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Arithmetic progressions in sums of subsets of sparse sets

by

Tomasz Schoen (Poznań)

1. Introduction. Let A = {a1, . . . , ak} be a subset of integers. Denote
by

S(A) =
{ k∑
i=1

εiai : εi ∈ {0, 1}
}

the subsets sumset of A and let L(S) stand for the length of the longest
arithmetic progression in S. The problem of finding large arithmetic struc-
tures in S(A) (or generally in sumsets) is one of the most fundamental in
combinatorial number theory. It has been intensively studied, especially in
the case of sufficiently dense sets A ⊆ {1, . . . , n} (|A| ≥ nα for some α > 1/2;
see for example [1], [3], [4], [5]). A complete solution of this problem for sets
of polynomial size was given recently by Szemerédi and Vu in [6], [7] and [8].
They proved, among other things, that if A ⊆ [n] and |A| �d n

1/d, where
d ≥ 2 is a fixed integer, then

(1.1) L(S(A))�d |A|1+1/(d−1).

However, much less is known in the case of sparse sets, with |A| = no(1).
The only paper dealing with this question is [2], where the authors showed
that for every set A ⊆ {1, . . . , n} we have

L(S(A))� |A|/log2 n.

Actually, they proved that one can find an arithmetic progression of the
form a, 2a, . . . , La in S(A).

The aim of this note is to provide new estimates on L(S(A)) for sets
A ⊆ {1, . . . , n} of size no(1). First, we improve the bound of Erdős and
Sárközy by a log n factor. Then, we establish a bound for sets with at least
exp(log1/2+o(1) n) elements, which is very similar to (1.1). Finally, we also
provide some examples to show that our estimates are close to best possible.

2010 Mathematics Subject Classification: Primary 11B25; Secondary 11P99.
Key words and phrases: arithmetic progressions, sumsets.

DOI: 10.4064/aa147-3-7 [283] c© Instytut Matematyczny PAN, 2011



284 T. Schoen

We will use the following notation. For subsets of integers A,B we put
A + B = {a + b : a ∈ A, b ∈ B}. By log x we always mean loge x, where
e = 2.71 . . . is the Euler number. Furthermore, throughout the paper, we
assume that n is large enough if necessary.

2. Sparse sets. By a d-cube we mean any set of the form

C = C(x;x1, . . . , xd) =
{
x+

d∑
i=1

εixi : εi ∈ {0, 1}
}
,

where x, x1, . . . , xd ∈ Z. Observe that C = x + {0, x1} + · · · + {0, xd}. Our
approach is based on the following elementary lemma.

Lemma 2.1. Let A,B be finite sets of integers such that |A+B| ≤ K|A|.
If B contains a d-cube, then

L(A+B) ≥ d(K1/d − 1)−1e+ 1 ≥ d

(e− 1) logK
+ 1.

Proof. Suppose that C(x;x1, . . . , xd) ⊆ B and put T0 = A + x, Ti =
Ti−1 + {0, xi} for i = 1, . . . , d. We have

T0 ⊆ T1 ⊆ · · · ⊆ Td ⊆ A+B,

so that
|A| = |T0| ≤ |T1| ≤ · · · ≤ |Td| ≤ K|A|.

Hence, for some 0 ≤ j ≤ d− 1, |Tj+1| = |Tj + {0, xj+1}| ≤ K1/d|Tj |, so that

|(Tj + xj+1) ∩ Tj | ≥ (2−K1/d)|Tj |.

It is easy to see that if |(S+x)∩S| ≥ (1− δ)|S|, then there is an arithmetic
progression in S of length d1/δe and common difference x. Thus, L(Tj) ≥
d(K1/d − 1)−1e and

L(A+B) ≥ L(Tj+1) ≥ d(K1/d − 1)−1e+ 1.

If d ≥ logK, then

K1/d ≤ 1 +
logK
d

∑
i≥1

1
i!

= 1 + (e− 1)
logK
d

,

and the assertion follows.

Now we can improve the bound of Erdős and Sárközy.

Corollary 2.2. If A ⊆ {1, . . . , n}, then

L(S(A)) ≥ |A|
4(e− 1) log n

.
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Proof. Observe that S(A) ⊆ [n2] and C(a1; a2, . . . , ak) ⊆ S(A), where
A = {a1, . . . , ak}. Put

C1 = {0} and C2 = C(a1; a2, . . . , ak).

Clearly, C1 + C2 ⊆ S(A), so that

|C1 + C2| = |C2| |C1| ≤ |S(A)| |C1| ≤ n2|C1|.
By Lemma 2.1 applied with A = C1, B = C2 and K = n2 we have

L(S(A)) ≥ L(C) ≥ d(C2)
2(e− 1) log n2

+ 1 ≥ |A|
4(e− 1) log n

.

The set of powers of 3 contained in {1, . . . , n} shows that in general
one cannot improve the bound given by Corollary 2.2. However, in the next
section, we show that this is possible for sufficiently dense sets.

3. Sets of size at least e(logn)1/2+o(1)
. We start with a version of Lemma

2.1 more suitable for our purpose.

Lemma 3.1. Suppose that A ⊆ {1, . . . , n} and |A| ≥ 100 log n. Then
there exists a subset A1 of A such that |A1|≥|A|/2 and for any x1, . . . , xh∈A1

and any integers i1, . . . , ih there is an arithmetic progression in S(A \ A1)
of length |A|(10 log n)−1(

∑
j |ij |)−1 and common difference

∑
j ijxj.

Proof. We define a set B = {a1, . . . , al} ⊆ A recursively in the following
way. Let a1 ∈ A be arbitrary. Suppose that Bi = {a1, . . . , ai} has already
been chosen. If there is ai+1 ∈ A \ {a1, . . . , ai} such that

(3.1) |S(Bi ∪ {ai+1})| ≥ (1 + 5|A|−1 log n)|S(Bi)|,
then we define Bi+1 = {a1, . . . , ai+1}. If such an element does not exist, we
stop the algorithm putting B = Bi. We have to prove that this procedure
terminates after at most |A|/2 steps. Clearly, for each i,

|S(Bi)| ≥ (1 + 5|A|−1 log n)i−1.

Thus, using the inequality (1 + 1/t)t+1/2 > e for t > 0, we see that

|S(Bi)| ≥ e
5(i−1) log n
|A|+2 log n .

On the other hand |S(Bi)| ≤ |S(A)| ≤ n2, so that l ≤ |A|/2. We show
that our assertion holds for A1 = A \ B. Suppose that x1, . . . , xh ∈ A1 and
i1, . . . , ih ∈ Z. By (3.1), for every 1 ≤ j ≤ h we have

|S(B) ∩ (S(B) + xj)| ≥ (1− 10|A|−1 log n)|S(B)|,
hence∣∣∣S(B) ∩

(
S(B) +

∑
j

ijxj

)∣∣∣ ≥ (1− 10|A|−1
∑
j

|ij | log n
)
|S(B)|,
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so S(B) contains an arithmetic progression of length |A|(8
∑

j |ij | log n)−1

and common difference
∑

j ijxj .

Now we are ready to prove the main result of this section.

Theorem 3.2. Suppose that A ⊆ {1, . . . , n} and |A| ≥ 8(n/log n)1/d,

where 0 < d ≤
√

logn
2 log logn is an integer. Then

L(S(A)) ≥ 2−10(|A|/log n)1+1/d.

Proof. Let A1 and A2 be the sets given by Lemma 3.1 applied for A
and A1, respectively. We have |A1| ≥ |A|/2 and |A2| ≥ |A|/4.

Put t = b(|A|/log n)1/dc. By hypothesis it follows that t ≥ 2. We show
that the equation

(3.2) x0 + tx1 + · · ·+ tdxd = y0 + ty1 + · · ·+ tdyd

can be nontrivially (this means xi 6= yi for some i) solved in A2. In-
deed, all sums x1 + tx2 + · · · + tdxd+1, xi ∈ A2, are less than 2tdn. Since
|A2|d+1 ≥ 2tdn two among them are equal, giving a nontrivial solution
x0, . . . , xd, y0, . . . , yd ∈ A2. Denote by i the largest index 0 ≤ j ≤ d such
that xj 6= yj . Then

ti(xi − yi) = (y1 − x1) + · · ·+ ti−1(yi−1 − xi−1) 6= 0.

Put b = xi − yi and c = (y0 − x0) + · · ·+ ti−1(yi−1 − xi−1). By Lemma 3.1,
S(A \A1) contains an arithmetic progression P1 of length |A1|/(20 log n) ≥
|A|/(40 log n) and common difference b, and S(A1 \ A2) contains an arith-
metic progression P2 of length

|A2|/(10(1 + t+ · · ·+ ti−1) log n) ≥ |A|/(80ti−1 log n)

and common difference c. As tb = c, P1 + P2 is an arithmetic progression
of length at least 2−9t|A|/log n ≥ 2−10(|A|/log n)1+1/d and common differ-
ence b. The assertion follows from the inclusion

P1 + P2 ⊆ S(A \A1) + S(A1 \A2) ⊆ S(A).

Using the same argument one can prove an analogous result for Z/pZ.
An improvement relies on the fact that the equation (3.2) can be solved in
Z/pZ in sparser subsets.

Theorem 3.3. Let A ⊆ Z/pZ and |A| ≥ 8(p/log p)1/d, where 0 < d ≤√
log p

2 log log p is an integer. Then

L(S(A)) ≥ 2−10(|A|/log p)1+1/(d−1).

4. A construction of sets with small L(S(A)). We prove here that
bounds given by Corollary 2.2 and Theorem 3.2 are near optimal. First, we
observe that an example of sets given by Szemerédi and Vu can be applied
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for all d�
√

log n. We recall briefly their construction. Let n, d,m ∈ N with
2md ≤ n1/d and set

P =
{ d−1∑
i=0

xi(2md+1)i : 1 ≤ xi ≤ m
}
.

Thus,

S(P ) ⊆
{ d−1∑
i=0

xi(2md+1)i : 1 ≤ xi ≤ md+1
}
.

Clearly P ⊆ {1, . . . , n} is a d-dimensional, proper generalized arithmetic
progression, hence |P | = md and S(P ) is 2-Freiman isomorphic (see [9]) to
a subset of [md+1]d, so that L(S(P )) ≤ md+1 = |P |1+1/d. In particular, for
every k there is a subset of {1, . . . , 2k2} of size 2k−1 containing an arithmetic
progression of length at most 2k in its subsets sumset. Now, we adapt this
construction to sparser sets.

Theorem 4.1. For every positive integer n and 100 log n≤ t ≤ 2
√

log2 n−1

there is a set A ⊆ {1, . . . , n} such that |A| = t and

L(S(A)) ≤ 10
|A|

log2 n

(
log2

|A|
log2 n

)2

.

Proof. Put

K =
10t

log2 n

(
log2

t

log2 n

)2

and k = blogKc.

By the construction above, there is a set X ⊆ {1, . . . , 2k2} such that |X| =
2k−1 and L(S(X)) ≤ 2k. Let A consist of all numbers of the form x2i(k

2+k),
where x ∈ X and 0 ≤ i ≤ l = blog2 n/(k2 + k)− 1c. Clearly, A ⊆ {1, . . . , n}
and

|A| = (l + 1)2k−1 ≥ log2 n

4 log2
2K

10t
log2 n

(
log2

t

log2 n

)2

≥ t.

Observe that

S(A) =
{ l∑
i=0

x2i(k
2+k) : x ∈ S(X)

}
.

Therefore, from
∑

x∈X x < 2k
2+k−1, we deduce that S(A) is 2-Freiman iso-

morphic to S(X)× · · · × S(X) (l + 1 times), hence

L(S(A)) = L(S(X)) ≤ 2k ≤ K =
10t

log2 n

(
log2

t

log2 n

)2

,

and the assertion follows.
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5. Concluding remarks. The bound (1.1) of Szemerédi and Vu and
the examples above support the claim that our estimates are not optimal.
One would like to replace d by d−1 and remove the log n factor in Theorem
3.2. It also seems that Corollary 2.2 is not best possible for sets of size
ω(n) log n if ω(n)→∞ as n→∞. Essentially there are two places where our
argument could be refined. More specifically, the results can be strengthen
provided we can solve any of the following three problems.

Problem 5.1. Is it true that for every A ⊆ [n], there is a subset A′ ⊆ A
of size (roughly) |A|/2 such that

|S(A′)| � |S(A)|1−ε,
where ε→ 0 as |A|/log n→∞?

If we can answer the above question in the affirmative, then by Lemma
2.1 applied with S(A′), S(A \A′) and K = |S(A)|ε we have

|S(A′) + S(A \A′)| ≤ |S(A)| � K|S(A′)|,
so

L(S(A′))� |A|/(ε log n),

which improves Corollary 2.2. It would even be sufficient for us if the fol-
lowing weaker question had a positive answer.

Problem 5.2. Is it true that for every set A there is a subset B ⊆ A
with |B| ≥ |A|/2 having the property described in Problem 5.1?

Probably one can also replace d by d − 1. To do it one has to find a
more efficient argument than the one we used, based on solutions to a linear
equation. This could be done if the following question had a positive answer.

Problem 5.3. Is it true that there exists an absolute constant C > 0
such that for every set A ⊆ [n] with |A| > Cn1/d (we may allow C to depend
at most exponentially on d) there are a1, . . . , au, b1, . . . , bv ∈ ±A and M ∈ Z
such that

M
u∑
i=1

ai =
v∑
j=1

bj 6= 0

and |A|/u > M > |A|1/(d−1)v?
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[2] P. Erdős and A. Sárközy, Arithmetic progressions in subset sums, Discrete Math. 102
(1992), 249–264.

[3] G. Freiman, New analytical results in subset-sum problem, ibid. 114 (1993), 205–217.
[4] E. Lipkin, On representation of rth powers by subset sums, Acta Arith. 52 (1989),

353–365.
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