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1. Introduction. For a positive integer e ≥ 2, the Jacobi sums of order
e are algebraic integers in the cyclotomic field Q(ζe), where ζe = exp(2πi/e).
They are defined in terms of a finite field Fq with q = pr where q ≡ 1 (mod e),
p prime. (See Section 2.) Jacobi sums are important objects in the theory of
cyclotomy and their congruences have been studied by many authors. Ear-
lier authors (e.g. [4]) obtained congruences for Jacobi sums defined in terms
of Fp, p ≡ 1 (mod e), and later authors (e.g. [7]) considered q ≡ 1 (mod e).

(1) It is well known (see [4], [12]) that for Jacobi sums of odd prime
order l,

J(1, j)l ≡ −1 (mod (1− ζl)2).

This congruence also holds modulo (1− ζl)3. (See [9], [13].)
(2) Congruences for Jacobi sums of order 2l (l odd prime) were obtained

by V. V. Acharya and S. A. Katre [1]. They showed that

J(1, n)2l ≡ −ζm(n+1) (mod (1− ζl)2),

where n is an odd integer such that 1 ≤ n ≤ 2l − 3 and m = ind 2.
(3) A congruence for the Jacobi sum J(1, 1)9 of order 9 was obtained by

S. A. Katre and A. R. Rajwade [10]. They showed that

J(1, 1)9 ≡ −1− (ind 3)(1− ω) (mod (1− ζ9)4),

where ω = ζ3
9 .

(4) If k is an odd prime power > 3, then (see [8])

J(i, j)k ≡ −1 (mod (1− ζk)3).

R. J. Evans [7] generalised this result to all k > 2 by elementary
methods, getting sharper congruences in some cases, especially when
k > 8 is a power of 2.
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It may be noted that an element α coprime to l in the cyclotomic ring Z[ζl],
l prime, can be uniquely determined if we know its prime ideal decompo-
sition, absolute value and congruence modulo (1 − ζl)2. To determine an
element in the ring Z[ζl2 ] which is coprime to l, the congruence is required
modulo (1− ζl2)l+1. In this sense, the congruences in (1), (2) and (3) above
are appropriate congruences which determine the Jacobi sums.

In this paper (see Section 5) for q = pr ≡ 1 (mod l2), l > 3 and p primes,
we obtain congruences for Jacobi sums of order l2 modulo (1−ζ)l+1 in terms
of cyclotomic numbers of order l. These are the determining congruences for
Jacobi sums of order l2 and they sharpen the congruences in (4). In Section 6,
we obtain cyclotomic numbers of order l2 in terms of coefficients of Jacobi
sums of order l and l2.

2. Preliminaries. Let e be a positive integer ≥ 2 and q = pr ≡ 1
(mod e), p prime. Let Fq be a finite field with q elements. Write pr = q =
ef + 1. Let ζ be a complex primitive eth root of unity. If γ is a generator
of F∗q then define the multiplicative character χ : Fq → Q(ζ) by χ(γ) = ζ,
χ(0) = 0. Given a generator γ of F∗q define the Jacobi sum by

J(i, j) = J(i, j)e =
∑
v∈Fq

χi(v)χj(1 + v), 0 ≤ i, j ≤ e− 1.

Here χ0(0) = 0. Also, i and j can be considered modulo e, with the under-
standing that χi(0) = 0 for any integer i. Note that J(i, j)e ∈ Z[ζ], the ring
of integers of Q(ζ).

A variation of the Jacobi sum is defined as

J(χi, χj)e =
∑
v∈Fq

χi(v)χj(1− v), 0 ≤ i, j ≤ e− 1.

Observe that J(i, j)e= χi(−1)J(χi, χj)e. When q = 2r, χi(−1) = χi(1) = 1
and both the Jacobi sums coincide. Otherwise χi(−1) = (−1)if and hence
the two Jacobi sums differ at most in sign. For multiplicative characters χ
and ψ on Fq, J(χ, ψ) can be analogously defined. The prime ideal decom-
position of Jacobi sums is well-known. See [3, p. 346, Corollary 11.2.4] for
details.

In the following theorem we state some standard results about Jacobi
sums.

Theorem 2.1 (Elementary properties of Jacobi sums).

(1) If i and j are congruent to 0 modulo e then J(χi, χj)e = q − 2.
(2) If exactly one of i and j is congruent to 0 modulo e then J(χi, χj)e

= −1.



Jacobi sums and cyclotomic numbers 35

(3) If i is nonzero modulo e and i + j is congruent to 0 modulo e then
J(χi, χj)e = −χi(−1).

(4) J(χi, χj)e = J(χj , χi)e = χi(−1)J(χ−i−j , χi)e.
(5) If e divides neither i, j nor i+ j then |J(χi, χj)e| =

√
q.

Proof. See [4] for q = p and [14] for q = pr.

Remark. If f is even or q = 2r then J(i, j)e = J(χi, χj)e, so (4)
gives J(i, j)e = J(j, i)e = J(−i − j, j)e = J(j,−i − j)e = J(−i − j, i)e =
J(i,−i− j)e. In particular J(i, i)e = J(−2i, i)e = J(i,−2i)e.

3. Cyclotomy. Let γ, ζ and χ be as in Section 2. For 0 ≤ i, j ≤ e− 1
(i, j (mod e)), define the e2 cyclotomic numbers (i, j)e by (i, j)e = Card(Xij)
where

Xij = {v ∈ Fq | χ(v) = ζi, χ(v + 1) = ζj}
= {v ∈ Fq − {0,−1} | indγ v ≡ i (mod e), indγ(v + 1) ≡ j (mod e)}.

We state some basic properties of the cyclotomic numbers. (See [5] for q = p,
and [14]). For q = pr,

(i, j)e = (i′, j′)e if i ≡ i′ and j ≡ j′ (mod e).
(i, j)e = (e− i, j − i)e

=
{

(j, i)e if f is even or q = 2r,
(j + e/2, i+ e/2)e otherwise.

Thus if f is even or q = 2r with r ≥ 2 then

(i, j)e = (j, i)e = (i− j,−j)e = (j − i,−i)e(3.1)
= (−i, j − i)e = (−j, i− j)e.

For e odd > 3, the equation (3.1) partitions the e2 cyclotomic numbers
into classes (groups). (0, 0)e forms a singleton class. For 1 ≤ i ≤ e − 1,
(i, i)e, (0,−i)e, and (−i, 0)e form classes of three elements. The remaining
cyclotomic numbers are grouped into classes of six elements. (e = 3 is ex-
ceptional; (1, 2)3 = (2, 1)3 is a class of only two elements.) We also have the
following properties. For e ≥ 2,

(3.2)
e−1∑
i=0

(i, j)e =
{
f − 1 if j = 0,
f if 1 ≤ j ≤ e− 1.

If q = pr, p odd prime,

(3.3)
e−1∑
j=0

(i, j)e =


f − 1 if f is even and i = 0,
f − 1 if f is odd and i = e/2,
f otherwise.
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Also, if q = 2r then e is odd. In this case

(3.4)
e−1∑
j=0

(i, j)e =
{
f − 1 if i = 0,
f otherwise.

In any case,

(3.5)
e−1∑
i=0

e−1∑
j=0

(i, j)e = q − 2.

Let q = pr ≡ 1 (mod e) and d be any divisor of e. Write E = e/d. A cy-
clotomic number of order E can be expressed as the sum of d2 cyclotomic
numbers of order e by

(k, h)E =
d−1∑
r=0

d−1∑
s=0

(k + rE, h+ sE)e.(3.6)

See L. E. Dickson ([6, eq. (2)]) for q = p. We will use this formula in Section 5.

4. Relation between Jacobi sums and cyclotomic numbers. The
e2 Jacobi sums and the e2 cyclotomic numbers are related by∑

i

∑
j

ζ−(ai+bj)J(i, j)e = e2(a, b)e,(4.1)

∑
i

∑
j

(i, j)eζai+bj = J(a, b)e.(4.2)

Jacobi sums and cyclotomic numbers are related to Dickson–Hurwitz sums.
The latter are defined for i, j (mod e) by (for q = p, see [4])

B(i, j) = B(i, j)e =
e−1∑
h=0

(h, i− jh)e.(4.3)

They satisfy the relation B(i, j)e = B(i, e− j − i)e. Also,

(4.4) B(i, 0)e =
{
f − 1 if i = 0,
f if 1 ≤ i ≤ e− 1,

and

(4.5)
e−1∑
i=0

B(i, j)e = q − 2.

Dickson–Hurwitz sums and Jacobi sums J(χ, χj)e are related by (for q = p,
see [4])

χj(−1)J(χ, χj)e = χj(−1)χ(−1)J(1, j)e =
e−1∑
i=0

B(i, j)eζi.(4.6)

Hence if f is even or q = 2r then J(1, j)e =
∑e−1

i=0 B(i, j)eζi.



Jacobi sums and cyclotomic numbers 37

5. Congruences for Jacobi sums J(1, n)l2 of order l2. Let l ≥ 3 be
a prime and q = pr ≡ 1 (mod l2), p prime. Let Fq be a finite field with q
elements. Write q = l2f + 1 = lf ′ + 1. Hence f ′ ≡ 0 (mod l). Note also that
if p is an odd prime then f and f ′ are even. Let ζ be a complex primitive
l2th root of unity and ω = ζ l. Recall that (l) = (1− ζ)l(l−1), where (1− ζ) is
a prime ideal in the ring Z[ζ]. The following lemma determines an element
in the ring Z[ζ] uniquely.

Lemma 5.1. Let l be an odd rational prime and ζ be a complex primitive
l2th root of unity. If α, β ∈ Z[ζ] are coprime to (1− ζ) and

(i) (α) = (β),
(ii) |α| = |β|,

(iii) α ≡ β (mod (1− ζ)l+1),

then α = β.

Proof. (α) = (β) implies that α = βu, where u is a unit in Z[ζ]. Also
|α| = |β| gives uu = 1. Let u = f(ζ), a polynomial in ζ with coefficients
from Z. Therefore f(ζ)f(ζ) = 1 and hence f(ζi)f(ζi) = 1 for every i rela-
tively prime to l2. From this it follows that u is a root of unity. But the only
roots of unity in Z[ζ] are ±ζi. So u = ±ζi, 0 ≤ i ≤ l2 − 1. From condition
(iii), ±βζi ≡ β (mod (1− ζ)l+1). Hence

±ζi ≡ 1 (mod (1− ζ)l+1) (as gcd(β, (1− ζ)) = 1).

The − sign in the above congruence does not hold as 1+ζi ≡ 2 (mod (1−ζ)).
Hence ζi ≡ 1 (mod (1− ζ)l+1).

Now, by the binomial theorem, ζ l ≡ 1 + (ζ − 1)l (mod (1 − ζ)l+1).
Hence ζ l 6≡ 1 (mod (1 − ζ)l+1). However ζ l

2
= 1. Therefore the order of ζ

(mod (1− ζ)l+1) is l2. Hence i = 0. Thus the result follows.

From (4.6), the Jacobi sum J(1, n)l2 =
∑l(l−1)−1

i=0 bi,nζ
i (bi,n ∈ Z uniquely

determined) of order l2 is given in terms of Dickson–Hurwitz sums by

(5.1) J(1, n)l2 =
l2−1∑
i=0

B(i, n)l2ζ
i.

Here
(5.2) bi,n = B(i, n)l2 −B(l(l − 1) + j, n)l2 ,
where 0 ≤ j ≤ l − 1, and j ≡ i (mod l).

Lemma 5.2. Let 1 ≤ u ≤ l − 1 and 1 ≤ n ≤ l2 − 1. Write n = dl + n′,
0 ≤ n′ ≤ l − 1. Then

l−2∑
i=0

bli+u,n ≡ B(u, n′)l (mod l).

Further this sum is zero modulo l if gcd(l, n) = l.
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Proof. From (5.2),

l−2∑
i=0

bli+u,n =
l−2∑
i=0

B(li+ u, n)l2 − (l − 1)B(l(l − 1) + u, n)l2

≡
l−1∑
i=0

B(li+ u, n)l2 (mod l)

=
l−1∑
i=0

l2−1∑
a=0

(a, li+ u− an)l2

=
l−1∑
i=0

l−1∑
s,t=0

(ls+ t, li+ u− (ls+ t)n)l2

=
l−1∑
i=0

l−1∑
s,t=0

(ls+ t, l(i− sn) + u− nt)l2

=
l−1∑
t=0

l−1∑
s,i=0

(ls+ t, l(i− sn′ − dt) + u− n′t)l2

=
l−1∑
t=0

(t, u− n′t)l using (3.6)

= B(u, n′)l.

If gcd(l, n) = l then n′ = 0, and by (4.4), B(u, 0)l = f ′ ≡ 0 (mod l).

Lemma 5.3. Let l > 3 be a prime and 1 ≤ n ≤ l2− 1. Write n = dl+ n′

as before. For 1 ≤ h ≤ l − 1, let

λh = λh(n) =
[
n′h

l

]
+
[
−h(n′ + 1)

l

]
,

and for 1 ≤ h, k ≤ l − 1, h 6= k, let

λh,k = λh,k(n) =
[
h+ n′k

l

]
+
[
k + n′h

l

]
+
[
n′k − h(n′ + 1)

l

]
+
[
n′h− k(n′ + 1)

l

]
+
[
k − h(n′ + 1)

l

]
+
[
h− k(n′ + 1)

l

]
.

For a given n, λh,k depends only on the class of six elements (cf. (3.1)) to
which (h, k)l belongs. Define

S(n) :=
l−1∑
t=0

l−1∑
j=0

tB(lt+ j, n)l2 .
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Then

S(n) ≡
l−1∑
h=1

λh(h, 0)l +
∑
c

λh,k(h, k)l (mod l)

where
∑

c is taken over a set of representatives of classes of six elements
of cyclotomic numbers of order l, obtained in view of (3.1). Furthermore
S(n) ≡ 0 (mod l) if gcd(l, n) = l.

Proof. Let (a, b)l2 be a cyclotomic number of order l2. We count the
number of times (a, b)l2 appears in the expression for S(n), and consider
this count modulo l. If (a, b)l2 appears in S(n) (in some B(i, n)l2) then it is
of the form (h, i−nh)l2 for some 0 ≤ h, i ≤ l2−1. Therefore a ≡ h (mod l2)
and b ≡ i− nh (mod l2). Hence we see that b+ na ≡ i (mod l2).

Thus, (a, b)l2 = (h, i − nh)l2 comes from exactly one B(i, n)l2 and it is
counted as many times as B(i, n)l2 is counted in S(n), i.e. [i/l] times. As
[i/l] ≡ [(b+ na)/l] (mod l), (a, b)l2 is counted [(b+ na)/l] times (modulo l)
in S(n).

Case (i). Consider the cyclotomic number (lx, ly)l2 , where 0 ≤ x, y ≤
l−1. Now we count the number of times this cyclotomic number appears in
S(n) in all its different forms with respect to (3.1). (0, 0)l2 appears 0 times
in S(n).

Subcase (1). If x = y 6= 0 then (lx, ly)l2 forms a group of three, namely
(lx, lx)l2 = (0,−lx)l2 = (−lx, 0)l2 . Hence the number of times (lx, ly)l2 will
be counted in these three different forms in S(n) is

≡
[
lx+ nlx

l

]
+
[
−lxn
l

]
+
[
−lx
l

]
(mod l) ≡ 0 (mod l).

Subcase (2). If x 6= y, x, y 6= 0 then (lx, ly)l2 forms a group of six (cf.
(3.1)), viz.

(lx, ly)l2 = (l(x− y),−ly)l2 = (l(y − x),−lx)l2 = (ly, lx)l2
= (−ly, l(x− y))l2 = (−lx, l(y − x))l2 .

So the number of times this cyclotomic number will be counted in all its six
forms is

≡
[
lx+ nly

l

]
+
[

(x− y)l − nly
l

]
+
[
l(y − x)− nlx

l

]
+
[
ly + nlx

l

]
+
[
−ly + n(lx− ly)

l

]
+
[
−lx+ n(ly − lx)

l

]
(mod l) ≡ 0 (mod l).

This shows that the contribution to S(n) from all the cyclotomic num-
bers (lx, ly)l2 corresponding to the cyclotomic number (0, 0)l (cf. (3.6)) is 0
(mod l).
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Case (ii). Consider a cyclotomic number of the type (lx+h, ly)l2 where
1 ≤ h ≤ l−1 and is fixed, and 0 ≤ x, y ≤ l−1, together with two of its other
forms, viz. (l(y − x) − h,−h − lx)l2 and (−ly, l(x − y) + h)l2 . The number
of times (lx+ h, ly)l2 appears in S(n) in these three forms is

≡
[
ly + n(lx+ h)

l

]
+
[
−h− lx+ n(l(y − x)− h)

l

]
+
[
l(x− y) + h− ynl

l

]
(mod l)

≡
[
nh

l

]
+
[
−h(n+ 1)

l

]
(mod l)

≡ λh (mod l), putting n = dl + n′.

Note that if y 6= 0, by (3.1) there are six forms of (lx+h, ly)l2 , but we are
content with only three mentioned above. The other three forms correspond
to (l(x− y) +h,−ly)l2 . Hence the contribution to S(n) of (lx+h, ly)l2 with
two of its other forms as mentioned is λh(lx + h, ly)l2 (mod l). Hence the
total contribution of (lx+ h, ly)l2 , (lx− h, ly − h)l2 and (lx, ly + h)l2 for all
0 ≤ x, y ≤ l − 1 is ≡ λh(h, 0)l (mod l).

Case (iii). Let 1 ≤ h, k ≤ l − 1 with h 6= k be fixed. For any 0 ≤ x, y ≤
l−1 a cyclotomic number (lx+h, ly+k)l2 forms a group of six. Six different
forms of this cyclotomic number are

(lx+h, ly+k)l2 = (l(x−y) +h−k,−ly−k)l2 = (l(y−x) +k−h,−lx−h)l2

= (ly + k, lx+ h)l2 = (−ly − k, l(x− y) + h− k)l2

= (−lx− h, l(y − x) + k − h)l2 .

So the number of times this cyclotomic number is counted in all its six
different forms in S(n) is

≡
»
ly + k + n(lx+ h)

l

–
+

»
−ly − k + n(l(x− y) + h− k)

l

–
+

»
−lx− h+ n(l(y − x) + k − h)

l

–
+

»
lx+ h+ n(ly + k)

l

–
+

»
l(x− y) + h− k − n(ly + k)

l

–
+

»
l(y − x) + k − h− n(lx+ h)

l

–
(mod l)

=

»
k + nh

l

–
+

»
−k(n+ 1) + nh

l

–
+

»
−h(n+ 1) + nk

l

–
+

»
h+ nk

l

–
+

»
h− k(n+ 1)

l

–
+

»
k − h(n+ 1)

l

–
.

Putting n = dl + n′ we see that



Jacobi sums and cyclotomic numbers 41

λh,k =
[
h+ n′k

l

]
+
[
k + n′h

l

]
+
[
n′k − h(n′ + 1)

l

]
+
[
n′h− k(n′ + 1)

l

]
+
[
k − h(n′ + 1)

l

]
+
[
h− k(n′ + 1)

l

]
.

Hence the total contribution of (lx+ h, ly + k)l2 and of its five other forms
for 0 ≤ x, y ≤ l − 1 is

l−1∑
x,y=0

λh,k(lx+ h, ly + k)l2 = λh,k(h, k)l.

This ends Case (iii).
Hence by Cases (i)–(iii),

S(n) ≡
l−1∑
h=1

λh(h, 0)l +
∑
c

λh,k(h, k)l (mod l),

where
∑

c is taken over a set of representatives of classes of six elements of
cyclotomic numbers of order l, obtained from (3.1).

Now let n′ = 0, i.e. (l, n) = l. Then

λh =
[
n′h

l

]
+
[
−h(n′ + 1)

l

]
=
[
−h
l

]
= −1,

whereas

λh,k =
[
h+ n′k

l

]
+
[
k + n′h

l

]
+
[
n′k − h(n′ + 1)

l

]
+
[
n′h− k(n′ + 1)

l

]
+
[
k − h(n′ + 1)

l

]
+
[
h− k(n′ + 1)

l

]
=
[
h

l

]
+
[
k

l

]
+
[
−h
l

]
+
[
−k
l

]
+
[
k − h
l

]
+
[
h− k
l

]
= −3.

We use (3.2) and (3.5) to obtain

S(n) ≡ −
l−1∑
h=1

(h, 0)l − 3
∑
c

(h, k)l (mod l)

= 1 + (0, 0)l − f ′ −
1
2

∑
c

6(h, k)l

= 1− f ′ + (0, 0)l −
1
2

(
q − 2− (0, 0)l − 3

l−1∑
k=1

(k, 0)l
)

= 1− f ′ + (0, 0)l −
1
2

(q − 2− 3(f ′ − 1) + 2(0, 0)l)

=
1
2
f ′ − 1

2
(q − 1) ≡ 0 (mod l).

This completes the proof of the lemma.
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Consider the Jacobi sum of order l2, J(1, n)l2 =
∑l(l−1)−1

i=0 bi,nζ
i. Writing

it in powers of ζ − 1 we see that

J(1, n)l2 =
l(l−1)−1∑
i=0

c′i,n(ζ − 1)i where c′i,n =
l(l−1)−1∑
m=i

(
m

i

)
bm,n.

But from Y. Ihara [8, p. 81] (see also R. J. Evans [7]), J(1, n)l2 ≡ −1
(mod (1 − ζ)3). Therefore c′0,n ≡ −1 (mod l) and c′1,n ≡ c′2,n ≡ 0 (mod l).
Hence

J(1, n)l2 ≡ −1 +
l∑

i=3

c′i,n(ζ − 1)i (mod (1− ζ)l+1).

We shall now get congruences for c′i,n for 3 ≤ i ≤ l. Write m = lt + u,
0 ≤ u ≤ l − 1 and 0 ≤ t ≤ l − 2.

Case 1. Let 3 ≤ i ≤ l − 1. Then(
m

i

)
=
m(m− 1) · · · (m− i+ 1)

i!
≡ u(u− 1) · · · (u− i+ 1)

i!
=
(
u

i

)
(mod l),

where
(
u
i

)
= 0 for 0 ≤ u < i. Therefore

c′i,n ≡
l−1∑
u=i

[(
u

i

)( l−2∑
t=0

blt+u,n

)]
(mod l).

We apply Lemma 5.2 to obtain

c′i,n ≡
l−1∑
u=i

[(
u

i

)( l−2∑
t=0

blt+u,n

)]
≡

l−1∑
u=i

(
u

i

)
B(u, n′)l (mod l).

Define, for 3 ≤ i ≤ l − 1,

(5.3) ci,n :=
l−1∑
u=i

(
u

i

)
B(u, n′)l.

Thus c′i,n ≡ ci,n (mod l), 3 ≤ i ≤ l − 1.

Case 2. Let i = l. Then for m = lt+u as above,
(
m
l

)
≡ t (mod l). Using

this observation, from (5.2) we obtain

c′l,n =
l(l−1)−1∑
m=l

(
m

l

)
bm,n ≡

l−2∑
t=0

l−1∑
j=0

tblt+j,n (mod l)

=
l−2∑
t=0

l−1∑
j=0

t(B(lt+ j, n)l2 −B(l(l − 1) + j, n)l2)

=
l−2∑
t=0

l−1∑
j=0

tB(lt+ j, n)l2 −
( l−2∑
t=0

t
)( l−1∑

j=0

B(l(l − 1) + j, n)l2
)
.
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Now, −
∑l−2

t=0 t = −(l − 1)(l − 2)/2 ≡ l − 1 (mod l). Hence

c′l,n ≡
l−1∑
t=0

l−1∑
j=0

tB(lt+ j, n)l2 (mod l).

Let λh, λh,k and c be as in Lemma 5.3. Define, for i = l,

(5.4) cl,n :=
l−1∑
h=1

λh(h, 0)l +
∑
c

λh,k(h, k)l.

Then by Lemma 5.3,

c′l,n ≡
l−1∑
t=0

l−1∑
j=0

tB(lt+ j, n)l2 = S(n) ≡ cl,n (mod l).

Thus,

J(1, n)l2 ≡ −1 +
l∑

i=3

ci,n(ζ − 1)i (mod (1− ζ)l+1).

Furthermore, from Lemmas 5.2 and 5.3, if l |n then ci,n ≡ 0 (mod l) for
3 ≤ i ≤ l, and we get

J(1, n)l2 ≡ −1 (mod (1− ζ)l+1).

We conclude the above discussion in the following theorem.

Theorem 5.4. Let l > 3 be a prime and pr = q ≡ 1 (mod l2). If
1 ≤ n ≤ l2 − 1, then a (determining) congruence for J(1, n)l2 for a finite
field Fq is given by

J(1, n)l2 ≡

−1 +
l∑

i=3

ci,n(ζ − 1)i (mod (1− ζ)l+1) if gcd(l, n) = 1,

−1 (mod (1− ζ)l+1) if gcd(l, n) = l,
where for 3 ≤ i ≤ l − 1, ci,n are described by (5.3) and cl,n = S(n) is given
by Lemma 5.3.

Remark 1. Since Dickson–Hurwitz sums are sums of cyclotomic num-
bers, for 3 ≤ i ≤ l, ci,n are integral linear combinations of cyclotomic num-
bers of order l.

Remark 2. For a given l, the ci,n and hence the above congruence for
J(1, n)l2 depends only on n (mod l), i.e.

J(1, k)l2 ≡ J(1, l + k)l2 (mod (1− ζ)l+1).

Remark 3. For gcd(l, n) = l, the result in the theorem also follows from
the work of R. J. Evans ([7, Thm. 1]).

Remark 4. The absolute value of the Jacobi sum J(1, n)l2 (see Thm.
2.1(5)) and its prime ideal decomposition (see [3, p. 346, Corollary 11.2.4])
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are known. In view of Lemma 5.1, the congruence condition for J(1, n)l2
obtained in Thm. 5.4 together with the absolute value and prime ideal de-
composition gives an algebraic characterisation of J(1, n)l2 and hence of all
Jacobi sums of order l2.

Remark 5. Congruences for Jacobi sums of order l2 (mod (1 − ζ)l+1)
could be obtained in terms of cyclotomic numbers of order l. In the same
fashion it is expected that the determining congruences for Jacobi sums of
order lm, which are required modulo (1−ζ)l

m−1+1, can be obtained in terms
of cyclotomic numbers of order lm−1 (or of order lk, 1 ≤ k ≤ m−1). Also ap-
propriate congruences for Jacobi sums of order n may be obtained in terms
of cyclotomic numbers of orders d properly dividing n. These expectations
are consistent with the result of P. van Wamelen (2002) who gave an alge-
braic characterization of Jacobi sums of order n in terms of their absolute
value, prime ideal decomposition and the Jacobi sums of orders d properly
dividing n. (See [15].)

6. Cyclotomic numbers of order l2. Let l be an odd prime. In this
section we obtain formulae for the cyclotomic numbers (h, k)l2 of order l2

in terms of coefficients of the Jacobi sums of order l2 and l. Such formulae
for cyclotomic numbers of order l, and cyclotomic numbers of order 2l were
obtained by S. A. Katre and A. R. Rajwade [11], and V. V. Acharya and
S. A. Katre [1] respectively.

With the set up of Section 5, write Jacobi sums of order l as J(1, j)l =∑l−2
i=0 ai,jω

i, where ai,j ∈ Z. Let G′ = Gal(Q(ω)/Q) and G = Gal(Q(ζ)/Q).
We compute TrQ(ω)/Q(J(1, j)lω−t). Note that TrQ(ω)/Q(ω) = −1. Therefore,

TrQ(ω)/Q(J(1, j)lω−t) = TrQ(ω)/Q

( l−2∑
i=0

ai,jω
i−t
)

(6.1)

=
l−2∑
i=0

ai,j TrQ(ω)/Q(ωi−t) = lat,j −
l−2∑
i=0

ai,j .

Similarly, we compute TrQ(ζ)/Q(J(1, n)l2ζ−t). In this case, TrQ(ζ)/Q(ζ)
= 0, where ζ is any primitive l2th root of unity, while TrQ(ζ)/Q(ω) = −l. Let
B(i, n) = B(i, n)l2 . Therefore, we have

(6.2) TrQ(ζ)/Q(J(1, n)l2ζ
−t) = TrQ(ζ)/Q

( l2−1∑
i=0

B(i, n)ζi−t
)

=
l2−1∑
i=0

B(i, n) TrQ(ζ)/Q(ζi−t) = l(l − 1)B(t, n)− l
l−1∑
u=1

B(ul + t, n).
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Lemma 6.1. For t and n modulo l2, define

C(t, n) := l(l − 1)B(t, n)− l
l−1∑
u=1

B(ul + t, n).

Let 0 ≤ t ≤ l2 − 1. Write t = jl + s, where 0 ≤ j ≤ l − 1 and 0 ≤ s ≤ l − 1.
Then

C(t, n) = ε(t)bt,n − l
l−2∑
u=0

bul+t,n, where

ε(t) =
{
l2 if 0 ≤ j ≤ l − 2, i.e. 0 ≤ t < l(l − 1),
−l if j = l − 1, i.e. l(l − 1) ≤ t ≤ l2 − 1.

Proof. (i) Let 0 ≤ j ≤ l − 2. Then

C(t, n) = l(l − 1)B(t, n)− l
l−1∑
u=1

B(ul + t, n)

= l(l − 1)B(jl + s, n)− l
l−1∑
u=1

B((u+ j)l + s, n)

= l(l − 1)B(jl + s, n)− l(l − 1)B(l(l − 1) + s, n)

+ l(l − 2)B(l(l − 1) + s, n)− l
l−j−2∑
u=1

B((u+ j)l + s, n)

− l
l−1∑

u=l−j
B((u+ j)l + s, n)

= l(l − 1)(B(jl + s, n)−B(l(l − 1) + s, n))

− l
l−2−j∑
u=1

(B((u+ j)l + s, n)−B(l(l − 1) + s, n))

− l
l−1∑

u=l−j
(B((u+ j)l + s, n)−B(l(l − 1) + s, n)).

In the first sum put u+j = x, and in the second put u+j ≡ x (mod (l−1)).
Hence using (5.2) we get

C(t, n) = l(l − 1)(B(jl + s, n)−B(l(l − 1) + s, n))

− l
j−1∑
x=0

(B(xl + s, n)−B(l(l − 1) + s, n))

− l
l−2∑

x=j+1

(B(xl + s, n)−B(l(l − 1) + s, n))
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= l(l − 1)bjl+s,n − l
l−2∑

x=j+1

bxl+s,n − l
j−1∑
x=0

bxl+s,n

= l2bjl+s,n − l
l−2∑
x=0

bxl+s,n = l2bt,n − l
l−2∑
x=0

bxl+s,n.

For every u, we have ul+t ≡ xl+s (mod l(l−1)) for some x ∈ {0, . . . , l−2}.
Therefore

C(t, n) = l2bt,n − l
l−2∑
u=0

bul+t,n.

(ii) Let j = l − 1. Then

C(t, n) = l(l − 1)B(t, n)− l
l−1∑
u=1

B(ul + t, n)

= l(l − 1)B(l(l − 1) + s, n)− l
l−1∑
u=1

B((u− 1 + l)l + s, n)

= −l
l−1∑
u=1

(B((u− 1 + l)l + s, n)−B(l(l − 1) + s, n))

= −l
l−1∑
u=1

(B((u− 1)l + s, n)−B(l(l − 1) + s, n))

= −l
l−2∑
x=0

(B(xl + s, n)−B(l(l − 1) + s, n)).

Again, using (5.2),

C(t, n) = −l
l−2∑
x=0

bxl+s,n = −l
l−2∑
u=0

bul+t,n.

So from (i) and (ii) above we get

C(t, n) = ε(t)bt,n − l
l−2∑
u=0

bul+t,n, where(6.3)

ε(t) =
{
l2 if 0 ≤ j ≤ l − 2, i.e. 0 ≤ t < l(l − 1),
−l if j = l − 1, i.e. l(l − 1) ≤ t ≤ l2 − 1.

Now we observe that
(l2−1)/2∑
i=1

(ζ−it + ζit) =
{
l2 − 1 if t = 0,
−1 otherwise.
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Therefore,

(l2−1)/2∑
i=1

J(i, 0)(ζih + ζ−ih + ζ−ik + ζik + ζ−ih+ik + ζih−ik)

= −
(l2−1)/2∑
i=1

(ζih + ζ−ih)−
(l2−1)/2∑
i=1

(ζik + ζ−ik)−
(l2−1)/2∑
i=1

(ζih−ik + ζ−ih+ik)

= 3 + δ(h, k),

where δ(h, k) is given by

δ(h, k) =


−3l2 if h ≡ k ≡ 0 (mod l2),
−l2 if exactly one of h, k, h− k is ≡ 0 (mod l2),
0 if h, k, h− k 6≡ 0 (mod l2).

From (4.1), (6.1), (6.2) and Lemma 6.1 we get the following

Theorem 6.2. Let p be a prime and pr = q ≡ 1 (mod l2). Then the
cyclotomic numbers (h, k)l2 of order l2 are given in terms of coefficients of
the Jacobi sums of order l and order l2 by

l4(h, k)l2 = q + 1 + δ(h, k) + l
l−2∑
j=1

ah+jk,j −
l−2∑
j=1

l−2∑
i=0

ai,j − l
l2−2∑
j=1

l−2∑
u=0

bul+h+jk,j

− l
l−2∑
i=1

l−2∑
u=0

bul+hil+k,li+
l2−2∑
j=1

ε(h+ jk)bh+jk,j+
l−2∑
i=1

ε(hil+ k)bhil+k,li.

Proof. Write q = 1 + l2f . Now either f is even and q = pr, p odd; or f
is odd and q = 2r. Hence by the Remark in Section 2 we get

l4(h, k)l2 =
l2−1∑
i,j=0

J(i, j)l2ζ
−ih−jk (from (4.1))

= J(0, 0)l2 +
(l2−1)/2∑
i=1

J(i, 0)l2(ζih + ζ−ih + ζ−ik + ζik + ζ−ih+ik + ζih−ik)

+
l−2∑
j=1

∑
σ∈G′

σ(J(1, j)lω−h−jk) +
l2−2∑
j=1

∑
σ∈G

σ(J(1, j)l2ζ
−h−jk)

+
l−1∑
i=1

∑
σ∈G

σ(J(il, 1)l2ζ
−lih−k)
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= q + 1 + δ(h, k) +
l−2∑
j=1

TrQ(ω)/Q(J(1, j)lω−h−jk) (from above)

+
l2−2∑
j=1

TrQ(ζ)/Q(J(1, j)l2ζ
−h−jk) +

l−1∑
i=1

TrQ(ζ)/Q(J(1, li)l2ζ
−lih−k)

= q + 1 + δ(h, k) +
l−2∑
j=1

(
lah+jk,j −

l−2∑
i=0

ai,j

)
(from (6.1))

+
l2−2∑
j=1

TrQ(ζ)/Q

(l2−1∑
i=0

B(i, j)ζi−h−jk
)

+
l−1∑
i=1

TrQ(ζ)/Q

(l2−1∑
j=0

B(j, li)ζj−lih−k
)

= q + 1 + δ(h, k) + l

l−2∑
j=1

ah+jk,j −
l−2∑
i=0

l−2∑
j=1

ai,j

+
l2−2∑
j=1

TrQ(ζ)/Q

( l2−1∑
t=0

B(t+ h+ jk, j)ζt
)

+
l−1∑
i=1

TrQ(ζ)/Q

( l2−1∑
t=0

B(t+ lih+ k, li)ζt
)

= q + 1 + δ(h, k) + l

l−2∑
j=1

ah+jk,j −
l−2∑
j=1

l−2∑
i=0

ai,j

+
l2−2∑
j=1

[
l(l − 1)B(h+ jk, j)− l

l−1∑
x=1

B(xl + h+ jk, j)
]

+
l−1∑
i=1

[
l(l − 1)B(lih+ k, li)− l

l−1∑
x=1

B(xl + hil + k, li)
]

(from (6.2))

= q + 1 + δ(h, k) + l

l−2∑
j=1

ah+jk,j −
l−2∑
j=1

l−2∑
i=0

ai,j

+
l2−2∑
j=1

C(h+ jk, j) +
l−1∑
i=1

C(hil + k, li)

= q + 1 + δ(h, k) + l
l−2∑
j=1

ah+jk,j −
l−2∑
j=1

l−2∑
i=0

ai,j − l
l2−2∑
j=1

l−2∑
u=0

bul+h+jk,j

− l
l−2∑
i=1

l−2∑
u=0

bul+hil+k,li +
l2−2∑
j=1

ε(h+ jk)bh+jk,j +
l−2∑
i=1

ε(hil + k)bhil+k,li,

where the last equality is obtained using Lemma 6.1.
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Remark. For cyclotomic numbers of order 9 see also [2].
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