ K

(cf. (1.1.8)). Consider the curves

Ea,b : y2 = a(x2 + 1)2 + bx2 with a, b ∈ Q,
passing through a Q-rational point (x0, y0). It is easy to verify (cf. 1.2) that
these curves have a cubic model of the form

y2 = (x− α)(x− β)(x− γ)
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with

α = − (ax4
0 + 2ax2

0 + a− y2
0)(ax4

0 − 2ax2
0 − y2

0 + a)
x2

0y
4
0

,

β = −a(x0 − 1)2(x0 + 1)2(ax4
0 + 2ax2

0 + a− y2
0)

x2
0y

4
0

,

γ = −a(x2
0 + 1)2(ax4

0 − 2ax2
0 − y2

0 + a)
x2

0y
4
0

,

and thus, the curves Ea,b have a torsion subgroup defined over Q isomorphic
to Z/2Z× Z/2Z. In order to obtain such curves we will apply the following
method due to J.-F. Mestre [Mes1].

LetX,X1,X2,X3,X4 be five indeterminates and K=Q(X1,X2,X3,X4).
Let P ∈ K[X] be the polynomial P (X) =

∏4
i=1(X − Xi) = X4 + c3X

3 +
c2X

2 + c1X + c0. It may be written in a unique form as P = Q2 − R with
Q and R in K[X] such that Q(X) = X2 + d1X + d0 and R(X) = r1X + r2,
where d1, d0, r1, r2 ∈ Q. Indeed, we obtain the equality by setting d1 = c3/2,
d0 = (c2 − d2

1)/2, r1 = 2d1d0 − c1 and r2 = d2
0 − c0.

The rational fraction F1(x) = (x2 + 1)2/x2 is invariant under the action
of the group G1 of four homographies generated by x 7→ −x and x 7→ 1/x.
Let x1, x2, x3 and x4 be four indeterminates. If we set Xi = F1(xi) the
numerator of P (F1(x)) splits completely over Q(x1, x2, x3, x4). In this way,
we obtain the curve Er1,r2 satisfying the equation

y2 = r1(x2 + 1)2 + r2x
2

and passing through the points of abscissae x1, x2, x3 and x4 (and by their
conjugates) under the action of G1.

When we apply this method to the case where x1 = 2, x2 = 3, x3 = 4
and x4 = 5, we obtain the elliptic curve E satisfying the minimal equation

E : y2 + xy = x3 + ax+ b

with

a = −33266039859280269453163159675,

b = 1266432590907122115122625450016203315594257.

It has a torsion subgroup isomorphic to Z/2Z×Z/2Z generated by the points

P1 = (159074830970654,−79537415485327),

P2 = (−199067488994146, 99533744497073),

and passes through the following four independent points (images of the
points on Er1,r2 of x-coordinate x1 = 2, x2 = 3, x3 = 4 and x4 = 5):

Q1 = (−20566252547452, 1393517661684992475371),

Q2 = (360529885950854, 6011268744207477259073),
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Q3 = (34589314411754, 396442222829819164073),

Q4 = (32245757889364, 476731254985118349883).

The determinant of the Néron–Tate matrix is 1803.84 (computed with gp-
PARI), which completes the proof of Theorem 2.1.

2.2. The case E(Q)tors = Z/3Z

Theorem 2.2. Br(Z/3Z,Q) ≥ 6. More precisely , there is an infinite
family of elliptic curves of rank at least six , with a torsion subgroup over Q
isomorphic to Z/3Z and parametrised by Q(x1, x2, x3).

Proof. By (1.1.2), E is an elliptic curve defined over a field K with a
torsion subgroup over K isomorphic to Z/3Z if and only if E has a cubic
model of the form

y2 + a1xy + a3y = x3 with a1, a3 ∈ K.

Let X,X1,X2,X3 be four indeterminates and K = Q(X1,X2,X3). Let
P (X) = X

∏3
i=1(X − Xi) = X4 + c3X

3 + c2X
2 + c1X ∈ K[X]. Then

P = Q2−R for unique Q and R in K[X] such that Q(X) = X2 + d1X + d0

and R(X) = r1X + r2
2, where d1, d0, r1, r2 ∈ Q. Indeed, set d1 = c3/2,

d0 = (c2 − d2
1)/2, r1 = 2d1d0 − c1 and r2 = d0.

Consider the rational fractions

F2(x) =
x3

(x+ 1)2 , g2(x) = −1
4

(x2 + 3)3

(x− 1)2(x+ 1)2 ,

and three indeterminates x1, x2 and x3. By setting Xi = g2(xi), the numer-
ator of P (F2(x)) splits completely over Q(x1, x2, x3). In this way, we obtain
the curves

Er1,r2 : y2 = r1x
3 + r2

2(x+ 1)2

with a torsion subgroup defined over Q(x1, x2, x3) isomorphic to Z/3Z. They
have a cubic model of the form (cf. 1.2)

E′r1,r2 : y2 − 2r2xy − 2r1r2y = x3,

via
Er1,r2 → E′r1,r2 , (x, y) 7→ (r1x, r1(r2(x+ r1) + y)).

Moreover, they pass through the points whose x-coordinates are the roots
of F2(x)

∏3
i=1(F2(x)− g2(xi)).

If we apply this method in the case where x1 = 2, x2 = 4, and x3 = 6,
then we obtain the points P1, . . . , P6 of x-coordinates −7,−7/9,−19/9,
−19/25,−39/4,−39/49 (6 of the 9 roots of

∏3
i=1(F2(x)− g2(xi))).

We obtain the elliptic curve E of minimal equation

y2 + xy = x3 + ax+ b
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with

a = −78203520427419039841411467,

b = 259314050222853661276303764732312995569.

It has a torsion subgroup isomorphic to Z/3Z generated by the point

P = (7167424811990, 8185409686627009297),

and passes through the following six independent points (images of the
points P1, . . . , P6):

Q1 = (30967676391166/9, 150244968139101259355/27),

Q2 = (−5189102999442, 22921483484817715265),

Q3 = (7167424811990,−8185416854051821287),

Q4 = (52150295496478/9, 22921402664822970827/27),

Q5 = (145646473383006/25, 150244650474432388589/125),

Q6 = (5762455177454, 131221750961285185).

The determinant of the Néron–Tate matrix is 648532.73, which completes
the proof of Theorem 2.2.

2.3. The case E(Q)tors = Z/4Z
Theorem 2.3. Br(Z/4Z,Q) ≥ 3. More precisely , there is an infinite

family of elliptic curves of rank at least three, with a torsion subgroup over
Q isomorphic to Z/4Z and parametrised by Q(x1, x2, x3).

Proof. By (1.1.3), E is an elliptic curve defined over a field K with a
torsion subgroup over K isomorphic to Z/4Z if and only if E has a cubic
model of the form

y2 + xy − by = x3 − bx2 with b ∈ K.

We proceed as in Theorem 2.2, this time with the rational fraction F3(x) =
x2/(x− 1). If we set Xi = F3(xi), the numerator of P (F3(x)) splits com-
pletely over Q(x1, x2, x3). In this way, we obtain the curves

Er1,r2 : y2 = r1x
2(x− 1) + r2

2(x− 1)2

with a torsion subgroup defined over Q(x1, x2, x3) isomorphic to Z/4Z. In-
deed, they have a cubic model of the form (cf. 1.2)

E′r1,r2 : y2 − 2(x− b)y = x3 − bx2 with b = r1/r
2
2,

via
Er1,r2 → E′r1,r2 , (x, y) 7→ (bx, b(x− 1 + y/r2)).

Moreover, they pass through the points whose x-coordinates are the roots
of F2(x)

∏3
i=1(F2(x)− g2(xi)).
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Applying this method to the case where x1 = 3, x2 = 4, and x3 = 5, we
obtain the elliptic curve E of minimal equation

y2 + xy = x3 + ax+ b

with
a = −266721356141, b = 52307554376730321.

It has a torsion group isomorphic to Z/4Z generated by the point

P = (554026, 272839207),

and passes through the following three independent points (images of the
points on Er1,r2 of x-coordinates x1, x2 and x3):

Q1 = (249930, 35340231),

Q2 = (268936, 5139697),

Q3 = (211918, 72706027).

The determinant of the Néron–Tate matrix is 43.88, which completes the
proof of Theorem 2.3.

2.4. The case E(Q)tors = Z/5Z

Theorem 2.4. Br(Z/5Z,Q) ≥ 2. More precisely , there is an infinite
family of elliptic curves of rank at least two, with a torsion subgroup over Q
isomorphic to Z/5Z and parametrised by Q(t).

Proof. By (1.1.4), E is an elliptic curve defined over a field K with a
torsion subgroup over K isomorphic to Z/5Z if and only if E has a cubic
model of the form

Eb : y2 + (1− b)xy − by = x3 − bx2 with b ∈ K.

Set

b =
−(3t2 + 6t+ 4)(t2 + 6t+ 12)

(t− 2)2(t+ 2)2 ,

u =
−(8 + 8t+ t2)
(t− 2)(t+ 2)

,

v =
−(t2 + 6t+ 12)
(t− 2)(t+ 2)

.

We will show that the points P1 = (−1, u) and P2 = (v, v) are independent
in Eb(Q(t)). If t = 4, we obtain the elliptic curve E of minimal equation

y2 + y = x3 + x2 + ax+ b

with
a = −112845920, b = 461373286640.
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It has a torsion subgroup isomorphic to Z/5Z generated by the point

P = (6202, 10003),

and passes through the following two independent points (images of P1 and
P2):

Q1 = (6121, 3766), Q2 = (5851, 38083).

The determinant of the Néron–Tate matrix is 11.74, which completes the
proof of Theorem 2.4.

2.5. The case E(Q)tors = Z/6Z
Theorem 2.5. Br(Z/6Z,Q) ≥ 2. More precisely , there is an infinite

family of elliptic curves of rank at least two, with a torsion subgroup over Q
isomorphic to Z/6Z and parametrised by Q(t).

Proof. By (1.1.5), E is an elliptic curve defined over a field K with a
torsion subgroup over K isomorphic to Z/6Z if and only if E has a cubic
model of the form

Ec : y2 + (1− c)xy − (c+ c2)y = x3 − (c+ c2)x2 with c ∈ K.

Set

c =
4(t− 1)(−2t+ 1 + 2t2)

5− 8t+ 4t4
.

We will show that the points P1 and P2 of x-coordinate −c and ct respec-
tively are independent in Ec(Q(t)). If t = 2, we obtain the elliptic curve E
of minimal equation

y2 + xy = x3 + ax+ b

with
a = −1747020, b = 867156112.

It has a torsion subgroup isomorphic to Z/6Z generated by the point

P = (−396, 38888),

and passes through the following two independent points (images of P1

and P2):
Q1 = (−1456, 18748), Q2 = (1724, 53728).

The determinant of the Néron–Tate matrix is 6.47, which completes the
proof of Theorem 2.5.

2.6. The case E(Q)tors = Z/7Z
Theorem 2.6. Br(Z/7Z,Q) ≥ 1. More precisely , there is an infinite

family of elliptic curves of rank at least one, with a torsion subgroup over
Q isomorphic to Z/7Z and parametrised by Q(t).
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Proof. By (1.1.6), E is an elliptic curve defined over a field K with a
torsion subgroup over K isomorphic to Z/7Z, if and only if E has a cubic
model of the form

Ed : y2 + (1− c)xy − by = x3 − bx2

with b = d3 − d2, c = d2 − d and d ∈ K. Set

d =
−2(−3 + t)

3 + t2
.

The point of abscissa

−2(t− 1)(t+ 3)(t+ 1)(−3 + t)2

(3 + t2)3

is of infinite order in Ed(Q(t)) since it is not in Ed(Q(t))tors, except for a
finite set of rational values of t, which completes the proof of Theorem 2.6.

2.7. The case E(Q)tors = Z/8Z

Theorem 2.7. Br(Z/8Z,Q) ≥ 1. More precisely , there is an infinite
family of elliptic curves of rank at least one, with a torsion subgroup over
Q isomorphic to Z/8Z and parametrised by Q(t).

Proof. By (1.1.7), E is an elliptic curve defined over a field K with a
torsion subgroup over K isomorphic to Z/8Z if and only if E has a cubic
model of the form

Ed : y2 + (1− c)xy − by = x3 − bx2

with b = (2d − 1)(d − 1), c = (2d− 1)(d− 1)/d and d ∈ K. Set d =
(2− 2t+ t2)/(2 + t2).

The point of abscissa

−2t(2− 4t+ t2)(t2 − 2)
(2 + t2)2(2− 2t+ t2)

is of infinite order in Ed(Q(t)) since it is not in Ed(Q(t))tors, and Ed(Q(t))tors

is isomorphic to Z/2Z× Z/8Z only for a finite number of values of t, which
completes the proof of Theorem 2.7.

2.8. The case E(Q)tors = Z/2Z× Z/4Z
Theorem 2.8. Br(Z/2Z × Z/4Z,Q) ≥ 2. More precisely , there is an

infinite family of elliptic curves of rank at least two, with a torsion subgroup
over Q isomorphic to Z/2Z× Z/4Z and parametrised by Q(t1, t2, t3).

Proof. By (1.1.9), E is an elliptic curve defined over a field K with a
torsion subgroup over K isomorphic to Z/2Z× Z/4Z if and only if E has a
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cubic model of the form

Eu1,u2 : y2 = x(x+ u2
1)(x+ u2

2) with u1, u2 ∈ K.

Let x1, x2 ∈ Q. How could we find u1, u2, y1 and y2 in Q such that
(x2
i + u2

1)(x2
i + u2

2) = y2
i (i = 1, 2)?

If we consider Eu1,u2 as a conic in y and u2, it is easy to see that we can
answer this question by setting

u2 =
s2u1 − 2su2

1 − 2x2
1s+ u1x

2
1 + u3

1

s2 − x2
1 − u2

1
,

s =
1
2
x2

2x
2
1 + u4

1 + 2x2
2u

2
1

u1(x2
2 + u2

1)
.

In this manner, we construct an infinite family of elliptic curves

Eu1,u2 : y2 = x(x+ u2
1)(x+ u2

2)

with u2 ∈ Q(x1, x2, u1), and passing through the points with the x-coordin-
ate given by x2

1 and x2
2.

The points P1 and P2 with x-coordinates 4 and t2 are independent in
Et(Q(t)). If t = 5, we obtain the elliptic curve E satisfying the minimal
equation

y2 = x3 + ax2 + bx

with
a = 1866892562, b = 153388875753868561.

It has a torsion subgroup isomorphic to Z/2Z×Z/4Z generated by the points

R1 = (−86136961, 0), R2 = (391648919, 20162086350120)

and passes through the following two independent points (images of P1

and P2):

Q1 = (344547844, 17758857249370),

Q2 = (2153424025, 137744198443930).

The determinant of the Néron–Tate matrix is 112.65, which completes the
proof of Theorem 2.8.

2.9. The case E(Q)tors = Z/2Z× Z/6Z
Theorem 2.9. Br(Z/2Z × Z/6Z,Q) ≥ 1. More precisely , there is an

infinite family of elliptic curves of rank at least one, with a torsion subgroup
over Q isomorphic to Z/2Z× Z/6Z and parametrised by Q(t).

Proof. By (1.1.10), E is an elliptic curve defined over a field K with a
torsion subgroup over K isomorphic to Z/2Z× Z/6Z if and only if E has a
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cubic model of the form

Ex1,x2 : y2 = (x+ x2
1)(x+ x2

2)
(
x+

x2
1x

2
2

(x1 − x2)2

)
with x1, x2 ∈ K.

Set

x1 = − 1 + 2t
(t− 1)(t+ 1)

, x2 = x2
1.

The point whose x-coordinate is x3
1 is of infinite order in Ex1,x2(Q(t)) since

it is not in Ex1,x2(Q(t))tors, except for a finite number of rational values of
t, which completes the proof of Theorem 2.9.

2.10. The case E(Q)tors = Z/9Z. In the first section we found two
different parametrisations of elliptic curves defined over a field K with a
torsion subgroup over K isomorphic to Z/9Z:

Ef : y2 + (1− c)xy − by = (x3 − bx2)

with b = cd, c = fd− f and d = f(f − 1) + 1 (cf. (1.1.8)) and

Et : (32t2 − 8t)y2 + (−48t2 + 64t3 + 1)xy + t(4t− 1)y − 8tx3(4t− 1) = 0

(cf. (1.1.8′)). We consider the following elliptic curves:

E1 : y2 = (x− 2)(x3 − 4x2 + x− 2),

E2 : y2 = x(4x+ 1)(4x2 − 7x+ 1),

E3 : y2 = −(2x− 1)(32x2 − 2x− 1),

E4 : y2 = −(8x− 1)(4x− 1)(32x2 − 20x− 1).

The point (0, 2) (resp. (−1/4, 0), (1/4, 1/2), (1/8, 0)) is of infinite order in
E1(Q) (resp. E2(Q), E3(Q), E4(Q)) and hence E1 (resp. E2, E3, E4) has
rank ≥ 1 over Q.

Theorem 2.10. E1(Q), E2(Q), E3(Q) and E4(Q) parametrise elliptic
curves with a torsion subgroup over Q isomorphic to Z/9Z, of rank ≥ 1.

Proof. On Ef , [6](0, 0) = (u(f), v(f)) with

u(f) = f2(f − 1), v(f) = f4(f − 1)2.

Hence, if we set

p(x, y) = y2 + (1− c)xy − by − (x3 − bx2)

with b = cd, c = fd−f and d = f(f−1)+1, then the polynomial p(x, v(f))
vanishes at x = u(f). In this way, p(x, v(f))/(x− u(f)) is a polynomial of
degree 2 in x and splits in Q if and only if (f − 2)(f 3 − fx2 + f − 2) is a
square in Q, i.e. if and only if f is the abscissa of a point of E1(Q). The roots
of this polynomial are the x-coordinates of points of infinite order of Ef (Q).
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For E2, E3 and E4 we apply the same idea to Et with P =(t, 2t2/(4t−1)),

[4]P =
( −1

4(4t− 1)
,

−1
32t(4t− 1)

)
and [5]P =

( −1
4(4t− 1)

,
−1

2t(4t− 1)2

)

respectively.

2.11. The case E(Q)tors = Z/10Z. In the first section we found two
different parametrisations of elliptic curves defined over a field K with a
torsion subgroup over K isomorphic to Z/10Z:

Ef : y2 + (1− c)xy − by = (x3 − bx2)

with b = cd, c = fd− f and d = f 2/(f − (f − 1)2) (cf. (1.1.9)), and

Et : (t+ 1)2y2 + (2t2 + 2t+ 1 + 2t3)xy + t2(2t+ 1)y

− (t+ 1)2x3 − t2(2t+ 1)x2 = 0

(cf. (1.1.9′)). We consider the following elliptic curves:

E1 : y2 = (x− 2)(x+ 1)(x2 − 5x+ 2),

E2 : y2 = 2x3 + 2x2 + 2x+ 1,

E3 : y2 = (1− 3x− 4x2 + 4x3)(x+ 1),

E4 : y2 = 5x4 + 8x3 + 12x2 + 12x+ 4.

The point (−1, 0) (resp. (0, 1), (−1, 0), (−1, 1)) is of infinite order in E1(Q)
(resp. E2(Q), E3(Q), E4(Q)) and thus E1 (resp. E2, E3, E4) has rank ≥ 1
over Q.

Theorem 2.11. E1(Q), E2(Q), E3(Q) and E4(Q) parametrise elliptic
curves with a torsion subgroup over Q isomorphic to Z/10Z, of rank ≥ 1.

Proof. On Ef , [6](0, 0) = (u(f), v(f)) with

u(f) =
f2(2f − 1)(f − 1)
(−3f + f2 + 1)2 , v(f) =

−f2(2f − 1)2(f − 1)2

(−3f + f2 + 1)3 .

Hence, if we set

p(x, y) = y2 + (1− c)xy − by − (x3 − bx2)

with b = cd, c = fd − f and d = f 2/(f − (f − 1)2), then the polynomial
p(x, v(f)) vanishes at x = u(f). In this way, p(x, v(f))/(x− u(f)) is a poly-
nomial of degree 2 in x and splits in Q if and only if (f−2)(f+1)(f 2−5f+2)
is a square in Q, i.e. if and only if f is the x-coordinate of a point of E1(Q).
The roots of this polynomial are the x-coordinates of points of infinite order
of Ef (Q).

For E2, E3 and E4 we apply the same idea to Et with

[2]P =
(−t2(2t+ 1)

(t+ 1)2 ,
t4(2t+ 1)2

(t+ 1)4

)
,



354 L. Kulesz

[3]P =
(
t(2t+ 1)
t+ 1

,
t2(2t+ 1)2

(t+ 1)3

)
,

[5]P =
(
−t2, t4

t+ 1

)

respectively, where

P =
(−t2(2t+ 1)

(t+ 1)3 ,
−t3(2t+ 1)2

(t+ 1)5

)
.

2.12. The case E(Q)tors = Z/12Z. In the first section we parametrised
the elliptic curves defined over a field K with a torsion subgroup over K
isomorphic to Z/12Z, in the following way (cf. (1.1.10′)):

Et : x1y1(x1 + 1)y2 + (−y2
1x1 − 2x1y1 + x2

1x
2
1)xy

+x1(−y2
1 + x1x

2
1 + 2x1y1)y − x1y1(x1 + 1)x3 = 0

with x1 = −(t+ 1)(t2 − 2t+ 5)/8 and y1 = t(1− t2)/4.
We consider the following elliptic curve:

E1 : y2 = (x4 + 6x3 − 24x2 + 90x− 9).

The point (1, 8) is of infinite order in E1(Q) and thus E1 has rank ≥ 1
over Q.

Theorem 2.12.E1(Q) parametrises elliptic curves with a torsion sub-
group over Q isomorphic to Z/12Z, of rank ≥ 1.

Proof. On Et, [9](x1, y1) = (u(t), v(t)) with

u(t) =
1
4 (t2 − 2t+ 5)(t+ 1)2

(t− 1)2 , v(t) =
1
16 (t2 − 2t+ 5)2(t+ 1)4

(t− 1)4 .

Thus, if we set

p(x, y) = x1y1(x1 + 1)y2 + (−y2
1x1 − 2x1y1 + x2

1x
2
1)xy

+ x1(−y2
1 + x1x

2
1 + 2x1y1)y − x1y1(x1 + 1)x3,

with

b = (2d− 1)(d− 1), c =
(2d− 1)(d− 1)

d
, d =

−2(4 + t)
−8 + t2

,

the polynomial p(x, v(t)) vanishes at x = u(t). Hence, p(x, v(t))/(x− v(t))
is a polynomial of degree 2 in x and splits in Q if and only if t4 + 6t3 −
24t2 + 90t− 9 is a square in Q, i.e. if and only if t is the x-coordinate of a
point of E1(Q). The roots of this polynomial are the x-coordinates of points
of infinite order of Et(Q).
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2.13. The case E(Q)tors = Z/2Z × Z/8Z. In the first section we
parametrised the elliptic curves defined over a field K with a torsion sub-
group over K isomorphic to Z/12Z in the following way (cf. (1.1.13′)):

Et : y2 + (1− c)xy − by = x3 − bx2

with

b = (2d− 1)(d− 1), c =
(2d− 1)(d− 1)

d
, d =

−2(4 + t)
−8 + t2

.

Define the elliptic curve

E1 : y2 = −(x4 + 8x3 + 24x2 − 64).

The point (−2, 4) is of infinite order in the curve E1(Q) and hence E1 has
rank ≥ 1 over Q.

Theorem 2.13. Et(Q) parametrises elliptic curves with a torsion sub-
group over Q isomorphic to Z/2Z× Z/8Z, of rank ≥ 1.

Proof. On Et, [3](0, 0) = (u(t), v(t)) with

u(t) =
(8 + 4t+ t2)t(2 + t)

(−8 + t2)2 , v(t) =
− 1

2 t
2(2 + t)2(8 + 4t+ t2)2

(4 + t)(−8 + t2)3 .

Thus, if we let

p(x, y) = y2 + (1− c)xy − by − (x3 − bx2)

with

b = (2d− 1)(d− 1), c =
(2d− 1)(d− 1)

d
, d =

−2(4 + t)
−8 + t2

,

the polynomial p(x, v(t)) vanishes at x = u(t). It follows that the polynomial
p(x, v(t))/(x− u(t)) is of degree 2 in x and it splits in Q if and only if
−(t4 +8t3 +24t2−64) is a square in Q, i.e. if and only if t is the x-coordinate
of a point of E1(Q). The roots of this polynomial are the x-coordinates of
points of infinite order of Et(Q).
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