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The Brauer–Manin obstruction on a general diagonal
quartic surface
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1. Introduction. Our object of study is the diagonal quartic surface
X ⊂ P3

Q defined by the equation

(1.1) a0X
4
0 + a1X

4
1 + a2X

4
2 + a3X

4
3 = 0

where a0, a1, a2, a3 ∈ Q are non-zero rational coefficients.
Multiplying the equation (1.1) through by a constant, permuting the

coefficients, or changing any of the coefficients by a fourth power gives rise
to another equation defining a surface which is clearly isomorphic (over Q) to
the original one. Two diagonal quartic equations related by such operations
will be called equivalent. In particular, after replacing X with an equivalent
surface, we may assume that the coefficients ai are integers with no common
factor, and that none of them is divisible by a fourth power.

When we talk about the reduction of X modulo some prime p, we mean
simply the variety in P3

Fp
defined by reducing the equation (1.1) modulo p.

Suppose that p is odd. Then, according to the number of coefficients divisible
by p, the reduction at p will be either: a smooth diagonal quartic surface;
a cone over a smooth diagonal quartic curve; (geometrically) a union of four
planes; or a quadruple plane.

Theorem 1.1. LetX be the diagonal quartic surface over Q given by (1.1),
and let H be the subgroup of Q×/(Q×)4 generated by −1, 4 and the quotients
ai/aj. Suppose that the following conditions are satisfied:

(i) X(Qv) 6= ∅ for all places v of Q;
(ii) H ∩ {2, 3, 5} = ∅;

(iii) |H| = 256;

2010 Mathematics Subject Classification: Primary 11D25; Secondary 11G35, 14G25.
Key words and phrases: Brauer–Manin obstruction, quartic surface, K3 surface.

DOI: 10.4064/aa147-3-8 [291] c© Instytut Matematyczny PAN, 2011



292 M. Bright

(iv) there is some odd prime p which divides precisely one of the co-
efficients ai, and does so to an odd power; assume further that if
p ∈ {7, 11, 17, 41}, then the reduction of X modulo p is not equiva-
lent to x4 + y4 + z4 = 0.

Then BrX/Br Q has order 2, and there is no Brauer–Manin obstruction to
the existence of rational points on X.

Remark. It is easy to check that the group H may also be generated
by −1, 4 and ai/a0 (i = 1, 2, 3). It follows that H has order dividing 256.

Theorem 1.1 combines several ingredients, many of which are already
known. The deepest part is the result, due to Ieronymou, Skorobogatov and
Zarhin [5], that condition (ii) above implies the vanishing of the transcen-
dental part of the Brauer group of X, meaning that BrX = Br1X. The
calculation that, under condition (iii) above, Br1X/Br Q has order 2 can be
found in the tables contained in the author’s thesis [1]. The new ingredients
in the present article are a more geometric description of the non-trivial
class of Azumaya algebras on X and a proof that these algebras, under
condition (iv) above, give no obstruction to the existence of rational points
on X.

1.1. Background. Let us recall the definition of the Brauer–Manin
obstruction; see Skorobogatov’s book [8] for more details. Fix a number
field k and a smooth, projective, geometrically irreducible variety X over k.
We define the Brauer group of X to be BrX = H2

ét(X,Gm). If K is any field
containing k, and P ∈ X(K) a K-point of X, then there is an evaluation
homomorphism BrX → BrK, A 7→ A(P ), which is the natural map coming
from the morphism P : SpecK → X. In particular, this applies if K = kv
is a completion of k.

As X is projective, the set of adelic points of X is X(Ak) =
∏
vX(kv),

the product being over all places of k. The set X(Ak) is non-empty precisely
when each X(kv) is non-empty, that is, X has points over every completion
of k. Let invv : Br kv → Q/Z be the invariant map. Define the following
subset of the adelic points:

X(Ak)Br =
{

(Pv) ∈ X(Ak)
∣∣∣ ∑

v

invvA(Pv) = 0 for all A ∈ BrX
}

.

Suppose that X(Ak) is non-empty. By class field theory, the diagonal image
of X(k) is contained in X(Ak)Br; if in fact X(Ak)Br is empty, then we say
there is a Brauer–Manin obstruction to the existence of k-rational points
on X.

Let X̄ denote the base change of X to an algebraic closure k̄ of k. There
is a natural filtration on BrX, given by Br0X ⊆ Br1X ⊆ BrX, where



A general diagonal quartic surface 293

• Br0X = im(Br k → BrX) consists of the constant classes in BrX;
• Br1X = ker(BrX → Br X̄) is the algebraic part of the Brauer group,

consisting of those classes which are split by base change to k̄.

If X(Ak) 6= ∅, then the natural homomorphism Br k → BrX is injective,
and we will think of Br k as being contained in BrX. The elements of Br k do
not contribute to the Brauer–Manin obstruction, so in describing X(Ak)Br

it is enough to consider the quotient BrX/Br k.
Elements of BrX \ Br1X are called transcendental. For certain types

of varieties X, we know that Br X̄ = 0 and therefore that BrX is entirely
algebraic: this is true in particular if X is a curve or a rational surface. It is,
however, certainly not true if X is a K3 surface, such as our diagonal quartic
surface. The transcendental part of the Brauer group of a diagonal quartic
surface has been studied by Ieronymou [4] and by Ieronymou, Skorobogatov
and Zarhin [5]. The algebraic part of the Brauer group of a diagonal quartic
surface has been studied by the present author [1, 2].

1.2. Outline of the proof. We will now describe an outline of the
proof of Theorem 1.1, with the details postponed to Section 2. As mentioned
above, the first ingredient is the following result of Ieronymou, Skorobogatov
and Zarhin.

Theorem 1.2 ([5, Corollary 3.3]). Let X and H be as in the introduc-
tion, and suppose that H ∩ {2, 3, 5} = ∅. Then BrX = Br1X.

So any Brauer–Manin obstruction onX comes entirely from the algebraic
Brauer group. The structure of Br1X/Br Q as an abstract group can be
computed using the isomorphism

Br1X/Br Q ∼= H1(Q,Pic X̄).

In the case of diagonal quartic surfaces, Pic X̄ is generated by the classes
of the obvious 48 straight lines on X̄, and condition (iii) of Theorem 1.1
ensures that the Galois action on these lines is the most general possible.
Lemma 2.2 below shows that Br1X/Br Q is of order 2.

It remains to compute the Brauer–Manin obstruction coming from the
non-trivial class in Br1X/Br Q. In Lemma 2.1, we describe explicitly an Azu-
maya algebra A which may be defined on any diagonal quartic surface (1.1)
for which a0a1a2a3 is not a square. Condition (iii) implies in particular that
a0a1a2a3 is non-square, so the algebra A is defined on our particular surface.

The proof is completed by Lemma 2.3. This states that, given a prime p
satisfying condition (iv) of Theorem 1.1, the Azumaya algebra A, evaluated
at different points of X(Qp), gives invariants of both 0 and 1/2. In particular,
A is not equivalent to a constant algebra, and provides no obstruction to
the existence of rational points on X.
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2. The algebraic Brauer–Manin obstruction. In this section we
describe an explicit Azumaya algebra on our diagonal quartic surface. For
this purpose we may replace Q by an arbitrary number field k. Let X ⊂ P3

k
be the diagonal quartic surface (1.1), and let Y ⊂ P3

k be the smooth quadric
surface defined by

a0Y
2

0 + a1Y
2

1 + a2Y
2

2 + a3Y
2

3 = 0.

There is a morphism φ : X → Y given by Yi = X2
i . If X is everywhere

locally soluble, then so is Y ; and, since Y is a quadric, it follows that Y has
a k-rational point.

Lemma 2.1. Suppose that X is everywhere locally soluble. Pick a point
P = [y0, y1, y2, y3] ∈ Y (k), and let g ∈ k[Y0, Y1, Y2, Y3] be the linear form

g = a0y0Y0 + a1y1Y1 + a2y2Y2 + a3y3Y3

defining the tangent plane to Y at P . Let

(2.1) f = φ∗g = a0y0X
2
0 + a1y1X

2
1 + a2y2X

2
2 + a3y3X

2
3

be the quadratic form obtained by pulling g back to X. Write θ = a0a1a2a3.
Then the quaternion algebra A = (θ, f/X2

0 ) ∈ Br k(X) is an Azumaya alge-
bra on X. The class of A in BrX/Br k is independent of the choice of P .

Remark. Since f is a quadratic form on X and not a rational function,
we divide it by X2

0 to obtain an element of k(X)×. As always, when defining
a quaternion algebra over a field, (a, b) and (a, bc2) give isomorphic algebras.
So the choice of X0 here is completely arbitrary; we could replace it with
any other Xi or indeed any linear form.

Remark. The coordinates of the point P , and therefore the linear form g,
are only defined up to multiplication by a scalar. So the point P only deter-
mines the algebra A up to an element of Br k.

Remark. The idea of obtaining an Azumaya algebra by pulling back in
this way is not new: see, for example, Section 7 of [6] for examples on del
Pezzo surfaces of degree 2. The construction there similarly involves pulling
back a quaternion algebra from a quadric.

Proof of Lemma 2.1. If θ is a square in k, then A is isomorphic to the
algebra of 2 × 2 matrices over k(X), and the conclusions are trivially true.
So suppose that θ is not a square in k.

As described for example in [9, Lemma 11], to show thatA is an Azumaya
algebra we need to show that the principal divisor (f/X2

0 ) is the norm of a
divisor on X defined over k(

√
θ). Recall that, over Q̄, Ȳ admits two pencils

of straight lines, the classes of which generate Pic Ȳ ∼= Z2. The tangent plane
to Y at P intersects Y in two lines, L and L′, which are each defined over
k(
√
θ) and conjugate over k; so the divisor of vanishing of g on Y is L+L′.
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Let D = φ∗L be the divisor obtained by pulling L back to X, and similarly
D′ = φ∗L′. Then (f/X2

0 ) = D+D′− 2D0 = Nk(
√
θ)/k(D−D0), where D0 is

the divisor on X defined by X0 = 0.
Independence of P is a routine calculation, but we reproduce it for the

sake of completeness. Let P1 ∈ Y (k) be another point, and let g1 be the
corresponding linear form defining the tangent plane to Y at P1. Then the
divisor of vanishing of g1 on Y is L1 + L′1, where L1 is a line, defined over
k(
√
θ) and linearly equivalent to L, and L′1 its conjugate over k. So there

exists a rational function h on Y , defined over k(
√
θ), such that (h) = L−L1.

Then

(g1Nk(
√
θ)/kh) = (L1 + L′1) + (L− L1) + (L′ − L′1) = L+ L′

and so g1Nk(
√
θ/k)h is a constant multiple of g. Let f1 = φ∗g1; then f/f1 is a

constant multiplied by the norm of a rational function defined over k(
√
θ),

so (θ, f1/X
2
0 ) differs from (θ, f/X2

0 ) only by a constant algebra.

Remark. Even when θ is not a square in k, it is still possible for the
class of A in BrX/Br k to be trivial. For example, taking k = Q, the tables
of [1] show that, for any integers c1, c2, the diagonal quartic surface

X4
0 + c1X

4
1 + c2X

4
2 − c2

1c
2
2X

4
3

has Br1X = Br Q. In particular, the algebra A on this surface is equivalent
to a constant algebra. Note that Lemma 2.3 below does not apply in this
case, since no prime divides exactly one of the coefficients.

Lemma 2.2. Let X be a diagonal quartic surface over Q. In the notation
of Theorem 1.1, suppose that |H| = 256. Then Br1X/Br Q is of order 2.

Proof. This calculation can be found in [1], and depends on the well-
known isomorphism Br1X/Br Q ∼= H1(Q,Pic X̄). What follows is a brief
summary of the calculation. The variety X contains (at least) 48 straight
lines: for example, setting

a0X
4
0 + a1X

4
1 = 0, a2X

4
2 + a3X

4
3 = 0

and factorising each side over Q̄ gives equations for 16 lines; the other 32 are
obtained by permuting the indices. The lines are all defined over the exten-
sion K = Q(i,

√
2, 4
√
a1/a0,

4
√
a2/a0,

4
√
a3/a0). The classes of the lines gener-

ate the Picard group of X over Q̄, which is free of rank 20. By the inflation-
restriction exact sequence, we have H1(Q,Pic X̄) = H1(K/Q,PicXK) and
computing this cohomology group comes down to knowing the Galois group
Gal(K/Q) and its action on the 48 lines. Appendix A of [1] lists the result
of this computation for all possible Galois groups Gal(K/Q). In particular,
case A222 there is where K/Q is of maximal degree 256, so that the co-
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efficients ai are “as general as possible”. In that case, H1(K/Q,PicXK) is
computed to be of order 2.

We claim that [K : Q] = |H|, so that condition (iii) of Theorem 1.1
implies that X falls into case A222 of [1]. Over Q(i), Kummer theory gives
the degree [K : Q(i)] = |H ′|, where H ′ is the subgroup of Q(i)×/(Q(i)×)4

generated by 4 and the aj/a0. The kernel of the natural map

r : Q×/(Q×)4 → Q(i)×/(Q(i)×)4

is of order 2, generated by the class of −4; so H ′ = r(H), and

[K : Q] = [K : Q(i)][Q(i) : Q] = 2|H ′| = |H|.

Remark. Further cohomology calculations could show that, under the
hypothesis that |H| = 256, the algebra A of Lemma 2.1 represents the
non-trivial class in BrX/Br Q. However, there is no need for this, since in
our situation non-triviality is also implied by the following lemma.

Lemma 2.3. Let X be a diagonal quartic surface over Q given by equa-
tion (1.1). Let A be the Azumaya algebra described in Lemma 2.1. Suppose
that p is an odd prime such that:

(i) p divides precisely one of the coefficients a0, a1, a2, a3, and does so
to an odd power;

(ii) X(Qp) is not empty;
(iii) if p ∈ {7, 11, 17, 41}, then the reduction of X modulo p is not equiv-

alent to the cone over the quartic curve x4 + y4 + z4 = 0.

Then invpA(Q) takes both values 0 and 1/2 for Q ∈ X(Qp). In particular,
the class of A in BrX/Br Q is non-trivial, and A gives no Brauer–Manin
obstruction to the existence of rational points on X.

Remark. Condition (i) implies, in particular, that θ = a0a1a2a3 is not
a square.

Remark. Condition (ii), that X(Qp) be non-empty, is automatic for
p ≥ 37: indeed, the reduction of X modulo p is a cone over a smooth quartic
curve, which has a rational point by the Hasse–Weil bound. For p < 37, one
can easily check by a computer search that the only smooth diagonal quartic
curves over Fp lacking a rational point are the following (up to equivalence):

• x4 + y4 + z4 = 0 for p = 5 or 29;
• x4 + y4 + 2z4 = 0 for p = 5 or 13.

Proof of Lemma 2.3. Suppose, without loss of generality, that p | a0.
In constructing A, as described in Lemma 2.1, we may choose any

point P ∈ Y (Q) to start from. In particular, we may choose P such that
y1, y2, y3 are not all divisible by p, for the following reason. Recall that we
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have assumed the coefficients ai to be fourth-power-free, so that in par-
ticular vp(a0) ≤ 3. The original surface X is locally soluble at p, so let
[x0, x1, x2, x3] ∈ X(Qp) with the xi p-adic integers, not all divisible by p. If
x1, x2, x3 were all divisible by p, then we would have

vp(a1x
4
1 + a2x

4
2 + a3x

4
3) ≥ 4 and vp(a0x

4
0) ≤ 3,

and so the defining equation (1.1) could not be satisfied. Now [x2
0, x

2
1, x

2
2, x

2
3]

is a point of Y (Qp), with x1, x2, x3 not all divisible by p, and so by weak
approximation Y (Q) contains a point with the desired property.

Looking at the equation of Y shows that, in fact, at most one of y1, y2, y3

can be divisible by p. It would clarify the rest of the argument if none of
y1, y2, y3 were divisible by p, and the reader is encouraged to imagine this
to be the case; but unfortunately if p = 3 it is not always possible.

Starting from such a P , we obtain f as in (2.1) where the coefficient of X2
0

is divisible by p, but at least one of the other coefficients is not divisible by p.
The reduction f̃ of f modulo p is a non-zero diagonal quadratic form on P3

Fp
,

with no term in X2
0 .

We now reduce to a problem over Fp. Let X̃ denote the reduction of X
modulo p. Let Q̃ ∈ X̃(Fp) be a smooth point; then, by Hensel’s Lemma,
Q̃ lifts to a point Q ∈ X(Qp). Suppose that f̃(Q̃) 6= 0, and that X0(Q) 6= 0.
Since p divides θ to an odd power, the description of the Hilbert symbol
at [7, III, Theorem 1] gives

(2.2) invpA(Q) = (θ, f(Q)/X2
0 )p = (θ, f(Q))p =

(
f̃(Q̃)
p

)
.

Here the leftmost equality is abusing notation slightly, since invp tradition-
ally takes values in {0, 1/2} whereas the Hilbert symbol (·, ·)p takes values
in {±1}. Since f is of degree 2, the value f(Q) is defined only up to squares,
and likewise f̃(Q̃), but the expressions in (2.2) are well defined. The require-
ment that X0(Q) 6= 0 is superfluous, since we can always replace A by the
isomorphic algebra (θ, f/X2

i ) for some i 6= 0 to show that the conclusion
of (2.2) still holds.

Now let C be the smooth quartic curve in P2
Fp

defined by

C : ã1X
4
1 + ã2X

4
2 + ã3X

4
3 = 0.

This is, of course, the same as the defining equation of X̃, but now considered
as an equation in only three variables. Any point of X(Qp) reduces to give
us a point of X̃(Fp) and hence, forgetting the X0-coordinate, of C(Fp). Since
the diagonal quadratic form f̃ has no term in X2

0 , we can consider it as a
form on C. Note that f̃ depends only on C, not on our original variety X,
since we may also construct f̃ as follows: the point P̃ = (ỹ1, ỹ2, ỹ3) lies on
the smooth plane conic Z : ã1Y

2
1 + ã2Y

2
2 + ã3Y

2
3 = 0, and the linear form g̃
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defines the tangent line to Z at P̃ . Write φ̃ for the map from C to Z given by
Yi = X2

i ; pulling g̃ back under φ̃ gives the form f̃ . In particular, this shows
that the divisor of f̃ is a multiple of 2, for we have (g̃) = 2P̃ and therefore
(f̃) = 2(φ̃∗P̃ ). The geometric picture (which is only accurate as long as
none of y1, y2, y3 are divisible by p) is that f̃ defines a plane conic which is
tangent to C at four distinct points, which are the four points mapping to
P̃ under φ̃.

Note also that the divisor (f̃)/2 = φ̃∗P̃ is not a plane section: as long
as none of y1, y2, y3 are divisible by p, this divisor consists of four distinct
points of the form [±α,±β,±γ], with α, β, γ all non-zero; in characteristic
6= 2, such points can never be collinear. If one of y1, y2, y3 is divisible by p,
then we move to an extension of Fp, replace P̃ by some P̃ ′ for which the
above proof does work, and observe that P̃ ′ is linearly equivalent to P̃ , so
φ̃∗P̃ ′ is linearly equivalent to φ̃∗P̃ , but φ̃∗P̃ ′ is not a plane section; therefore
neither can φ̃∗P̃ be a plane section.

By (2.2), it remains to show that the quadratic form f̃ takes both square
and non-square non-zero values on C(Fp). Equivalently, we need to show
that, for any c ∈ F×p /(F×p )2, the equations

(2.3) T 2 = cf̃(X1, X2, X3), ã1X
4
1 + ã2X

4
2 + ã3X

4
3 = 0

have simultaneous solutions with T non-zero. These equations define a double
cover Ec of C. As given, Ec is singular at the points with T = 0 (which
are the points lying over the zeros of f̃), so we consider its normalisation
E′c → Ec. This is a smooth double cover of C with the following properties:

• the morphism E′c → Ec is an isomorphism outside eight (geometric)
points lying over the points of Ec with T = 0;
• since the divisor (f̃) is a multiple of 2, the quadratic extension of

function fields Fp(Ec)/Fp(C) is unramified and hence so is E′c → C;
• since the divisor (f̃)/2 is not a plane section, this extension contains

no non-trivial extension of Fp and so E′c is geometrically irreducible.

By the Riemann–Hurwitz formula, E′c has genus 5. If p > 114, then the
Hasse–Weil bounds show that E′c has strictly more than eight points over Fp,
and so Ec has at least one point with T 6= 0, completing the argument in
this case.

It remains to check the cases with p < 114. For each prime p, we can take
ã1 = 1 and let ã2, ã3 run through F×p /(F×p )4. A straightforward computer
search shows that the only cases when some Ec fails to have points are those
listed in the statement of the lemma.

Remark. With a slightly longer argument, we could avoid having to
throw away the points on Ec with T = 0. By taking two different P̃ s to
start with, we obtain two different f̃s with no common zeros on C. The
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ratio of the f̃s is a square, and the corresponding equations (2.3) patch
together to give a description of E′c with no singularities. The sophisticated
reader will recognise E′c as a torsor under µ2 corresponding to the 2-torsion
divisor class (f̃/X2

0 ) ∈ PicC[2].

3. A counterexample. In this section we present a counterexample
showing that Theorem 1.1 can fail when condition (iv) is not met. We begin
by giving an infinite family of diagonal quartics satisfying conditions (i)–(iii)
of Theorem 1.1, but not condition (iv).

Lemma 3.1. Let p, q be odd primes with the following properties:

• p ≡ q ≡ 3 (mod 4);
• p and q are both fourth powers modulo 17;
•
(p
q

)
= 1.

Then the diagonal quartic surface

X4
0 + qX4

1 = pX4
2 + 17pqX4

3

satisfies conditions (i)–(iii) of Theorem 1.1.

Proof. Conditions (ii) and (iii) are clear, since there are no non-obvious
relations between the generators for H = 〈−1, 4, p, q, 17〉. It remains to prove
local solubility. For R this is clear. For primes ` ≥ 23 of good reduction, the
Weil conjectures guarantee a point modulo ` and hence a point over Q` by
Hensel’s Lemma. At ` = 3, 7, 11, 13, 17, 19, a computer search shows that
every smooth diagonal quartic surface has a rational point modulo `. At
` = 5, the only smooth diagonal quartic surface lacking a point over F5 is
the Fermat quartic X4

0 + X4
1 + X4

2 + X4
3 = 0, so for local solubility to fail

we would need q ≡ −p ≡ −17pq ≡ 1 (mod 5), which is impossible.
Since p and q are both congruent to 3 (mod 4), the fourth powers modulo

p or q are the same as the squares. At q, the condition
(p
q

)
= 1 guarantees

local solubility; at p, we have
(−q
p

)
= −

( q
p

)
=
(p
q

)
= 1 and so again the

surface is locally soluble. Finally, at 17, the fact that p, hence −p, and q
are fourth powers means that the reduction at 17 is isomorphic to the cone
over the Fermat quartic curve x4 + y4 + z4 = 0, which has smooth points
over F17.

However, choosing p and q to be fourth powers modulo 17 means that
condition (iv) of Theorem 1.1 is not satisfied.

We will show that the Azumaya algebra A described in Section 2 can
give an obstruction to the existence of rational points on X, at least for
some values of p and q. Recall that multiplying the form f by a constant
changes A by a constant algebra. To avoid contributions at unnecessary
primes, we choose our representation A = (θ, f) such that the coefficients
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of f are integers with no common factor. (This is equivalent to writing our
point P = [y0, y1, y2, y3] with the yi integers having no common factor.)

Lemma 3.2. Let X be the surface of Lemma 3.1, and let A = (θ, f) be
normalised as above. Then, for all places v 6= 17, invvA(Q) = 0 for all
Q ∈ X(Qv). The invariant is constant on X(Q17).

Proof. Our normalisation of f ensures that, at all places of good reduc-
tion for X, the algebra A also has good reduction and so the invariant is
zero at these places. See [3, Corollary 4] for one explanation of why this is
true.

The primes of bad reduction for X are 2, 17, p, q. Observe that θ = 17p2q2

is a square in R, Q2, Qp and Qq (the last two follow by quadratic reciprocity
from the fact that −p and q are fourth powers, hence squares, modulo 17).
So the conclusion is true at each of these places.

At 17, the argument used in the proof of Lemma 2.3 shows that the
invariant inv17A(Q) is constant for Q ∈ X(Qv). We give the details. The
reduction of X modulo 17 is isomorphic to the cone X4

0 + X4
1 + X4

2 = 0.
The corresponding quadric is Y 2

0 + Y 2
1 + Y 2

2 = 0. To show simply that the
invariant is constant, we can change A by a constant algebra and so may
as well replace P by any point which is convenient. So pick P̃ = [5, 5, 1, 0]
and hence f̃ = 5X2

0 + 5X2
1 +X2

2 . (This choice of P̃ has the advantage that
it does not lift to a point of the quartic, so f̃ is never zero on F17-rational
points of the quartic.) Now the solutions to X4

0 +X4
1 +X4

2 over F17 are all
of the form [ε, 1, 0], [ε, 0, 1] or [0, ε, 1] where ε4 = −1, and it turns out that
evaluating f̃ at any of these points gives a square in F17.

We do not yet know whether the invariant at 17 will be 0 or 1/2. If
it is 0, then there is no Brauer–Manin obstruction on X (not even to weak
approximation). If it is 1/2, then there is a Brauer–Manin obstruction to the
existence of rational points. To determine which, we only need to evaluate
the invariant at one point. A simple calculation reveals that the first example
satisfying the conditions of Lemma 3.1 does indeed give a counterexample
to the Hasse principle:

Proposition 3.3. Let X be the diagonal quartic surface given by

X4
0 + 47X4

1 = 103X4
2 + (17 · 47 · 103)X4

3 .

Then X has points in each completion of Q, but the algebra A gives a
Brauer–Manin obstruction to the existence of a rational point on X.

Proof. Since X satisfies the conditions of Lemma 3.1, it only remains to
evaluate the obstruction at 17. On the quadric
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Y : Y 2
0 + 47Y 2

1 = 103Y 2
2 + (17 · 47 · 103)Y 2

3 ,

we can take P = [20 : 13 : −9 : 0] ∈ Y (Q), and so obtain the Azumaya
algebra

A = (17, (20X2
0 + (47 · 13)X2

1 + (103 · 9)X2
2 )/X2

0 ).

Evaluating the quadratic form 20X2
0 +(47·13)X2

1 +(103·9)X2
2 at any point of

X(F17) gives a non-square value modulo 17, and therefore inv17A(Q) = 1/2
for all Q ∈ X(Q17). Combining this with the fact that the invariant is 0 at
each other place, we deduce that

∑
v invvA(Qv) = 1/2 for all (Qv) ∈ X(AQ),

and therefore that A gives a Brauer–Manin obstruction to the existence of
a rational point on X.

Remark. It was not a priori clear that starting from different points
P of the quadric Y should always give the same invariant at 17. Different
points P might give algebras A differing by a constant algebra. After all,
in performing the verification of Lemma 3.2, we could have replaced the
point P̃ = [5, 5, 1, 0] by a scalar multiple, say [1, 1, 7, 0], and f̃ would have
been non-square at all points instead of square. However, our insistence
that P should be given by coordinates which are coprime integers fixes the
invariants at all places other than 17, and therefore (by the product rule)
fixes the invariant at 17 as well. A somewhat surprising conclusion is this:
given any point P̃ ∈ Ỹ (F17), at most half of the scalar multiples of P̃ lift to
rational points of Y with coprime integer coordinates.

Acknowledgements. I thank Sir Peter Swinnerton-Dyer for many use-
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