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1. Introduction. It has recently occurred to us that the main theorem
proved in the paper [DZ] actually admits a more precise formulation, which
in fact is contained in that proof. It is the purpose of this short note to state
this and, as a consequence, to state more precise versions of the results of the
paper [DTZ], which relied upon [DZ]. Also, we shall take this opportunity to
correct an inaccurate assertion made in Remark (ii) of [DTZ] (see Remark 1
below).

Before stating the main result, we recall the definition of upper and
lower asymptotic density of an increasing sequence A of natural numbers.
By abuse of language, in this paper we shall identify a sequence of natural
numbers with the corresponding subset of N; this is justified because we
consider only increasing sequences.

For such a sequence we put, for a real number t ≥ 0,

A(t) = {m ∈ A : m ≤ t}
and

d̄(A) = lim sup
t→∞

|A(t)|
t

, d(A) = lim inf
t→∞

|A(t)|
t

.

Theorem 1. Let F ∈ R[X,Y ] have degY F > 0. Assume that A is an
increasing sequence of natural numbers with d̄(A) > 0 such that there exists
a function y : A → Z satisfying

|F (a, y(a))| = o

(
sup

|ξ−y(a)|≤1

∣∣∣∣∂F∂Y (a, ξ)
∣∣∣∣).

Then there exist polynomials Q1, . . . , Qr ∈ Q[X] with r ≤ degY F and an
increasing sequence B ⊂ A such that:
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(i) d̄(A \ B) = 0.
(ii) For every b ∈ B there exists an index i ∈ {1, . . . , r} with y(b) =

Qi(b).

We proceed to state a corresponding sharpening of Theorem 2 of [DTZ];
not only do we give a more precise conclusion, but also we allow the poly-
nomials to have real coefficients, rather than rational.

Theorem 2. Let F ∈ R[X,Y ] be such that ∂F/∂Y is nonconstant and
such that, for every h ∈ R[X], F (X,Y +h(X)) is not a polynomial in Y only.
Assume that A is an increasing sequence of natural numbers with d̄(A) > 0
such that there exists a function y : A → Z satisfying |F (a, y(a))| = o(

√
a)

for every a ∈ A. Then there exist an increasing sequence B ⊂ A such that
d̄(A\B) = 0 and polynomials Q1, . . . , Qr ∈ Q[X] with r ≤ degY F satisfying:

(i) for all i = 1, . . . , r, F (X,Qi(X)) is a constant,
(ii) for every b ∈ B there exists i ∈ {1, . . . , r} with y(b) = Qi(b).

The nonconstancy assumptions did not appear in [DTZ, Theorem 2], but
it is very easy to see that they cannot be omitted in order that the present
sharpened conclusion holds.

Also, note that if F (X,Y + h(X)) is constant in X for some h ∈ R[X],
then the “algebraic function” solutions Y = ξ1(x), . . . , ξd(x) of F (x, Y ) = 0
are polynomials which satisfy ξi(x) = ξj(x) + cij for constants cij ∈ C, and
conversely.

Finally, we state a modification of Theorem 1 of [DTZ]. For this, we recall
a definition from [DTZ]. For a sequence A ⊂ N, a polynomial F ∈ R[X,Y ]
with degY F > 0, and a positive real number t, we put

SA,F (t) := max
x∈A(t)

min
y∈Z
|F (x, y)|.

We note that the minima are attained because F has positive degree in Y .
With this notation we have:

Theorem 3. Let F ∈ R[X,Y ] be such that ∂F/∂Y is nonconstant and,
for every h ∈ R[X], F (X,Y + h(X)) is not a polynomial in Y only. Let A
be a sequence with d(A) > 0. Then either SA,F (t)�

√
t for t→∞ or there

exist an increasing sequence B ⊂ A such that d(A \ B) = 0 and polynomials
Q1, . . . , Qr ∈ Q[X] with r ≤ degY F satisfying:

(i) for all i = 1, . . . , r, F (X,Qi(X)) is a constant,
(ii) for every b ∈ B and every integer l such that

|F (b, l)| = min
y∈Z
|F (b, y)|

there exists i ∈ {1, . . . , r} with l = Qi(b).
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Again, the nonconstancy assumptions did not appear in [DTZ, Theo-
rem 1]; however these assumptions cannot be omitted here, as is easy to see.
Also, in the cases where they are not both verified, the function SA,F (t) is
bounded independently of A (see the proof of the Corollary below), so we
have a tame behaviour. We leave to the interested reader the easy task of
finding an “explicit” description of SN,F (t) in such cases.

On the other hand, in the cases covered by Theorem 3, the conclusion is
more precise than [DTZ, Theorem 1], and also works for polynomials over R
rather than over Q (which was not the case in [DTZ]).

Finally, we note that both the assumption and the conclusion concern
lower density (unlike the previous statements).

Remark. In all the above three theorems, the assumption that the (up-
per or lower) density of A is positive may be omitted. In fact, if such a
density is zero, the conclusion turns out to be trivially satisfied in each case,
on taking B = ∅ and r = 0.

We have decided to leave the assumption to focus on the relevant cases
of the results.

We conclude this section with a corollary concerning the case A = N:

Corollary. Let F ∈ R[X,Y ]. Either SN,F (t)�
√
t or SN,F (t) = O(1).

2. Proofs. In all the proofs which follow we shall indicate only the
variations with respect to the arguments in [DZ], [DTZ]. We start with
Theorem 1.

Proof of Theorem 1. For large x ∈ C the roots of F (x, Y ) = 0 are
given by Puiseux expansions ρ1(x), . . . , ρD(x), where D = degY F . As in (5),
p. 193, of [DZ], the assumptions imply that

min
j
|y(a)− ρj(a)| → 0 for a ∈ A, a→∞.

Now, we may write the Puiseux series ρj(x) as Pj(x1/e) + δj(x−1/e), where
the Pj ∈ C[x], e = eF > 0 is an integer, and δj ∈ C[[x]] vanishes at 0. These
series converge for large x ∈ C, and the determinations of the roots x1/e are
irrelevant, since a change of determination merely permutes the series.

We now renumber the indices j = 1, . . . , D so that Pj ∈ Q[xe] precisely
for j = 1, . . . , r.

Next, we define Qj(x) = Pj(x1/e) for j = 1, . . . , r; note that Qj ∈ Q[x].
In [DZ, p. 194], it is proved that there exists a sequence A′ ⊂ A with
d̄(A′) = 0 such that, for all large b ∈ A \ A′,

min
i=1,...,r

|y(b)−Qi(b)| = 0.
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Let us now define A′′ by adding to A′ the finitely many b ∈ A \ A′ that do
not satisfy this formula. Then, putting B := A\A′′, we obtain precisely the
statement of Theorem 1.

Proof of Theorem 2. We follow [DTZ], and put

σ(a) = sup
|ξ−y(a)|≤1

∣∣∣∣∂F∂Y (a, ξ)
∣∣∣∣.

As in that paper (pp. 118, 119 up to l. −9), the key point is to prove
inequality (3) of p. 118, that is,

(1) σ(a)�
√
a for all large a ∈ A.

To prove this step, we reduce as in [DTZ] to the case when the second
coefficient of F with respect to Y vanishes. To do this, we choose h ∈ R[X]
such that F1(X,Y ) := F (X,Y + h(X)) has vanishing second coefficient,
replacing y(a) with y(a)−h(a). At this point we follow step-by-step the said
arguments of [DTZ, pp. 118–119]. (We note that the exceptional situations
of Case 2 in [DTZ, p. 119], i.e. ϕ0(X) constant or D = degY F = 1, in the
notation of [DTZ], do not occur here, in view of the present assumptions.)

Also, an inspection shows that these arguments of [DTZ] lead to inequal-
ity (1) independently of our present assumption that the y(a) are integers:
(1) also holds if they are arbitrary real numbers.

Now, combining inequality (1) with the assumption |F (a, y(a))| = o(
√
a),

we deduce

|F (a, y(a))| = o

(
sup

|ξ−y(a)|≤1

∣∣∣∣∂F∂Y (a, ξ)
∣∣∣∣) for a ∈ A.

It finally suffices to apply Theorem 1 to reach the desired conclusion.

Proof of Theorem 3. By assumption we have d(A) > 0, so there exists a
number c > 0 such that |A(t)| > ct for all large integers t.

Let us assume that the first alternative SA,F (t) �
√
t is not true; this

means that there exists an increasing infinite sequence of positive integers
t1 < t2 < · · · such that SA,F (tn) <

√
tn/n. In view of our definitions, this

means that for all large n we have

(2) max
x∈A(tn)

min
y∈Z
|F (x, y)| ≤

√
tn/n.

We now define A′ to be the union of the intersections of A with the
intervals [tn/n, tn]:

A′ :=
⋃
n∈N

(A ∩ [tn/n, tn]).

Let us first note that d(A\A′) = 0: in fact, note that in the interval [1, tn]
the sequence A′ has at least |A(tn)|− tn/n elements. Hence (A\A′)(tn) has
at most tn/n elements in that interval, which proves the claim.
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Let us also note that miny∈Z |F (a, y)| = o(
√
a) for a ∈ A′. In fact, first,

if a ∈ A′ then a lies in some set A ∩ [tn/n, tn], whence miny∈Z |F (a, y)| ≤
maxx∈A(tn) miny∈Z |F (x, y)| ≤

√
tn/n. On the other hand, a ≥ tn/n, so

tn ≤ na and we find (for a ∈ A′)

(3) min
y∈Z
|F (a, y)| ≤ 1

n

√
tn ≤

1√
n

√
a.

For a ∈ A′, let us now define M(a) to be the finite set of integers z such
that |F (a, z)| = miny∈Z |F (a, y)|. Note that |M(a)| ≤ 2D for all a ∈ A′,
except possibly for the finitely many a ∈ A′ for which F (a, Y ) is constant.

We may construct sequences (y1(a))a∈A′ , . . . , (y2D(a))a∈A′ with the prop-
erty that M(a) = {y1(a), . . . , y2D(a)} for all large a ∈ A′. (If necessary, here
we allow the same element of M(a) to appear more than once.)

Observe that, for each j = 1, . . . , 2D, we have |F (a, yj(a))| = o(
√
a) for

a ∈ A′, as follows from (3).
For each j = 1, . . . , 2D, we can therefore apply Theorem 2 with A′ in

place of A, and Yj(a) in place of y(a). We then obtain a sequence Bj with
the properties of the sequence B therein, so in particular d̄(A′ \ Bj) = 0.

Let us define B :=
⋂2D
j=1 Bj ; then d̄(A′ \ B) ≤

∑2D
j=1 d̄(A′ \ Bj).

Then, noting that d(A\B) ≤ d(A\A′)+d̄(A′\B), we obtain d(A\B) = 0,
proving claim (i) of Theorem 3.

We obtain the remaining assertion directly from Theorem 2(ii), and the
present construction of our sequences (yj(a)).

Proof of Corollary. Let us first assume that F does not satisfy the as-
sumptions of Theorem 3.

A first case occurs if ∂F/∂Y is constant, which means that F (X,Y ) =
cY +P (X), where c ∈ R and P ∈ R[X]. If c = 0 we have miny∈Z |F (x, y)| =
|P (x)|, hence SN,F (t) � tdegP , proving that we fall into one of the alterna-
tives in the conclusion. If c 6= 0, then miny∈Z |F (x, y)| is bounded by |c|, and
again we are done.

A second case occurs when, for some h ∈ R[X], F (X,Y +h(X)) = Q(Y )
is a polynomial in R[Y ]. Now miny∈Z |F (x, y)| is again bounded: it suffices
to note that F (x, [h(x)]) is bounded.

Finally, let us assume that F (X,Y ) satisfies the assumptions for Theo-
rem 3. Applying that theorem we find that either SN,F (t)�

√
t for t→∞

or there exist an increasing sequence B ⊂ N such that d̄(B) = 1 and poly-
nomials Q1, . . . , Qr ∈ Q[X] with r ≤ degY F such that:

(i) F (X,Qi(X)) is constant for all i,
(ii) for every b ∈ B and every integer l such that

|F (b, l)| = min
y∈Z
|F (b, y)|

there exists i ∈ {1, . . . , r} with l = Qi(b).
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From (ii) we infer that the set of integers m ∈ N such that there exists
an index i = 1, . . . , r with Qi(m) ∈ Z contains B. However this set is a
union of arithmetic progressions, and since d̄(B) = 1, we conclude that this
set equals N.

Now, for an integer m∈N let us pick i∈{1, . . . , r} with Qi(m)∈Z. Then
miny∈Z |F (m, y)| ≤ |F (m,Qi(m))|. However F (m,Qi(m)) depends only on i,
and hence is bounded independently of m, which in turn implies that SN,F (t)
is a bounded function.

3. Remarks. 1. We point out an inaccuracy in Remark (ii) of [DTZ],
which concerned Theorems 1 and 2 therein, and a polynomial f(x) such that
F (x, f(x)) is constant. We stated that this polynomial could be chosen to
take integral values on a sequence B ⊂ A such that d̄(A \ B) = 0. Such a
strong conclusion is false in general, as the following example shows:

We take A = Z, F (X,Y ) = (2Y −X)(2Y −X − 1). It is readily checked
that SZ,F (t) = 0 for every t. However for every polynomial f(x) which is
integral-valued on Z, clearly F (x, f(x)) is not constant.

The correct sharpening is given in the present Addendum, replacing a
single polynomial by a finite number of suitable ones.

In the case of the above example, the two polynomials f0(x) = x/2 and
f1(x) = (x + 1)/2 are such that: (i) for each integer x ∈ Z either f0(x) or
f1(x) is integral, and (ii) F (x, fi(x)) = 0 for i = 0, 1.

2. The arguments given for the proof of Theorem 2 (which originate in
[DTZ]) yield a comparison result between the quantities

sup
|ξ−y(a)|≤1

∣∣∣∣∂F∂Y (a, ξ)
∣∣∣∣ and min

F (a,η)=0
|y(a)− η|.

In fact, we have the following general statement:

Let f ∈ C[x] be a polynomial of degree d > 0, and for z ∈ C, define

q(z) :=
|f(z)|

sup|u−z|≤1 |f ′(u)|
.

Then, if q(z) ≤ (d2d)−1, we have

q(z)�d min
f(η)=0

|z − η| �d q(z)1/d.

The result expresses the fact that if a value f(z) is small compared to
the derivative in a neighbourhood, then z must be near to a root of f , and
conversely. The crucial point is that the implied constants do not depend
on the coefficients of f but only on its degree.

We omit the proof, which can be given by following the above arguments
in the proof of Theorem 2.
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3. The result of the Corollary is best possible in the sense that
√
t cannot

be replaced by a function which grows faster. This follows from the example
F (X,Y ) = Y 2 −X.
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